
Introduction Testing Programming in general Response code refactor

On programming and code quality

Ask Hjorth Larsen

CAMD, DTU

December 1, 2022

Introduction Testing Programming in general Response code refactor

In this talk

▶ Introduction to doing Python projects

▶ Testing and pytest

▶ Refactoring, antipatterns, and code smells

▶ Work of the Response Code Focus Group

Introduction Testing Programming in general Response code refactor

Coding quality and practices

What is code quality about?

▶ Producing reliable code

▶ Producing code that it is easy to adapt and extend

▶ Producing code that can be maintained for many years

▶ Changing code to improve quality without changing
functionality falls under the umbrella of refactoring

What is code quality not about?

▶ Code quality is not at all about �style� nor �looking good�
(although those things can help)

Introduction Testing Programming in general Response code refactor

How to run high-throughput projects

▶ Write code to do a computation

▶ Run some materials with cheap parameters

▶ Run a few materials with good parameteres

▶ Be ready to delete all data and redo everything at any time for
any reason! Automate any steps necessary for this to be easy.

▶ Keep code in version control!

▶ Make sure the whole chain works: Code, database collection,
web panels, . . .

▶ Write tests which would fail if any of this did not work

▶ Get feedback on code (frequently)

▶ Iterate the all the steps above as necessary until everything
works and everyone agrees that things are good

▶ Only at the end: Submit thousands of materials with
production quality parameters

Introduction Testing Programming in general Response code refactor

Doing projects in Python

Basic steps

▶ Create project on gitlab/github

▶ Create setup.py to allow installation with pip

▶ Write code inside importable modules

▶ Have a test suite

E�ectively: Make sure the code (actually: the project) lives in a
well-de�ned place with version control and a basic level of
documentation; keep dangling scripts all over Ni�heim to a
minimum.

Introduction Testing Programming in general Response code refactor

On testing

▶ Code becomes more complex over time as new functionality is
added

▶ A test is a bit of code which would fail (raise an error) if
something does not work as expected

▶ Murphy's law: Everthing that can go wrong will go wrong

▶ Speci�cally: The probability that an untested feature still
works decreases exponentially as changes are made

▶ A test suite prevents exponential degeneration of features

▶ The goal of a test suite is to fail whenever something doesn't
work

Introduction Testing Programming in general Response code refactor

Introduction Testing Programming in general Response code refactor

Writing a test

▶ Set up initial conditions

▶ Run code to be tested

▶ Verify that results are correct

Introduction Testing Programming in general Response code refactor

A unit test with pytest

Author: Peter Mahler

Introduction Testing Programming in general Response code refactor

Another unit test

Test uses a ��xture�, initialization/cleanup code that can be shared
among multiple tests. Author: Florian Knoop

Introduction Testing Programming in general Response code refactor

Concluding remarks on testing

▶ If your code should survive, then write tests

▶ Learn pytest

▶ Many small tests are better than few big tests

▶ Tests should execute quickly

(This is easy to say. It's not trivial to test complex projects and it
takes time to learn how to write good tests.)

Introduction Testing Programming in general Response code refactor

Implement and test with minimum coupling

▶ You want to implement something new.

▶ Do not go to line 637 of somemodule.py and implement it
there in the middle of everything. You'd be forced to call
unwanted code in order to test.

▶ Instead, implement it in a standalone module. What is the
input, and what is the output? Test it (and commit the test).

▶ Then integrate with the rest of the code.

Introduction Testing Programming in general Response code refactor

Book: Clean code by Robert C. Martin

Introduction Testing Programming in general Response code refactor

Keep it simple

▶ What is a reasonable minimum input to compute a DOS?
▶ Energies and weights
▶ Not: A �gpw �le�

▶ What is a reasonable minimum input for a band structure?
▶ Energies and a band path
▶ Not: A �gpw �le�

▶ What is a reasonable minimum input for G0W0?
▶ Well......
▶ Not: 30 arguments including a �gpw �le�

The �wrong� answers have one thing in common: They depend on
unnecessary infrastructure. The feature is taken �hostage� by the
necessity to provide the unnecessary infrastructure and hence ceases
to be reusable.
Implement code in isolation and test it. Then add convenient
wrappers to integrate with calculators, �les, etc.

Introduction Testing Programming in general Response code refactor

Take-home message: Don't allow your low-level processing to be
taken hostage by non-essential infrastructure.

Introduction Testing Programming in general Response code refactor

�How to write unmaintainable code�

By Roedy Green

Introduction Testing Programming in general Response code refactor

On duplication

▶ �The cardinal rule of writing unmaintainable code is to specify
each fact in as many places as possible and in as many ways as
possible.�
� Roedy Green, How to write unmaintainable code

▶ In how many places do we hardcode �PBE�, �gs.gpw�, ...?

▶ In how many places do we redundantly check (or forget to
check) that all(pbc == [True, True, False]) because we
don't have normalization layer?

▶ Don't duplicate code

▶ Don't duplicate functionality by e�ectively solving the same
problem twice, either, even if code would be di�erent

▶ Instead, look for an abstraction good enough to solve the
problem well

Introduction Testing Programming in general Response code refactor

Refactoring and code smells

When should you refactor? From Refactoring: Improving the

Design of Existing Code by Martin Fowler et al.

Introduction Testing Programming in general Response code refactor

Code smells

▶ Duplicated code

▶ Long function/method

▶ Long parameter list

▶ Shotgut surgery (changes necessary all over the place, not in
one place)

▶ Feature envy (overuse features of other class)

▶ Switch statements (long/repeated if/else chains)

▶ Inappropriate intimacy (accessing implementation details of
other class)

Introduction Testing Programming in general Response code refactor

Invisible information passing
▶ Function 1 writes a �le with a particular name
▶ Function 2 expects this �le to exist after calling Function 1
▶ Problem: Both modules must redundantly implement the

naming scheme for this to work. If either changes, code is
broken.

▶ Solution 1: Function 1 takes target �lename as an input, so
Function 2 can choose what �le is written

▶ Solution 2: Function 1 returns the path of the �le it wrote, so
Function 2 needs not reconstruct the name

Examples of this anti-pattern

▶ ASE vibrations code (has since been factored out)

▶ GPAW response code (writing of �tags�)

▶ ASR old-master (all over the place! But it's not as invisible
because �dependencies� are declared)

Introduction Testing Programming in general Response code refactor

The Response Code Focus Group

▶ Suggestion by Thorbjørn to do something about the quality of
the response code

▶ Fredrik, Jens Jørgen, Julian, Mikael, myself, Tara, Thorbjørn

▶ Two-day code sprints every three weeks plus
planning/follow-up meetings

▶ Tasks created and discussed as issues on Gitlab, then
delegated to individuals or pairs during sprint

▶ Why does it work? The same people sit down, work together,
learn, gradually improve things

▶ High level of satisfaction and productivity from working
together rather than typical isolated postdoc work

Introduction Testing Programming in general Response code refactor

Introduction Testing Programming in general Response code refactor

Refactoring level 1

Introduction Testing Programming in general Response code refactor

Refactoring level 2

Introduction Testing Programming in general Response code refactor

Refactoring level in�nity

Introduction Testing Programming in general Response code refactor

Refactoring the humongous response code constructors

Introduction Testing Programming in general Response code refactor

Inside G0W0

...

Fun fact: G0W0 is a PairDensity, but it also creates Chi0 which
itself creates a PairDensity. Thus, two completely redundant yet
complex objects must (or maybe not?) be kept in sync.

Introduction Testing Programming in general Response code refactor

...

Fun fact: PairDensity takes ecut as input, but it doesn't even use it.

Introduction Testing Programming in general Response code refactor

So what's wrong then?

▶ Redundant creation of complex objects

▶ Endless passing of the same information

▶ Obviously code does not provide the correct abstractions

▶ Solution 1: Use **kwargs to pass everything instead.
Tempting but fails to provide an adequate abstraction.

▶ When many pieces of data travel everywhere together, we call
them �data clumps�

▶ Solution: Join data clumps into objects. Instead of passing all
the information for g0w0 and chi0 and pair density to the
G0W0 constructor, change G0W0 so it takes chi0 and pair
density as inputs.

Introduction Testing Programming in general Response code refactor

Constructors now

Introduction Testing Programming in general Response code refactor

Sequential coupling in large objects
(slide reused from ASE 2019 workshop)

Introduction Testing Programming in general Response code refactor

So what's an example of something good?

Numpy arrays

▶ Arrays can change, but are always qualitatively the same

▶ All methods work predictably at all times

▶ Limited scope: Arrays don't try to be anything more than an
array. They will never have a �gate voltage� or a �log�le� inside
them. That's somebody else's problem, SEP, a key principle in
programming according to me.

Introduction Testing Programming in general Response code refactor

How do we factor out sequential coupling?

▶ State changes many times: Object creation, initialization,
halfway through calculation,

▶ Some methods work only when object is in a particular state

▶ Actually: An class named Chi0 should represent an already
calculated Chi0. Not a way to calculate it.

▶ Conclusion: Split large classes into �data� objects (Chi0Data
which holds arrays and information on parallelization) and
calculators (e.g. Chi0Calculator) which know how to compute
the data objects.

Introduction Testing Programming in general Response code refactor

Work of response code focus group

▶ Split large sequentially-coupled classes to smaller �data� or
�calculator� objects

▶ A data object wraps an array in order to provide abstractions
to deal with (�hide� from the caller) details of its distribution
and other properties

▶ A calculator can calculate something but does not (or should
not have) mutable data inside it or otherwise change state

▶ Join more data clumps into helper classes (ResponseContext)

▶ Clean up completely tangled �integrators�

Introduction Testing Programming in general Response code refactor

Concluding remarks

Literature

▶ Clean code by Robert C. Martin

▶ The Pragmatic Programmer by Andrew Hunt

▶ Refactoring by Martin Fowler et al.

▶ How to write unmaintainable code (humorous) by Roedy Green

▶ Finally, check out all the �anti-patterns� and �code smells� on
wikipedia and elsewhere.

	Introduction
	

	Testing
	

	Programming in general
	

	Response code refactor
	

