Neural-network-backed evolutionary search
for SrTiO; surface reconstructions

TACO

TAMING COMPLEXITY
GETHI

Ralf Wanzenbock, Jesis Carrete, Marco Arrigoni, Georg K. H. Madsen
2021-11-17

Institute of Materials Chemistry, TU Wien




Introduction

Goal:

Global structure exploration of SrTiO3 surfaces by combining

- evolutionary search strategies and

- machine learning techniques.

Wikimedia Commons. David Ha, blog.otoro.net (2017). 1



Strontium titanate

- Cubic perovskite oxide

- n-type semiconductor

- very practical material

Enterkin. Nat. Mater. 9 (2010).



Adapt CMA-ES to surface structures

- Redefine parameters in contrast to bulk systems.
- Compatibility with GPAW (parallelization, call structure).
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Perform thorough evolutionary searches

- Utilize the CPU cluster and GPUs.
- Sets of CMA-ES runs with NN backend.



Explore & Exploit

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- Optimization technique based on ideas of evolution.

- Works for rough energy landscapes.
- Structures are sampled from a multivariate normal distribution.

- Adaptation: Repeat recent successful steps.

X9V - v (M), (019))2¢)

Hansen, N. (2016). arXiv:1604.00772 [cs.LG]


https://arxiv.org/abs/1604.00772
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CMA-ES evolution on 4x1 structure

- 500 generations, 11000 individual structures.

ocal optimization.
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Neural-Network Force Field

Differentiable neural-network force field

- Trained on ab-initio forces.
- Atom-centered, local descriptors.

- Transferable to different system sizes. , ,
Montes-Campos, Carrete, Bichelmaier,

» Built on Google JAX. raoms X M \arela, Madsen (2021). arXiv:2106.16220.
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Training the NN potential

Fully trained model (4x1 structures)

- Weakly correlated structures.
- 3000 training data, 500 validation data. -
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Training the NN potential

Fully trained model (4x1 structures)

- Weakly correlated structures.
- 3000 training data, 500 validation data. . fully trained .
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Structure search

Investigate the 5x1 reconstruction
- Use the NN for energy evaluation.
- Run a set of 50 CMA calculations.
- Optimize each CMA result.
- Identified two distinct minima.

Energy / ev
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NN performance on 5x1 structures

Test the 4x1 model
+ 3500 test structures.
- Compare to GPAW results.
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Data generation NN Training Structure search

(process) m

;'il)

(3)"

@y )

JSON file
PostgresqQL

High performance
& accuracy




Acknowledgements

TECHNISCHE
UNIVERSITAT
WIEN

LLIF

Der Wissenschaftsfonds.

TACO

TAMING COMPLEXITY
TOGETHER



Bonus - NN performance on 5x1 structures

Test the 4x1 model
+ 3500 test structures.
- Compare to GPAW results.

w
o
o

< fully trained
~—— truth

N
o
o

=

o

o
*

o

Energy / ev
Predicted forces / eVA~!

%o —Zo0 -100 [} 160 200 300
True forces / eVA~!




Bonus - NN performance on 5x1 structures
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