Temperature accelerated dynamics

Ask Hjorth Larsen

Center for Atomic-scale Materials Design

April 21, 2009

Contents

[Molecular dynamics](#page-2-0)

[Introduction](#page-2-0) [Miscellaneous background knowledge](#page-4-0)

[Temperature accelerated dynamics](#page-6-0)

[Overview](#page-6-0) [Miscellaneous subtechniques](#page-7-0) [Summary of TAD](#page-10-0)

[Crystal growth](#page-11-0) [Application of TAD](#page-11-0)

 Ω

 4.171

Molecular dynamics simulations

Basics

- \triangleright Assume we have a way of evaluating the forces on a collection of atoms, given their positions.
- \triangleright An MD simulation describes their behaviour like this:
	- 1. Calculate forces on atoms
	- 2. Advance time by dt , move atoms accordingly, update velocities

a mills

3. Goto 1.

 Ω

Motivation for temperature accelerated dynamics

Trouble with infrequent events

- \triangleright MD simulations can be performed on nanosecond time-scales
- ▶ Many atomic processes take place on larger time-scales. We shall later consider crystal growth by vapour deposition at rates around 0.1 monolayer/s
- \triangleright We want a way to "speed up" simulations while retaining the correct distribution of transitions in the system
- \blacktriangleright M.R. Sørensen, A.F. Voter, J. Chem. Phys. 111, 9599 (2000). Temperature-accelerated dynamics for simulation of infrequent events.

 Ω

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Statistical physics

Temperature in MD

- \blacktriangleright The temperature T can be defined through the entropy in terms of Boltzmann-distributed occupation probabilities for each possible state of the system.
- \triangleright During a simulation, we generally want to keep temperature fixed. This allows extra energy to "dissipate" to atoms outside system, even if add atoms with high energies
- \blacktriangleright Langevin dynamics (we shall not bother with the precise equations) exhibit this behaviour. This prescribes the way in which velocities should be updated on each step.

 Ω

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Rate theory

Arrhenius' law

 \triangleright Recall that the frequency of transition between (meta)stable states (normally) depends exponentially on the energy barrier E_a associated with the transition:

$$
activity = \frac{\text{transitions}}{\text{time}} = \nu \exp\left(-\frac{E_a}{k_B T}\right) = \nu \exp(-\beta E_a)
$$

 \triangleright (We usually talk about "harmonic transition state theory")

 200

and in

 \overline{a} \overline{m} \overline{m}

Trouble with time scales, revisited

Effect of temperature

- \blacktriangleright If infrequent transitions correspond to high activation energies, we can make them happen just by increasing temperature
- \blacktriangleright This causes ratios between different transition frequencies to change, leading to wrong results
- \triangleright Cunning scheme for performing mock simulation at low temperature T_{low} :
	- 1. Somehow find all relevant state transitions using MD at high temperature T_{high}
	- 2. Somehow calculate the energy barrier for each transition found
	- 3. Extrapolate each average transition time t_{high} to what it would have been, t_{low} , at T_{low} , assuming harmonic TST.
	- 4. Pretend clock has advanced by lowest found value of t_{low} , put the system into the corresponding state, goto 1.

 200

イロメ イ何メ イヨメ イヨメー ヨ

Basin-constrained MD

Finding relevant transitions

- \triangleright Define transition: whenever system goes into a state such that a structure relaxation yields a different set of converged atomic coordinates (thus, separate relaxations are performed once in a while)
- \triangleright Perform ordinary molecular dynamics simulation at high temperature
- \triangleright When detecting a state transition, find the activation energy and final state using e.g. NEB method
- Invert all velocities, preventing state change.
- \triangleright Use Langevin thermostat to continuously randomize trajectory, preventing exact backtrack
- \triangleright \triangleright \triangleright As simulation goes on, we will find mor[e t](#page-6-0)[ra](#page-8-0)n[sit](#page-7-0)[io](#page-8-0)n[s](#page-7-0) イ何 トラミン マミン ニヨ

 2990

[Molecular dynamics](#page-2-0) **[Temperature accelerated dynamics](#page-6-0)** [Crystal growth](#page-11-0)
 $\begin{array}{cc}\n\text{OOO} & \text{OOO} \\
\text{OOO} & \text{OOO} \\
\text{OOO} & \text{OOO} \\
\text{OOO} & \text{OOO} \\
\end{array}$

Miscellaneous subtechniques

Figure: Transition found between states X1 and X2; NEB method is used to find lowest-energy path, and thus activation energy and frequency. Note that we didn't need to know transitions in [ad](#page-7-0)v[an](#page-9-0)[c](#page-7-0)[e.](#page-8-0) \mathbf{h} 化重复 化重变

 QQ

[Molecular dynamics](#page-2-0) **[Temperature accelerated dynamics](#page-6-0)** [Crystal growth](#page-11-0)
 \bigcirc 000 \bigcirc

Being sure that there are no more transitions

A range of high-temperature rates yields a different range of low-temperature permutation rates.

$$
\ln(1/t) \rightsquigarrow \ln k = \ln \nu - \beta E_a
$$

[Temperature accelerated dynamics](#page-0-0) Center for Atomic-scale Materials Design

 QQ

Temperature accelerated dynamics

Putting it together

- 1. Set up high-temperature basin-constrained MD simulation.
- 2. Continue until probability of further relevant transitions is sufficiently low.
- 3. Determine energy barriers E_a for each found transition using e.g. NEB. This gives us transition times t_{high} at high temperature
- 4. Use E_a to extrapolate from t_{high} to low-temperature transition times t_{low} assuming harmonic transition state theory
- 5. Change to the lowest-energy state. Fictional clock advances by t_{low} , as appropriate for the accepted transition. Goto 1.

 200

イロメ イ押メ イヨメ イヨメー

Crystal growth by vapour deposition

Motivation

- \triangleright Consider continuous deposition of silver vapour onto a silver surface. We would like to know the low-level mechanisms that determine crystal growth
- \triangleright Experimentally measuring behaviour of individual atoms is not easy
- \triangleright Some existing techniques (Monte Carlo) rely on knowing transitions ahead of time, which can be difficult to guess
- \blacktriangleright Temperature accelerated dynamics can be used without any prior knowledge of the system
- ▶ F. Montalenti, M.R. Sørensen, A.F. Voter, Phys. Rev. Lett. 87 126101, Closing the Gap between Experiment and Theory: Crystal Growth by Temperature Accelerated Dynamics

 200

Molecular dynamics and crystal growth

What happens

- \triangleright We can insert an atom into the system whenever we like
- \blacktriangleright Atom moves towards the surface
- In Trajectory deflected by delicate interactions, "steering effects"
- \blacktriangleright Atom ends up somewhere.

What should happen, but does not

Infrequent transitions: adsorbed atoms regularly sliding around on the surface, generally increasing smoothness

Note: if we just increased the kinetic energy and atomic flux, we would not see effects of steering.

 Ω

イロメ イ母メ イヨメ イヨメー

[Molecular dynamics](#page-2-0) [Temperature accelerated dynamics](#page-6-0) [Crystal growth](#page-11-0)

Application of TAD

Procedure

- 1. Deposit atom with low-T molecular dynamics, initial kinetic energy K_i
- 2. Use TAD to fast-forward until next time of deposition, carrying out surface transitions as appropriate.
- 3. Stop if 4 monolayers or more have been deposited, else goto 1.
- 4. Consider the roughness W^2 , which is the variance of surface height. Agrees with STM measurements

つくい

造

[Molecular dynamics](#page-2-0) **[Temperature accelerated dynamics](#page-6-0)** [Crystal growth](#page-11-0)
 $\frac{1}{2}$ Cookie Co

Example of surface transition

Complicated transition involving multiple atoms on the surface Number of simulated events corresponds to what happens in around 0.4 seconds per deposition

∢ 重 ★

 4.171

 QQ

Conclusion

- \blacktriangleright In temperature accelerated dynamics, a high-temperature MD simulation is used to find transitions which are too slow to simulate with realistic temperatures
- \triangleright While the transitions are found randomly, one can choose parameters to ensure any desired probability of having found lowest-energy transition
- \blacktriangleright The technique correctly reproduces experimental surface roughness after deposition of four monolayers of silver over several seconds
- \triangleright Method relies on harmonic approximation, may not work well for all systems

 200

∢ 何 ゝ (∃ ゝ (∃ ゝ)