On programming and code quality

Ask Hjorth Larsen

CAMD, DTU

December 1, 2022

In this talk

Introduction to doing Python projects

>

» Testing and pytest

» Refactoring, antipatterns, and code smells
| 2

Work of the Response Code Focus Group

Introduction

@00

Coding quality and practices

What is code quality about?

» Producing reliable code
» Producing code that it is easy to adapt and extend
» Producing code that can be maintained for many years

» Changing code to improve quality without changing
functionality falls under the umbrella of refactoring

What is code quality not about?

» Code quality is not at all about “style” nor “looking good’
(although those things can help)

Introduction
oeo

How to run high-throughput projects

>

>
>
| 2

vy

v

Write code to do a computation
Run some materials with cheap parameters
Run a few materials with good parameteres

Be ready to delete all data and redo everything at any time for
any reason! Automate any steps necessary for this to be easy.

Keep code in version control!

Make sure the whole chain works: Code, database collection,
web panels, ...

Write tests which would fail if any of this did not work

Get feedback on code (frequently)

Iterate the all the steps above as necessary until everything
works and everyone agrees that things are good

Only at the end: Submit thousands of materials with
production quality parameters

Introduction
ooe

Doing projects in Python

Basic steps

» Create project on gitlab/github

» Create setup.py to allow installation with pip

» Write code inside importable modules

> Have a test suite
Effectively: Make sure the code (actually: the project) lives in a
well-defined place with version control and a basic level of

documentation; keep dangling scripts all over Niflheim to a
minimum.

Introduction Testing >rogramming in general

@000000

On testing

» Code becomes more complex over time as new functionality is
added

> A test is a bit of code which would fail (raise an error) if
something does not work as expected

» Murphy's law: Everthing that can go wrong will go wrong

» Specifically: The probability that an untested feature still
works decreases exponentially as changes are made

> A test suite prevents exponential degeneration of features

» The goal of a test suite is to fail whenever something doesn’t
work

Introduction

[e]e]e}

Testing

0@00000

Programming in general
00000000

askhl@noether: ~/src/gpaw/gpaw/test/response Q

linux -- Python 3.9.2,

/home/askh

forked-1.4.0,

mock-3.8.2

<Package response>

1/src/gpaw,

test session starts

% pytest --collectonly

Response code refactor
000000000000 000

pytest-7.2.0, pluggy-1.0.0
configfile: pytest.ini

<Module test afm hchain sf gssALDA.py=
<Function test response afm hchain gssALDA>
<Module test aluminum EELS ALDA.py=>
<Function test response aluminum EELS ALDA>
<Module test aluminum EELS RPA.py=
<Function test response aluminum EELS RPA=>
<Module test au®2 absorption.py>
response au@2 absorption>

<Function test
<Module test bse
<Function test
<Module test bse
<Function test
<Module test_bse
<Function test
<Module test chie

MoS2 cut.py>
response bse
aluminum. py>
response_bse
silicon.py=>
response bse
- py=

MoS2 cut=

aluminum=

silicon>

<Function test response chie=
<Module test chi@ intraband test.pv>

cov-3.0.0, anyio-3.6.2, xdist-3.0.2, instafail-0.4.2, xvf

Testing
[e]e] le]elele)

Writing a test

» Set up initial conditions
> Run code to be tested

» Verify that results are correct

Testing

[e]e]e] lelele)

A unit test with pytest

def test isolation 2D():
atoms = ase.build.mx2(formula='Mos52', kind='2H', a=3.18, thickness=3.19)
atoms.cell[2, 2] = 7
atoms.set_pbc((1, 1, 1))
atoms *= 2

result = isolate_components(atoms)

assert len(result) ==

key, components = list(result.items())[0]

assert key == '2D'

assert len(components) ==

for layer in components:
empirical = atoms.get chemical formula(empirical=True)
assert empirical == layer.get_chemical_formula(empirical=True)
assert (layer.pbc == [True, True, False]).all()

Author: Peter Mahler

Testing

[e]e]e]e] Tele)

Another unit test

a=4.1

@pytest.fixture

def atoms():
atoms = bulk("Au", a=a)
return atoms

def test_supercell_issue_938(atoms):
assert atoms.cell.get_bravais_lattice().name == "FcC"

Since FCC and BCC are reciprocal, their product is cubic:
P = BCC(2.0).tocell()

let P have negative determinant, make_supercell should not blow up
P[O] *= -1
assert np.allclose(np.linalg.det(P), -4)

cubatoms = make_supercell(atoms, P)
assert np.allclose(cubatoms.cell, a * np.diag((-1, 1, 1)))
assert np.allclose(len{cubatoms), 4)

Test uses a “fixture”, initialization/cleanup code that can be shared
among multiple tests. Author: Florian Knoop

Testing
0000080

Concluding remarks on testing

» If your code should survive, then write tests
P> Learn pytest

» Many small tests are better than few big tests
» Tests should execute quickly

(This is easy to say. It's not trivial to test complex projects and it
takes time to learn how to write good tests.)

Testing
000000e

Implement and test with minimum coupling

» You want to implement something new.

» Do not go to line 637 of somemodule.py and implement it
there in the middle of everything. You'd be forced to call
unwanted code in order to test.

» Instead, implement it in a standalone module. What is the
input, and what is the output? Test it (and commit the test).

» Then integrate with the rest of the code.

Programming in general

®0000000

Book: Clean code by Robert C. Martin

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

Introduction Programming in general

O@000000

Keep it simple

» What is a reasonable minimum input to compute a DOS?
» Energies and weights
> Not: A “gpw file”

» What is a reasonable minimum input for a band structure?
» Energies and a band path
> Not: A “gpw file"

» What is a reasonable minimum input for GoWg?

» Not: 30 arguments including a “gpw file"

The “wrong” answers have one thing in common: They depend on
unnecessary infrastructure. The feature is taken “hostage” by the
necessity to provide the unnecessary infrastructure and hence ceases
to be reusable.

Implement code in isolation and test it. Then add convenient
wrappers to integrate with calculators, files, etc.

Programming in general

[e]e] Jele]elele)

Take-home message: Don't allow your low-level processing to be
taken hostage by non-essential infrastructure.

Programming in general
[e]e]e] le]elele)

“How to write unmaintainable code”

By Roedy Green
General Principles

Quidquid latine dictum sit, altum sonatur.
- Whatever is said in Latin sounds profound.

To foil the maintenance programmer, you have to understand how he thinks. He has your giant
program. He has no time to read it all, much less understand it. He wants to rapidly find the place to
make his change, make it and get out and have no unexpected side effects from the change.

He views your code through a toilet paper tube. He can only see a tiny piece of your program at a
time. You want to make sure he can never get at the big picture from doing that. You want to make it
as hard as possible for him to find the code he is looking for. But even more important, you want to
make it as awkward as possible for him to safely ignore anything.

Introduction

Programming in general
[e]e]e]e] Jelele)

On duplication

>

“The cardinal rule of writing unmaintainable code is to specify
each fact in as many places as possible and in as many ways as
possible.”

— Roedy Green, How to write unmaintainable code

In how many places do we hardcode “PBE", “gs.gpw”, ...7

In how many places do we redundantly check (or forget to
check) that all(pbc == [True, True, False]) because we
don't have normalization layer?

Don’t duplicate code

Don't duplicate functionality by effectively solving the same
problem twice, either, even if code would be different

Instead, look for an abstraction good enough to solve the
problem well

Programming in general

0O0000e00

Refactoring and code smells

When should you refactor? From Refactoring: Improving the
Design of Existing Code by Martin Fowler et al.

| was mulling over this tricky issue when | visited Kent Beck in Zurich. Perhaps he was under the
influence of the odors of his newborn daughter at the time, but he had come up with the notion
describing the "when" of refactoring in terms of smells. "Smells,” you say, "and that is supposed
to be better than vague aesthetics?" Well, yes. We look at lots of code, written for projects that
span the gamut from wildly successful to nearly dead. In doing so, we have learned to look for
certain structures in the code that suggest (sometimes they scream for) the possibility of
refactoring. (We are switching over to "we" in this chapter to reflect the fact that Kent and | wrote

this chapter jointly. You can tell the difference because the funny jokes are mine and the others
are his.)

Programming in general
[e]e]e]ele]e] o)

Code smells

vvyyy

vy

Duplicated code
Long function/method
Long parameter list

Shotgut surgery (changes necessary all over the place, not in
one place)

Feature envy (overuse features of other class)
Switch statements (long/repeated if/else chains)

Inappropriate intimacy (accessing implementation details of
other class)

Introduction Programming in general

0O000000e

Invisible information passing

» Function 1 writes a file with a particular name

» Function 2 expects this file to exist after calling Function 1

» Problem: Both modules must redundantly implement the
naming scheme for this to work. If either changes, code is
broken.

» Solution 1: Function 1 takes target filename as an input, so
Function 2 can choose what file is written

» Solution 2: Function 1 returns the path of the file it wrote, so
Function 2 needs not reconstruct the name

Examples of this anti-pattern
» ASE vibrations code (has since been factored out)

» GPAW response code (writing of “tags”)

» ASR old-master (all over the place! But it’s not as invisible
because “dependencies” are declared)

Introduction in Response code refactor

O (¢) ©00000000000000

The Response Code Focus Group

» Suggestion by Thorbjgrn to do something about the quality of
the response code

> Fredrik, Jens Jgrgen, Julian, Mikael, myself, Tara, Thorbjgrn

» Two-day code sprints every three weeks plus
planning/follow-up meetings

» Tasks created and discussed as issues on Gitlab, then
delegated to individuals or pairs during sprint

» Why does it work? The same people sit down, work together,
learn, gradually improve things

» High level of satisfaction and productivity from working
together rather than typical isolated postdoc work

& Issues - gpaw / gpaw - Git X | +

FE P20 §

© O B 32 https://gitlab.com/gpaw/gpaw/-fissues/?label_name[]=Sprint

™ gpaw > gpaw > Issues

Open 42 Closed 42 All &5

\{\)v‘ | = Q‘Q‘[(rsaleddatev‘l’l

Move reduce ecut 2.0 follow up &

@ #672- created 1week ago by Fredrik Nilsson updated 1 week ago

Separate dyson for Gamma, body and ppa e ek

(O #668 - created 1week ago by Fredrik Nilsson updatediweekago
1L from "Dont accept ‘point i ion' keyword, since it is broken” 0 of 1 checklist itern completed

@ #667 - created 1 week ago by Ask Hjorth Larsen

Makeit possi i gh ChiO i
(O #661 - created 2 weeks ago by Thorbjern Skovhus

Add response ization helper class
@ #659 - created 2 weeks ago by Ask Hjorth Larsen

Unsubclass FXCCorrelation from RPACorrelation
(O #658 - created 2 weeks ago by Ask Hjorth Larsen

Add parallel unittest of rpa with nblocks
@ #654 - created 2 weeks ago by Ask Hjorth Larsen

Centralize various chio body p X 4
O #646 - created 3 weeks ago by Ask Hjorth Larsen

Clean up writing of results in BSE
@ #642 - created 1 month ago by Thorbjern Skovhus

updated 1week ago

updated 2 weeks ago

updated 2 weeks ago

updated 1week ago

updated 2 weeks ago

updated 3 weeks ago

updated 1 month ago

Response code refactor
0e0000000000000

Response code refactor

00@000000000000

Refactoring level 1

if abs(a - b) < eps:
isclose = True
else:
isclose = False

isclose = abs(a - b) < eps

gramming in genera Response code refactor

000@00000000000

Refactoring level 2

W_GG[1:, 8] = 1. / nq * np.dot(
np.sum{qdir_qv * u_q[:, np.newaxis], axis=8),
S_vGO * sqrtV_G[np.newaxis, 1:])

W_GG[@, 1:] = 1. / nq * np.dot(
np.sun{qdir_gv * u_g[:, np.newaxis], axis=0),
S_vOG * sqrtV_G[np.newaxis, 1:])

def wing(S_wxx):
return 1. / nq * np.dot(
np.sun(gdir_qv * u_q[:, np.newaxis], axis=@)
S_vxx * sqrtv_G[np.newaxis, 1:])

W_GG[1:, 8] = wing(S_vGe)
W_GG[®, 1:] = wing(5_veG)

Response code refactor
0O000e0000000000

Refactoring level infinity

def read_contribution(sclf, Filename):
d - opencew(filensme) # ereate, exclusive, write
1f fd is not Nane:
File was not there: nothing te read

return fd, Wone

" with open(filename, *rb') as fd:
«_zkn = np.losd(fd)

except 10Error:
self.context.print(Renoving broken File:', Tilenane)
else:

self.context.print(Read:’, fllename)
%_skn.shape == self.shape:

Feturn Hone, x_skn
self.eontext.print(Renaving bad Tile (wrong shape aof array):',

fllenzne)

if self.context.world.rank == e:
os.renove(Tilename)

return opencew(filenane), Hane

Response code refactor
0O0000e000000000

Refactoring the humongous response code constructors

class GOWO({PairDensity):
def __init__(self, calc, filename='gw', restartfile=None,

kpts=None, bands=None, relbands=None, nbands=None, ppa=False,
®xc="RPA', fxc_mode='GW', density_cut=1.e-6, do_GW_too=False,
av_scheme=None, Eg=None,
truncation=None, integrate_gamma=0,
ecut=150.0, eta=0.1, EB=1.0 * Ha,
domega®=0.025, omega2=10.8, qb_correction=False,
anisotropy _correction=None,
nblocks=1, savew=False, savepckl=True,
maxiter=1, method="GBOWe', mixing=08.2,
world=mpi.world, ecut_extrapolation=False,
nblocksmax=False, gate voltage=None,

D paw_correction="brute-force'):

Response code refactor
000000800000 000

Inside GOWO

PairDensity.__init__ (self, calc, ecut, world=world, nblocks=nblocks,
gate_voltage=gate_voltage, txt=txt,
paw_correction=paw_correction)

self.gate_voltage = gate_voltage
ecut /= Ha

chi® = Chie@(self.inputcalc,
nbands=self.nbands,
ecut=self.ecut * Ha,
intraband=False,
real_space_derivatives=False,
txt=self.filename + '.w.txt',
timer=self.timer,
nblocks=self.blockcomm.size,
gate_voltage=self.gate_voltage,
paw_correction=self.paw_correction,
**parameters)

Fun fact: GOWO is a PairDensity, but it also creates Chi0 which

itself creates a PairDensity. Thus, two completely redundant yet
complex objects must (or maybe not?) be kept in sync.

rogramming in genera Response code refactor
000000080000 000

class PairDensity:
def __init__ (self, gs, ecut=50, response='density',
ftol=1e-6, threshold=1,
real_space_derivatives=False,
world=mpi.world, txt='-', timer=None,
nblocks=1, gate_voltage=None,
paw_correction="'brute-force', **unused):

class chie:
"""Class for calculating nen-interacting response functions.™"""

def __init__ (self, calc, response='density',
frequencies=None, domega®=0.1, omega2=10.0, omegamax=None,
ecut=50, gammacentered=False, hilbert=True, nbands=None,
timeordered=False, eta=0.2, ftol=le-6, threshold=1,
real_space_derivatives=False, intraband=True,
world=mpi.world, txt='-', timer=None,
nblocks=1, gate_voltage=None,
disable_point_group=False, disable_time_reversal=False,
disable_non_symmorphic=True,
integrationmode=None,
pbc=None, rate=0.8, eshift=0.0,
paw_correction="brute-force'):

Fun fact: PairDensity takes ecut as input, but it doesn’t even use it.

Introduction > mming in Response code refactor

000000008000 000

So what’s wrong then?

Redundant creation of complex objects
Endless passing of the same information

Obviously code does not provide the correct abstractions

vvvyyypy

Solution 1: Use x*kwargs to pass everything instead.
Tempting but fails to provide an adequate abstraction.

v

When many pieces of data travel everywhere together, we call
them “data clumps”

» Solution: Join data clumps into objects. Instead of passing all
the information for gOw0 and chi0 and pair density to the
GOWO constructor, change GOWO so it takes chi0 and pair
density as inputs.

Response code refactor

000000000 e00000

Constructors now

class GOWBCalculator:
def __init__(self, filename='gw', *,

chiecalc,
wecalc,
kpts, bands, nbands=None,
fxc_modes,
eta,
ecut_e,
frequencies=None):

class chiecCalculator:
def _ init_ (self, wd, pair,
hilbert=True,
intraband=True,
nbands=None,
timeordered=False,
context=None,
ecut=None,
eta=0.2,
disable point_group=False, disable_time reversal=False,
disable_non_symmorphic=True,
integrationmode=None,
ftol=le-6,
rate=0.0, eshift=0.0):
class PairDensityCalculator:
def _ init_ (self, gs, context, *,
threshold=1, nblocks=1):

u]
@
I
ut
i

Introduction o g in general Response code refactor

0000000000 e0000

Sequential coupling in large objects
(slide reused from ASE 2019 workshop)

> Sequential coupling:
Workflow becomes “magic
incantation”

> Must call methods in right
order:

obj = MyClass (...)
obj.initialize ()
obj.calculate ()
obj.read ()

x = obj.useful_method ()

» Complex state: Not clear
what the object can do and
when. Source: Francisco Goya /

Wikipedia

Response code refactor

00000000000 e000

So what's an example of something good?

Numpy arrays

» Arrays can change, but are always qualitatively the same

» All methods work predictably at all times

» Limited scope: Arrays don’t try to be anything more than an
array. They will never have a “gate voltage” or a “logfile” inside

them. That's somebody else’s problem, SEP, a key principle in
programming according to me.

Introduction > mming in general Response code refactor

000000000000 e00

How do we factor out sequential coupling?

> State changes many times: Object creation, initialization,
halfway through calculation,

» Some methods work only when object is in a particular state

» Actually: An class named Chi0 should represent an already
calculated Chi0. Not a way to calculate it.

» Conclusion: Split large classes into “data” objects (ChiOData
which holds arrays and information on parallelization) and
calculators (e.g. ChiOCalculator) which know how to compute
the data objects.

Introduction > mming in general Response code refactor

000000000000 0e0

Work of response code focus group

> Split large sequentially-coupled classes to smaller “data” or
“calculator” objects

> A data object wraps an array in order to provide abstractions
to deal with (“hide” from the caller) details of its distribution
and other properties

» A calculator can calculate something but does not (or should
not have) mutable data inside it or otherwise change state

» Join more data clumps into helper classes (ResponseContext)

» Clean up completely tangled “integrators”

Response code refactor
000000000000 00e

Concluding remarks

Literature
» (lean code by Robert C. Martin
The Pragmatic Programmer by Andrew Hunt

>

» Refactoring by Martin Fowler et al.

» How to write unmaintainable code (humorous) by Roedy Green
>

Finally, check out all the “anti-patterns” and “code smells” on
wikipedia and elsewhere.

	Introduction
	

	Testing
	

	Programming in general
	

	Response code refactor
	

