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Density functional theory
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Quantum mechanics
Basics
What are we trying to do?

» Solve Schrodinger equation for wave functions

» Calculate useful quantities: mechanical properties, chemical
properties, electrical properties ...

» But many-body wave functions with N electrons require 3N
coordinates, having memory exponential in N

Density functional theory

» Electronic density is in fact sufficient to determine all
properties of the system

» Density depends on only (z,y, z), but is difficult to use
without calculating wave functions
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Density functional theory
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Quantum mechanics

Kohn-Sham ansatz
Practical independent-particle approach to DFT

Iterative Kohn-Sham solution
Initialize wave functions, then repeat until converged:

» Calculate electron density from wave functions

» Use density to calculate effective potential from charge
distribution and (approximate) interaction effects

» Use potential to find wave functions, solving

Ij[KSW’n) = fn‘wn>

Afterwards

» Having the wave functions, we can evaulate properties such as
energy, forces on atoms, band gaps, ...
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Density functional theory
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Quantum mechanics

Projector augmented wave method

» Nuclear potentials make wave functions oscillate swiftly.
Thus, we must use high-resolution grids to represent them.
The PAW method is one way to fix this problem.

» Define a transformation 7 between inconvenient all-electron
wave functions [1,,) and smooth pseudo wave functions [i)y,).

» Quantities can then be expressed in terms of smooth and
atomic parts, most operations involving the smooth parts,
while atomic parts are treated on efficient radial grids.
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Density functional theory
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Projector augmented wave method

Localized basis sets

» Each wave function [¢),,) is a linear combination of fixed,
atom-centered basis functions |®,,):

W;n> = Z C,un‘q)#>

» Fewer degrees of freedom c,;, means less memory and less
computation time, but also sacrifices accuracy

» Kohn-Sham equations become generalized eigenvalue problem:

HC = SCA
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Basis set generation
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Overview

Overview of atomic basis functions
Functional form

» Radial function times fixed spherical harmonic:

Piem(r) = @ic(r)Yim (0, ¢)

» Radial part is represented numerically and can be chosen freely

Types of basis functions

» One atomic orbital for each valence state, indexed by [

» Any number of extra radial functions for each [, indexed by (.
Nomenclature: single-zeta, double-zeta, ...

» Polarization functions: for values of [ not present on atom

» Different angular parts for each m = —1[...1
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Basis set generation
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Pseudo-atomic orbital generation

Pseudo-atomic orbital generation

All-electron orbital calculation

» Atomic orbitals are calculated for the isolated atom
[~ 3V + vep(r)] X(r) = X(r)

» Radial parts are found by numerical integration on radial grids

Issues to resolve

» The wave functions have long tails, and must be converted to
localized functions, approaching zero smoothly at some cutoff.

» Wave functions oscillate swiftly near the core. They must be
transformed to smooth pseudo wave functions.
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Basis set generation
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Pseudo-atomic orbital generation

Localization

» Add smooth confinement potential veons during orbital
calculation, defined to be zero inside some inner cutoff r;,
infinity at some outer cutoff r.our, and smooth in between.

» Small 7¢on¢ means high energy. r.ons is chosen by requiring a
particular energy shift (e.g. 0.1 eV) compared to free atom

Confinement of hydrogen 1s-orbital
0. T T
T

— Free atom

— Infinite

— Smooth

- - Potential
T
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Basis set generation
[efe] ]

Pseudo-atomic orbital generation

Transformation to pseudo wave functions

» The PAW transformation yields all-electron wave functions
from pseudo ones. This we can invert, such that (simplified)

) = 1K) + 32, (160 = |1)) (5il,)

Transformation of Nitrogen 2s orbital
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Extra basis functions

Multiple-zeta basis sets

Split-valence-like scheme

» Atomic orbitals alone are typically not sufficiently accurate

» To improve basis set flexibility, add extra functions for each
valence state with new radial parts

» Simple method: subtract polynomial of appropriate order from
each valence state, such that for some chosen radius 7y,

1 2
r)—7r(a—br T < Tepli
©dz (1) = {QPSZ( )= ) Pt
0 r> Tsplit

» Coefficients a and b are chosen to ensure differentiability

> 7Tgplit Can be chosen conveniently by specifying the norm of
the tail of ¢, beyond rgpi (e.g. 15-20%)
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Basis set generation
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Extra basis functions

Multiple-zeta basis sets

Multiple-zeta generation, Nitrogen 2s orbital
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Figure: Given the pseudo-atomic orbital ¢g, (blue), the second-zeta basis
function ¢4, (red) is obtained by subtracting a polynomial (green)
joining the tail of g,
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Extra basis functions

Polarization functions

Idea

» Calculate grid-based reference wave functions for some
system. This could be H2O, if we want to calculate
polarization functions for O or H.

» Define polarization function as some linear combination of
primitive Gaussian-like functions

» Use optimization scheme to find the coefficients with largest
projection onto reference wave functions. This set of
coefficients defines the polarization function.

» |t turns out that the calculated polarization functions are
pretty similar in shape — in fact we can describe them with
just one Gaussian, if chosen properly.
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Basis set generation
[e]e]e] o]

Extra basis functions

Calculated polarization functions

Miscellaneous d-type polarization functions

ozo

ozm

Figure: Different calculated polarization functions
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Basis set generation
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Extra basis functions

Full basis set example

DZP basis set for nitrogen
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Figure: Double-zeta polarized basis set with default parameters. The five
radial parts correspond to 13 basis functions in total, counting all angular
parts

Localized basis sets in PAW Center for Atomic-scale Materials Design



Force calculations
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Evaluation of atomic force expression

Atomic forces

Why?

» Structural relaxations

» Molecular-dynamics simulations

Procedure

» The force acting on an atom is the derivative of total energy
oF

with respect to nuclear coordinates: F* = —zz7. This we can
calculate directly from the energy expression.
» Tricky issue: must preserve wave function orthogonality

» Other tricky issue: basis functions move with atoms
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Force calculations
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Evaluation of atomic force expression

Chain rule

» Choose suitable intermediate parameters

» Write:
OF 8/)“,, OF 8TM,, / SE dgf(r)
a3
Z Opm OR £ 9T, OR" Z 53¢ (r) dre 7
oD?.
OF 8n / SE  do*( d3r Z oFE i
on(r) dv%(r) dRa - anj OR®

B 8p,w dgi(r) 3

_%:H”“am Z "“8R“ +ZQL/ a(r)~gge 4T
- on(r

+/Ueﬁ( ) 8}5‘0,) d3 / ( dRa d3 +ZA ’L] 8Ra

Localized basis sets in PAW Center for Atomic-scale Materials Design




Force calculations
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Evaluation of atomic force expression

Big formula

» After some work, this can be expressed in a form where all
variables can be evaluated relatively straightforwardly

b
F= 2R {AH%PW chnenf" /m} ore
buvij
aT v
— Z Con€n fnC), Cun 8Ra - 6I:a Pvp
pvn

de}(r g (x
_ngpw / dRa)veﬁ( )@, (r) dr — / ﬁeﬁ(r)dd;{(a) dr

N . dg _, . do%(r
—/UHa ZQ (glfi{a /n(r)dRa((r)) d3r.
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Force calculations
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Force tests

Egg-box forces

» Due to discrete grid representation, space is not homogeneous.
Translation thus implies small changes in energy with the
periodicity of the grid, called the egg-box effect.

» Do calculated forces predict egg-box effect accurately?
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Force tests

Structural relaxation of H,O

Results using quasi-Newton algorithm

Method Angle Bond length [A]

LCAO  101.9° 0.983
Grid 105.0° 0.975
Exp. 104.5° 0.957

Figure: Initial (180°) and final configuration
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Automatic setup optimization

Setups

Definition
In the PAW method, a setup is the collection of data which
pertains to a particular type of atom

Properties of a setup

» Defines the atomic parts T of the PAW transformation
T=1+>,7°

» Defines other quantities such as “compensation charge”
expansion functions and “zero potential”, which are used to
shift troublesome quantities between radial and regular grids

» Each quantity generally depends on a few parameters: cutoffs,
decay parameters, Fourier filtering parameters
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Setup optimization
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Automatic setup optimization

Automatic setup optimization
ldea

» Identify a handful of parameters to optimize
» Define a measure of the quality of a setup

» Use the downhill simplex method to find the best setup

Quality measure

Atomization energy of dimer compared to all-electron value

Bond length of dimer compared to all-electron value

>
>

» Amplitude of “egg-box" effect

» Convergence of energy with respect to grid resolution
>

Quality is the sum of the squares of the above measures,
times a measure of the calculation time

Localized basis sets in PAW Center for Atomic-scale Materials Design



Setup optimization
ooe

Automatic setup optimization

Results

» Some properties can be improved at the expense of others
» Algorithm frequently gets stuck in local minima too early
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Figure: Measure of convergence Figure: Deviation of atomization
with respect to grid resolution energies from reference
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Summary

Basis generation
» Smooth valence basis functions are obtained by localizing and
transforming atomic orbitals

» Multiple-zeta basis sets are generated by adding polynomials
to valence basis functions

» Polarization functions are single Gaussians. Cutoffs must in
general be estimated using the interpolation scheme

Force calculations

» Atomic forces have been implemented

» Tests confirm that forces are correct
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