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Introduction

Goal:

Global structure exploration of SrTiO3 surfaces by combining

• evolutionary search strategies and
• machine learning techniques.

1David Ha, blog.otoro.net (2017).Wikimedia Commons.



SrTiO3

Strontium titanate

• Cubic perovskite oxide
• n-type semiconductor
• very practical material

2

Riva et al., Phys. Rev. Mater. 3, 043802 (2019).

Enterkin. Nat. Mater. 9 (2010).



Objectives

Adapt CMA-ES to surface structures

• Redefine parameters in contrast to bulk systems.
• Compatibility with GPAW (parallelization, call structure).

Train a surrogate neural-network model

Generate data (training, validation, test).
Adapt the NN parameters and loss function.

Perform thorough evolutionary searches

Utilize the CPU cluster and GPUs.
Sets of CMA-ES runs with NN backend.
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Explore & Exploit

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

• Optimization technique based on ideas of evolution.
• Works for rough energy landscapes.
• Structures are sampled from a multivariate normal distribution.
• Adaptation: Repeat recent successful steps.

barrier

𝑥(𝑔+1)𝑘 ∼𝒩 (𝑚(𝑔), (𝜎(𝑔))2𝐶(𝑔))

Hansen, N. (2016). arXiv:1604.00772 [cs.LG]
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GPAW-backed evolution

CMA-ES evolution on 4x1 structure

• 500 generations, 11000 individual structures.
• Subsequent local optimization.

5



Neural-Network Force Field

Differentiable neural-network force field

• Trained on ab-initio forces.
• Atom-centered, local descriptors.
• Transferable to different system sizes.
• Built on Google JAX.

6

Montes-Campos, Carrete, Bichelmaier,
Varela, Madsen (2021). arXiv:2106.16220.



Training the NN potential

Fully trained model (4x1 structures)

• Weakly correlated structures.
• 3000 training data, 500 validation data.
• MAE 𝑓 = 75.3 meV/Å

• MAE 𝐸pot = 2.2 meV/atom
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Structure search

Investigate the 5x1 reconstruction
• Use the NN for energy evaluation.
• Run a set of 50 CMA calculations.
• Optimize each CMA result.
• Identified two distinct minima.
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NN performance on 5x1 structures

Test the 4x1 model
• 3500 test structures.
• Compare to GPAW results.
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Workflow
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Bonus - NN performance on 5x1 structures

Test the 4x1 model
• 3500 test structures.
• Compare to GPAW results.
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