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Abstra
tNano-s
ale stru
tures are in
reasingly applied in the design of 
atalysts andele
troni
 devi
es. A theoreti
al understanding of the basi
 properties of su
hsystems is enabled through modern ele
troni
 stru
ture methods su
h as densityfun
tional theory. This thesis des
ribes the development of e�
ient approa
hesto density fun
tional theory and the appli
ation of these methods to metalnanoparti
les.We des
ribe the formalism and implementation of lo
alized atom-
enteredbasis sets within the proje
tor augmented wave method. Basis sets allow for adramati
 in
rease in performan
e 
ompared to plane-wave or real-spa
e meth-ods, but sa
ri�
e a

ura
y in doing so. This approa
h is implemented in theGPAW 
ode where it 
omplements the existing real-spa
e approa
h. For boththe real-spa
e and basis set methods we implement parallel 
ode to adapt GPAWfor large-s
ale 
al
ulations on the BlueGene/P ar
hite
ture.Real-spa
e 
al
ulations are performed to investigate the 
onvergen
e of 
hem-i
al properties of Au and Pt 
lusters toward the bulk limit. Spe
i�
ally we study
hemisorption of O and CO on 
ubo
tahedral 
lusters up to 1415 atoms using upto 65536 CPU 
ores. Small 
lusters almost universally bind more strongly thanlarge ones. This 
an be understood mostly as a geometri
 e�e
t. Convergen
e of
hemisorption energies within 0.1 eV of bulk values happens at about 200 atomsfor Pt and 600 atoms for Au. Parti
ularly for O on Au, large variations due toele
troni
 e�e
ts are seen for smaller 
lusters.The basis set method is used to study the ele
troni
 e�e
ts for the 
ontiguousrange of 
lusters up to several hundred atoms. The s-ele
trons hybridize to formele
troni
 shells 
onsistent with the jellium model, leading to ele
troni
 �magi
numbers� for 
lusters with full shells. Large ele
troni
 gaps and jumps in Fermilevel near magi
 numbers 
an lead to alkali-like or halogen-like behaviour whenmain-group atoms adsorb onto gold 
lusters.A non-self-
onsistent Newns�Anderson model is used to more 
losely studythe 
hemisorption of main-group atoms on magi
-number Au 
lusters. Thebehaviour at magi
 numbers 
an be understood from the lo
ation of adsorbate-indu
ed states relative to the Fermi level.The relationship between geometri
 and ele
troni
 e�e
ts in Au is studiedby rough �rst-prin
iples simulated annealings with up to 150 atoms. Non-magi

lusters are found to deform 
onsiderably, redu
ing the total energy through the
reation of gaps. Clusters larger than 100 atoms 
an elongate systemati
ally byup to 15%. This demonstrates a 
omplex interdependen
e between ele
troni
and geometri
 stru
ture in a size regime whi
h in most 
ases has been studiedsemiempiri
ally. iii
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ResuméStrukturer i nanoskala �nder i stigende grad anvendelse inden for design afkatalysatorer og elektroniske enheder. En grundlæggende teoretisk forståelse afsådanne systemer muliggøres af moderne elektronstrukturmetoder såsom tætheds-funktionalteori. Denne afhandling omhandler udviklingen af e�ektive metoderinden for tæthedsfunktionalteori samt anvendelsen af disse metoder på metal-nanopartikler.Vi beskriver formalismen og implementationen af lokaliserede atomare ba-sissæt i PAW-metoden. Basissæt muliggør betydeligt hurtigere udregningerend planbølge- eller realrumsgittermetoder, dog på bekostning af beregningsnø-jagtighed. Metoden implementeres i programmet GPAW, hvor den supplererden eksisterende gittermetode. For både realrums- og basissætmetoden imple-menteres parallelle metoder med henblik på afvikling af store beregninger påBlueGene/P-arkitekturen.Ved hjælp af gitterbaserede beregninger undersøges konvergensen af kemiskeegenskaber for store Au- og Pt-klynger. Spe
i�kt udregnes kemisorptionsen-ergier for O og CO på kuboktahedrale klynger med op til 1415 atomer vedbrug af 65536 CPU-kerner. Små klynger binder næsten universelt stærkere endstore, hvilket kan forstås som en primært geometrisk e�ekt. Kemisorptionsen-ergien konvergerer inden for 0,1 eV af krystalgrænsen ved henholdsvis 200 og600 atomer for Pt og Au. Der ses særligt for O på Au store variationer for demindre klynger, som kan henføres til elektroniske e�ekter.Basissætmetoden bruges til at undersøge disse elektroniske e�ekter for ensammenhængende følge af klynger op til �ere hundrede atomer. s-elektronernehybridiserer i elektronskaller i overensstemmelse med jelliummodellen, og dissefører til elektroniske �magiske tal� for klynger med fyldte skaller. Store elek-troniske gab og hop i Fermienergi ved magiske tal kan medføre alkali- ellerhalogenagtig opførsel, når hovedgruppeatomer binder til guldklynger.Der formuleres en ikke-selvkonsistent Newns�Anderson-model, som brugestil nærmere at undersøge kemisorptionen af hovedgruppeatomer på magiskeguldklynger. Opførslen kan forstås ud fra pla
eringen af adsorbatindu
eredetilstande i forhold til Ferminiveauet.Forholdet mellem geometriske og elektroniske e�ekter i guldklynger under-søges ved hjælp af simulerede afkølinger baseret på tæthedsfunktionalteori medgrove parametre op til 150 atomer. Energien af ikke-magiske klynger mindskesgennem en betydelig deformation hvorved der åbnes et elektronisk gab. Klyn-ger på mere end 100 atomer kan således systematisk deformere med op til15%. Dermed vises en kompleks gensidig afhængighed af elektronisk og ge-ometrisk struktur i et størrelsesregime som ellers primært har været behandletmed semiempiriske metoder. v
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Chapter 1Introdu
tionThis thesis 
on
erns the 
hemi
al properties of metal nanoparti
les and the de-velopment of theoreti
al methods to des
ribe them. In this work, a nanoparti
leor 
luster refers to an assembly of a few to a few thousand atoms of a 
hemi
alelement whi
h would normally form a bulk 
rystalline phase. A typi
al size ofsu
h a parti
le may be a few nanometres, small enough that quantum me
han-i
al e�e
ts 
ause the parti
le to behave di�erently from the bulk material.With modern 
omputers and numeri
al methods it is possible to predi
tthe behaviour of quantum me
hani
al systems using ab initio methods su
h asdensity fun
tional theory (DFT).1, 2 The term ab initio or �rst prin
iples sig-ni�es that a method is based on solving fundamental physi
al equations su
has the S
hrödinger equation. For systems with more than a few parti
les, theS
hrödinger equation itself is too 
omputationally demanding to solve dire
tly,and 
omputational methods must rely on a range of reformulations and ap-proximations to make 
omputations tra
table. We des
ribe one su
h approa
h,where an atomi
 orbital basis set is 
ombined with the proje
tor augmentedwave method.3, 4 This approa
h is implemented in GPAW, an ele
troni
 stru
-ture 
ode based on a more a

urate but also more 
omputationally expensivereal-spa
e representation of wavefun
tions.5�7 The lo
alized basis set is sim-ilar to the Siesta 
ode, with the di�eren
e that Siesta is based on simplernorm-
onserving pseudopotentials.8, 9 The 
ombination in GPAW of the high-performan
e lo
alized basis set with the more a

urate real-spa
e method pro-vides a number of advantages. In parti
ular, the basis set is useful for 
al
ulatingstru
tures e�
iently, while the real-spa
e 
ode 
an be used to evaluate bindingenergies whi
h are less a

urate with the basis set. The basis set is also useful forappli
ations that mathemati
ally emphasize a �nite or lo
alized basis set. Forexample the basis set is now used for Green's fun
tion based ele
tron transport
al
ulations.10 Another development for the GPAW 
ode is the parallelizationof the real-spa
e 
ode for massively parallel 
al
ulations. The main advantageof real-spa
e methods is the ability to parallelize over many quantities at thesame time, whi
h allows the 
al
ulations to s
ale e�
iently up to thousands ofpro
essors.The se
ond part of this thesis applies these methods with the main obje
tiveof understanding the 
hemi
al behaviour of nanoparti
les, fo
using on gold.Gold is normally thought of as inert, but this really applies to bulk gold. The
hemistry of gold is in fa
t extremely diverse.11�13 Due to the large nu
lear3



4 Chapter 1. Introdu
tion
harges, 
ore ele
trons of the late transition metals exhibit relativisti
 behaviour,whi
h alters the ele
trostati
 s
reening felt by the remaining ele
trons. Therelativisti
 e�e
ts lead to a 
ontra
tion of the s ele
trons 
ompared to d ele
trons,whi
h in the end is responsible for most of the unusual properties of gold.14�16These relativisti
 e�e
ts, along with the full d-shell whi
h pla
es less energeti
emphasis on atomi
 pa
king, 
ause gold 
lusters to form stru
tures that di�ernot only from those of other late transition metal 
lusters, but also those of theother noble metals.17 Small gold 
lusters of di�erent size have been predi
ted toform a large variety of stru
tures in
luding �akes and 
ages.18, 19 A signi�
antele
troni
 e�e
t of gold 
lusters is the organization of the s-ele
trons into globalele
troni
 shells that extend over the entire 
luster. Su
h shell stru
ture isfound in many free-ele
tron-like materials, parti
ularly the alkali metals, andgives rise to ele
troni
 magi
 numbers where 
lusters have in
reased stabilityand large ele
troni
 gaps.20�23 Many properties of 
lusters depend sensitively onthe ele
troni
 shell stru
ture in
luding their 
hemistry.24 However, limitationsin available 
omputational power has prevented thorough modelling of larger
lusters.The e�
ien
y of the lo
alized basis set allows us to study, at modest 
ompu-tational 
ost, su
h e�e
ts for 
ontiguous ranges of typi
ally 20�200 atoms. We�nd that large size-dependent variations in binding energy are asso
iated withthe shell stru
ture of gold 
lusters. These 
al
ulations are performed for manydi�erent adsorbates, and 
omparisons are made between 
lusters of several dif-ferent metals. A re
urring theme in these 
al
ulations is the study of overalltrends from large numbers of systems, although this happens at the sa
ri�
e ofa

ura
y of the individual 
al
ulations. This is probably the �rst 
omputationalstudy from �rst prin
iples of su
h large ensembles of systems.The thesis is stru
tured as follows.
• Chapter 2 gives a brief introdu
tion of 
omputational methods in quantumtheory, in
luding density fun
tional theory whi
h pra
ti
ally all results inthis work are based on.
• Chapter 3 des
ribes the proje
tor augmented wave method and the mathe-mati
al formalism of the atomi
 basis set expansion. An initial implemen-tation was written in 
ooperation with Mar
o Vanin and do
umented inRefs. 25, 26, although many further developments have taken pla
e sin
e.
• The generation of basis fun
tions from atomi
 referen
e 
al
ulations isdes
ribed in Chapter 4 along with other issues of pra
ti
al interest tobasis sets.
• Chapter 5 dis
usses the e�
ien
y and parallelization of the basis set 
ode,and explains the implementation of some of the more important steps ina 
al
ulation. Performan
e ben
hmarks are in
luded. Adaptation of thereal-spa
e 
ode for massively parallel 
al
ulations is further des
ribed.
• Chapter 6 a
ts as an introdu
tion to Part II of this thesis, wherein theproperties of nanoparti
les are investigated. Brief des
riptions are givenof the geometri
 stru
tures of 
lusters and relevant theoreti
al methods.
• Large-s
ale DFT 
al
ulations of adsorption of O and CO on Au and Pt
lusters with up to 1415 atoms are presented in Chapter 7, and the e�e
tof fa
et size is dis
ussed.
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• The e�e
t of ele
troni
 shell stru
ture on the 
hemistry of 
lusters, fo
usingon gold, is studied in detail in Chapter 8 by 
onsidering adsorption of arange of adsorbates.
• In Chapter 9 a non-self
onsistent Newns�Anderson model is used to an-alyze the bonding of several adsorbates using Hamiltonian matri
es ob-tained from DFT 
al
ulations.
• In Chapter 10, gold 
luster stru
tures are optimized using simulated an-nealing with simple EMT and DFT.
• Chapter 11 summarizes and 
on
ludes the work.
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Chapter 2Theoreti
al methodsThis 
hapter gives a brief review of quantum me
hani
s from the perspe
tive of
omputationally predi
ting the properties of an intera
ting system of ele
tronsand nu
lei.2.1 Quantum me
hani
sThe properties of matter at small s
ales are des
ribed by the S
hrödinger equa-tion. For a system with N parti
les, the (time-independent) S
hrödinger equa-tion is a di�erential equation for the many-body wavefun
tion Ψ(r1, r2, . . . , rN )with a total of 3N spatial parameters, and this fun
tion entirely 
hara
terizesthe system. The storage required to expli
itly represent su
h an obje
t in a
omputer is therefore exponential in the number of parti
les, making numer-i
al 
al
ulations in this form impossible beyond a small number of parti
les.This is 
ommonly referred to as the �exponential wall�.27 Computational ap-proa
hes to quantum me
hani
s are therefore generally based on methods thatre
ast the S
hrödinger equation into more tra
table forms by applying severalapproximations.Be
ause of the large ratio between ele
troni
 and nu
lear masses, ele
tronsand nu
lei exhibit quantum me
hani
al behaviour on di�erent length and times
ales. The Born�Oppenheimer approximation assumes that the wavefun
tionof a 
ombined ele
troni
 and nu
lear system 
an be expressed as a produ
t ofan ele
troni
 and a nu
lear wavefun
tion. Going one step further, the nu
lei
an for most purposes be assumed to behave like 
lassi
al point parti
les. Thisredu
es a quantum me
hani
al 
al
ulation to a purely ele
troni
 problem, whi
hwill be the subje
t of the next several se
tions.2.2 The Hartree�Fo
k methodEle
trons are by the symmetrization postulate fermions, meaning that ele
-troni
 wavefun
tions are antisymmetri
 with respe
t to the inter
hange of anytwo position variables ri and rj . From any set of orthogonal single-parti
lestates, an appropriately antisymmetri
 many-body wavefun
tion 
an be formedas a Slater determinant from the single-parti
le states. Any many-body wave-fun
tion 
an be written as a linear 
ombination of su
h determinants. In the7



8 Chapter 2. Theoreti
al methodsHartree�Fo
k method it is assumed that the many-body wavefun
tion 
an bewritten as a single su
h determinant. This assumption leads to a set of equa-tions, the Hartree�Fo
k equations, for ea
h single-parti
le state minimizing thetotal energy. These equations 
an be solved numeri
ally by iteratively adjustingwavefun
tions and potential until obtaining self-
onsistent single-parti
le statesand potential.In the Hartree�Fo
k method, the ele
troni
 intera
tion energy 
an be un-derstood as being 
omprised of two terms: the dire
t or Hartree term, and theex
hange term. The Hartree term is the Coulomb energy of the full 
hargedensity, so it in
orporates the Coulomb repulsion of every ele
tron with everyele
tron. Clearly, ea
h ele
tron intera
ts with every other ele
tron, but not withthe spe
i�
 part of the 
harge distribution that it itself 
ontributed. One termin the ex
hange 
ontribution 
an be understood as a 
orre
tion whi
h 
ompen-sates for this self-intera
tion part in the Hartree energy. The ex
hange term asa whole is a manifestation of Pauli ex
lusion.While the Hartree�Fo
k approa
h is suited for numeri
al 
al
ulations, it isstill an approximate many-body method. As mentioned, a general many-bodywavefun
tion must be des
ribed as a linear 
ombination of multiple Slater deter-minants. Any dis
repan
y between exa
t Hartree�Fo
k theory as 
ompared to afull linear 
ombination of Slater determinants, whi
h yields the exa
t many-bodywavefun
tion, is somewhat vaguely 
alled 
orrelation. Methods that improve onHartree�Fo
k theory through various ways to in
lude 
orrelation are 
alled post-Hartree�Fo
k methods. Within these methods, a

ura
y generally 
omes at thepri
e that the 
omputational 
ost s
ales with high powers of the number ofele
trons, and so these a

urate methods are limited to small systems.2.3 Density fun
tional theoryDensity fun
tional theory (DFT) is an approa
h to solving the many-body prob-lem using the ele
tron density instead of the many-body wavefun
tions. DFTevolved from the Thomas�Fermi theory, a more intuitive approa
h; Hohenbergand Kohn later developed the 
on
ept as a formally 
orre
t many-body method.1The foundation of DFT is the insight that the ground-state ele
tron density
n(r) of an ele
troni
 system is su�
ient to entirely 
hara
terize that system.Thus any property whi
h 
an be derived from the many-body wavefun
tion 
anin fa
t be derived knowing only the ground-state density. The total energy of asystem of intera
ting ele
trons in a potential 
an be expressed as a fun
tional ofthe ele
tron density, and the ground-state density variationally minimizes thisfun
tional. All one has to do is, in prin
iple, to perform su
h a minimization.This turns out to be tri
ky, sin
e it is not known how to evaluate quantitiessu
h as the energy dire
tly from an ele
tron density without �rst using it to
al
ulate the wavefun
tions.Kohn and Sham suggested an approa
h to solve this problem by introdu
-ing a �
tional system of non-intera
ting parti
les represented by single-parti
lewavefun
tions in a shared e�e
tive potential.2 In this pi
ture the potential musta

ount for all intera
tions. Subje
t to a few representability issues, su
h aswhether the true ground-state ele
tron density 
an be expressed from single-parti
le wavefun
tions, a universal form of the e�e
tive potential 
an be shownto exist whi
h makes the method formally exa
t. Expli
it expressions for phys-
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tionals 9i
al quantities 
an then be written down in terms of the Kohn�Sham wavefun
-tions and the ele
tron density, su
h as the energy:
EKS =

∑

n

fn 〈ψn|T̂ |ψn〉+

∫∫
ρ(r)ρ(r′)

‖r− r′‖
drdr′ + Exc[n]. (2.1)Here the energy is split into three terms. The �rst term is the single-parti
lekineti
 energy of the Kohn�Sham states |ψn〉 weighted by their o

upation num-bers fn. The se
ond term is the Coulomb energy of the total 
harge distribution

ρ(r) in the system, in
luding the ele
tron density and the nu
lear point 
harges.The third term Exc[n] is a density fun
tional whi
h must des
ribe the e�e
t ofthe parti
le intera
tions otherwise negle
ted in the single-parti
le pi
ture, andshould therefore a

ount for ex
hange, as 
onsidered in Hartree�Fo
k theory,and 
orrelation. It is 
alled the ex
hange�
orrelation (XC) fun
tional. No oneknows the true XC fun
tional, and so it is generally approximated. This is afundamental point of DFT as it is the only �un
ontrolled� approximation.From the energy expression one 
an, similarly to the Hartree�Fo
k method,derive a variational equation for the Kohn�Sham states. These Kohn�Shamequations 
an then be solved on a 
omputer using an iterative pro
edure. Roughlyspeaking this involves 
hoosing an initial ele
tron density and repeating threesteps:
• Cal
ulate potential from density
• Cal
ulate wavefun
tions from potential by solving Kohn�Sham equations
• Cal
ulate density by o

upying the states with lowest energyThe pro
edure stops when density, potential and wavefun
tions are self-
onsistent,in the sense that things no longer 
hange on every iteration. At that point onehas obtained the true ground-state density and energy of the system, at least ifusing the exa
t XC fun
tional.2.4 Ex
hange�
orrelation fun
tionalsAs previously mentioned, there exists a general XC density fun
tional whi
hmakes the Kohn�Sham approa
h exa
t. No one knows what the exa
t fun
tionallooks like, so it is instead approximated.A natural starting point for su
h an approximation is the homogeneous ele
-tron gas, whi
h is entirely 
hara
terized by the 
onstant density. In this simple
ase the ex
hange and 
orrelation fun
tional 
an be obtained. This 
ase leadsto the lo
al density approximation (LDA): The assumption that ea
h point inspa
e 
ontributes an XC energy whi
h depends only on the density n(r) in thatpoint, and that this energy is the same as that of an ele
tron gas with the samedensity.A better approximation 
an be obtained by extending the LDA so thatea
h point 
ontributes an amount to the energy depending both on the valueand the gradient of the density in that point. These approximations are 
alledgeneralized gradient approximations (GGAs). The most widely used one isprobably the Perdew�Burke�Ernzerhof (PBE) fun
tional.28
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al methodsA modi�
ation of the PBE fun
tional, RPBE, is spe
i�
ally designed toprovide a better des
ription of metal surfa
es and adsorption (at the expense of aslightly worse des
ription of bulk metals).29 Throughout this work, 
al
ulationsgenerally employ the RPBE fun
tional.2.5 PseudopotentialsFor all ex
ept the smallest atoms, ele
trons 
an be divided into tightly bound
ore states and loosely bound valen
e states. The strong Coulomb attra
tionfrom the nu
leus lo
alizes the 
ore states so that they do not intera
t mu
h withstates on other atoms. Core states are therefore not essential to a numeri
aldes
ription of 
hemistry. However the valen
e states must be orthogonal tothe 
ore states, and therefore os
illate rapidly within the 
ore region. Su
hos
illations are shown on Figure 2.1 for the 4s atomi
 orbital of iron (bla
kline). The a

urate representation of 
ore states and os
illatory valen
e statesin terms of real-spa
e grids or plane-waves is expensive, and unne
essary in thesense that the 
hemi
al properties of an atom depend mostly on the behaviour ofele
trons far from the nu
leus. Pseudopotential methods deal with this problemby repla
ing the steep potential of the nu
lei as well as the 
ore ele
trons witha smooth e�e
tive potential felt by the valen
e ele
trons. The ex
lusion of 
orestates from the 
al
ulation pro
edure is 
alled the frozen 
ore approximation.Within the smooth potential, the os
illatory behaviour of valen
e states 
anbe eliminated, resulting in smooth, nodeless pseudowavefun
tions whi
h are
heap to represent numeri
ally. This is shown for the HGH pseudopotentials30on Figure 2.1 (green). The pseudowavefun
tions are identi
al to the real (�all-ele
tron� or AE) wavefun
tions far from the nu
leus, but are repla
ed by smoothfun
tions 
lose to it.Clearly the pseudopotential approa
h makes sense only if it 
an be guaran-teed that the pseudopotentials a

urately re�e
t the behaviour of real atoms. A
ommon way to do this is to add Kleinman�Bylander proje
tors to the Hamil-tonian.31 These are �xed fun
tions whi
h, by their s
alar produ
ts with thepseudowavefun
tions, adjust the energy of di�erent states depending on theirangular momentum and radial stru
ture. These 
an be 
hosen to ensure thatthe atomi
 states have the 
orre
t energies and response to perturbations. Thelatter ensures better transferability of the pseudopotential between di�erent sys-tems.32 While the pseudopotential approximation is 
on
eptually simple, thegeneration of good pseudopotentials 
an be quite 
ompli
ated due to the largenumber of parameters involved.33There are two main kinds of pseudopotentials: norm-
onserving and morere
ently �ultrasoft�. With norm-
onserving pseudopotentials it is expensive torepresent highly lo
alized states, su
h as the d-states of transition metals. Fromthe �gure, the 3d pseudowavefun
tion is signi�
antly less smooth than the 4sone be
ause the 3d state must be normalized to 
ontain one ele
tron. Ultrasoftpseudopotentials avoid the norm-
onservation restri
tion through more 
ompli-
ated mathemati
s.34 This allows smooth wavefun
tions to be used also forlo
alized states. The proje
tor augmented wave method (red 
urves on Figure2.1) is similar to ultrasoft pseudopotentials, but uses a transformation to alsoretain the all-ele
tron information, thus eliminating pseudopotential transfer-ability errors.
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Figure 2.1: Pseudopotential approa
hes for the 4s and 3d valen
e states of iron.Atomi
 orbitals (bla
k) are repla
ed by smooth, norm-
onserving pseudowave-fun
tions (green). Lo
alized states su
h as the 3d state 
an be made more smoothby ultrasoft pseudopotentials or the proje
tor augmented wave method (red).2.6 Basis setsTo perform a DFT 
al
ulation one must 
hoose a representation of the Kohn�Sham states, and this 
hoi
e has signi�
ant impli
ations on performan
e.One way is to expand the wavefun
tions as linear 
ombinations of plane-waves, then variationally optimize the 
oe�
ients. Plane-waves are e
onomi
alin the sense that relatively few plane-waves 
an represent a typi
al wavefun
-tion well. Plane-waves are also 
omplete, and a single parameter, namely theenergy 
uto�, 
an be used to 
ontrol the quality of the basis set without anyupper limit on pre
ision. The number of plane-waves is generally large enoughthat iterative methods must be employed to solve the Kohn�Sham equations.35A disadvantage of plane-waves methods is that ea
h plane-wave overlaps withatoms no matter their distan
e. Fast Fourier transforms, an integral elementof plane-wave methods, are known to parallelize poorly, limiting the number ofpro
essors that 
an e�
iently 
ontribute to the same 
al
ulation.More s
alable methods must rely on lo
alization to some extent. GPAWnormally uses real-spa
e grids to represent the wave-fun
tions. These requiresigni�
antly more memory than a plane-wave basis of equivalent quality, but arewell suited for parallelization.5, 6 This allows e�
ient division of the system intospatial domains, with limited 
ommuni
ation between adja
ent domains. Thereal-spa
e representation is similar to plane-waves sin
e its quality 
an in
reasedto any desired pre
ision by redu
ing the grid spa
ing.A di�erent approa
h is to use atomi
 basis sets, where a limited set of �xedbasis fun
tions is assigned to ea
h atom. Ea
h fun
tion is 
hosen 
arefullyso only few basis fun
tions are required to represent the wavefun
tions. Thisgreatly speeds up the solution of the Kohn�Sham equations, and several oper-ations whi
h s
ale quadrati
ally in plane-wave or real-spa
e methods will s
alelinearly due to the lo
alization of the basis fun
tions. The main disadvantageof basis set approa
hes is that no single parameter 
an pra
ti
ally 
ontrol the
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al methodsa

ura
y, and the pre
ision 
an only approa
h that of plane-wave or real-spa
emethods. Atomi
 basis sets 
an be based on numeri
al atomi
 orbitals (NAO),where the a
tual orbitals are sampled on a grid and used as basis fun
tions. They
an also be based on simple analyti
 fun
tions su
h as Gaussians or exponen-tials; 
ommonly referred to as Gaussian-type orbitals (GTO) and Slater-typeorbitals (STO). The advantage of su
h methods is that matrix elements 
anbe 
al
ulated analyti
ally, although more basis fun
tions are needed than withNAO-based approa
hes.The spe
i�
 subje
t in the following is the implementation of a basis set ofnumeri
al atomi
 orbitals in GPAW, based on the proje
tor augmented wavemethod.



Chapter 3The proje
tor augmentedwave methodOne of the main developments dis
ussed in this thesis is the use of lo
alizedatomi
 orbitals as a basis set to des
ribe ele
troni
 wave fun
tions within theproje
tor augmented wave method (PAW). In the light of the brief review in theprevious 
hapter, it should be 
lear how this 
ombination �ts among the existingmethods. A more 
omplete and te
hni
al derivation of this spe
i�
 method isgiven in this 
hapter.The PAW method by Blö
hl3, 4 is an approa
h to solving the Kohn-Shamequations whi
h is based on a transformation T̂ between smooth, 
omputation-ally 
onvenient pseudowavefun
tions |ψ̃n〉 and the rapidly os
illating all-ele
tronwavefun
tions |ψn〉:
|ψn〉 = T̂ |ψ̃n〉 . (3.1)Numeri
al 
al
ulations are performed using the pseudowavefun
tions |ψ̃n〉, whilethe transformation T̂ ensures that the all-ele
tron information is retained. Thismakes PAW 
al
ulations in many ways similar to ultrasoft pseudopotentials,36while PAW is in fa
t an all-ele
tron method.3.1 Transformation operatorThe transformation operator T̂ is de�ned as the identity operator plus a lo
al
ontribution around ea
h atom a. It is de�ned to map a set of 
hosen smoothfun
tions |φ̃ai 〉 for ea
h atomi
 valen
e state i to the all-ele
tron eigenstates |φai 〉:

T̂ = 1̂ +
∑

ai

(|φai 〉 − |φ̃
a
i 〉) 〈p̃

a
i | . (3.2)The fun
tions |φai 〉 and |φ̃ai 〉 are 
alled all-ele
tron partial waves and pseudopartial waves, respe
tively. They are 
hosen to be equal outside a 
ertain radiusof a, so that the PAW transformation as a whole has no e�e
t in regions farfrom atoms. The fun
tions 〈p̃ai | are Kleinman�Bylander proje
tors. They arelo
alized, and the region in whi
h they are nonzero is 
alled the augmentation13



14 Chapter 3. The proje
tor augmented wave methodregion. Together with the pseudo partial waves they should form a 
ompleteorthonormal basis within this region:
∑

i

〈r|φ̃ai 〉 〈p̃
a
i |r

′〉 = δ(r− r
′) where 〈p̃ai |φ̃

a
j 〉 = δij . (3.3)As an all-ele
tron method, the PAW method is exa
t if proje
tors and partialwaves form a 
omplete basis around ea
h atom, and the augmentation regionsof distin
t atoms do not overlap.∗3.2 Atomi
 
orre
tions and expe
tation valuesThe expe
tation value of a lo
al operator Ô 
an be written in terms of the pseu-dowavefun
tions by inserting the PAW transformation (3.2) and industriouslyapplying the 
ompleteness relation (3.3). Eventually

〈Ô〉 =
∑

n

fn 〈ψ̃n|T̂
†ÔT̂ |ψ̃n〉

=
∑

n

fn 〈ψ̃n|Ô|ψ̃n〉+
∑

aij

(
〈φai |Ô|φ

a
j 〉 − 〈φ̃

a
i |Ô|φ̃

a
j 〉
)
Da

ji +Ocore (3.4)where
Da

ji =
∑

n

〈p̃aj |ψ̃n〉 fn 〈ψ̃n|p̃
a
i 〉 (3.5)are 
alled atomi
 density matri
es. The �rst term in (3.4) involves only thepseudowavefun
tions and 
an be 
al
ulated e�
iently with real-spa
e grids orplane-waves. The se
ond term involves the �xed atomi
 quantities 〈φai |O|φaj 〉and 〈φ̃ai |O|φ̃aj 〉. These 
al
ulations involve the rapidly os
illating all-ele
tronwavefun
tions, but they 
an be performed in a spheri
al 
oordinate system andstored on
e and for all for ea
h type of atom. The only quantities in the se
ondand third terms whi
h depend on the system are Da

ij . The s
alar produ
ts
〈p̃ai |ψ̃n〉 are 
heap to evaluate sin
e the proje
tors are lo
alized, and sin
e bothfun
tions are smooth. The last term in (3.4) is an extra, �xed 
ontribution Ocoredue to the frozen 
ore states.The important impli
ation of expression (3.4) is that the 
al
ulations aredivided into an extended pseudo-part suitable for grid or plane-wave represen-tations, whi
h will a

ount for most 
omputational 
ost asso
iated with themethod, 
oupled to a set of 
onstant, pre-evaluated atomi
 
orre
tions onlythrough the atomi
 density matri
es Da

ij . Most importantly the ele
tron den-sity is de
omposed as
n(r) = ñ(r) +

∑

a

na(r−R
a)−

∑

a

ña(r−R
a), (3.6)

∗Usually a 
ouple of proje
tors are used for ea
h atomi
 valen
e state. The ne
essaryadditional all-ele
tron partial waves 
an be generated by radially integrating the atomi
 Kohn�Sham equations using an energy whi
h is not an eigenvalue.
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harges 15where
ñ(r) =

∑

n

fn 〈ψ̃n|r〉 〈r|ψ̃n〉+
∑

a

ña
c (r−R

a), (3.7)
na(r) =

∑

ij

〈φai |r〉 〈r|φ
a
j 〉D

a
ji + na

c (r), (3.8)
ña(r) =

∑

ij

〈φ̃ai |r〉 〈r|φ̃
a
j 〉D

a
ji + ña

c (r). (3.9)Here an arbitrary pseudo-
ore density ña
c (r) has been in
luded in (3.7) whi
h is
an
elled by the atomi
 
orre
tion (3.9).3.3 Compensation 
hargesA re
urring feature in the PAW method is the addition of something to a quan-tity, whi
h is 
an
elled out by subtra
ting the atomi
 expansion of the samequantity. The reason for doing so is to make the wavefun
tions, density andpotential as smooth and well-behaved as possible. In this way, 
ompensation
harges Z̃(r) are added around ea
h atom to the 
harge distribution to eliminatethe dire
t ele
trostati
 intera
tion between atoms in favour of having a singlesmooth 
harge distribution whi
h 
an be treated on a grid. Considering againthe Kohn�Sham energy expression, the 
harge density is the sum

ρ(r) = n(r) + Z(r) (3.10)of the all-ele
tron density n(r) and the atomi
 point 
harges Z(r). The 
om-pensation 
harges are used to regroup the 
harge into two neutral distributions
ρ(r) = ρ̃(r) +

∑

a

ρa(r−R
a)−

∑

a

ρ̃a(r−R
a)

︸ ︷︷ ︸neutral , (3.11)su
h that the ele
trostati
 singularities near the nu
lei disappear in ρ̃(r). Theatomi
 
harges are
ρa(r) = na(r) + Za(r), (3.12)
ρ̃a(r) = ña(r) + Z̃a(r). (3.13)Going one step further, the 
ompensation 
harges are de�ned as a linear 
om-bination
Z̃a(r) =

∑

L

Qa
Lg̃

a
L(r) (3.14)of smooth lo
alized fun
tions g̃aL(r) with real spheri
al harmoni
s YL(θ, φ) asangular parts. L is a 
omposite index for the usual angular indi
es (l,m).The 
oe�
ients Qa

L are uniquely de�ned by requiring that the 
ompensation
harges must 
an
el out the multipole moments of the 
harges represented onradial grids. Thereby all ele
trostati
 intera
tions between atoms are 
ontainedin ρ̃(r) up to any 
hosen order. This makes the expansion 
oe�
ients Qa
L afun
tion of the atomi
 density matri
es Da

ij . A 
omplete derivation is given byRostgaard.37
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tor augmented wave method3.4 Total energyWith these modi�
ations, the total Kohn�Sham energy (2.1) 
an be written asthree rather elaborate terms
E = Ẽ +

∑

a

Ea −
∑

a

Ẽa (3.15)with
Ẽ =

∑

n

fn 〈ψ̃n|T̂ |ψ̃n〉+
1

2

∫∫
ρ̃(r)ρ̃(r′)

‖r− r′‖
drdr′

+
∑

a

∫
ñ(r)v̄a(r−R

a) dr+ Exc[ñ], (3.16)
Ea =

∑

ij

〈φai |T̂ |φ
a
j 〉D

a
ji +

1

2

∫∫
ρa(r)ρa(r′)

‖r− r′‖
drdr′

+ Exc[n
a] + Ecore

kin , (3.17)
Ẽa =

∑

ij

〈φ̃ai |T̂ |φ̃
a
j 〉D

a
ji +

1

2

∫∫
ρ̃a(r)ρ̃a(r′)

‖r− r′‖
drdr′

+ Exc[ñ
a] +

∫
ña(r)v̄a(r) dr. (3.18)Here Ecore

kin is the �xed kineti
 energy of the frozen 
ore states, and v̄a(r) isan arbitrary lo
alized potential whi
h is �added and subtra
ted� similarly to
ompensation 
harges to make the total potential as smooth as possible. Notehow the XC energy 
an be divided in this way only if it is assumed to be lo
al,so that Eq. (3.4) applies. Non-lo
al XC fun
tionals 
an be in
orporated but are
onsiderably more 
ompli
ated.38A set of Kohn�Sham equations 
an be derived by requiring that the pseu-dowavefun
tions should be simultaneously orthogonal and minimize the totalenergy, whi
h will be done in the 
ontext of lo
alized basis sets in the following.3.5 Basis set formalismThe pseudowavefun
tions |ψ̃n〉 are expanded as linear 
ombinations
|ψ̃n〉 =

∑

µ

|Φµ〉 cµn (3.19)of atom-
entered, lo
alized basis fun
tions |Φµ〉 with 
oe�
ients cµn. The 
oef-�
ients shall be variational parameters, while the basis fun
tions are �xed. Tohave a working ground-state 
al
ulation pro
edure, we must implement ea
hof the Kohn�Sham steps, i.e. we must be able to 
al
ulate density from thewavefun
tions, 
al
ulate the potential from the density (this step is unrelatedto the basis), and be able to solve the Kohn�Sham equations. Most quantitiesare 
onveniently expressed in terms of the density matrix
ρµν =

∑

n

cµnfnc
∗
νn (3.20)
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h we want to minimize, depends on the wavefun
tionsthrough the pseudodensity ñ(r), the atomi
 density matri
es Da
ij , and expli
itlythrough the smooth part T̃ of the kineti
 energy in (3.16). These quantites arestraightforwardly rewritten in terms of the density matrix:

ñ(r) =
∑

µν

Φ∗
µ(r)Φν (r)ρνµ +

∑

a

ña
c (r−R

a), (3.21)
Da

ij =
∑

µν

P a
iµρµνP

a∗
jν , (3.22)

T̃ =
∑

n

fn 〈ψ̃n|T̂ |ψ̃n〉 =
∑

µν

Tµνρνµ, (3.23)where we have de�ned
Tµν = 〈Φµ|T̂ |Φν〉 , (3.24)
P a
iµ = 〈p̃ai |Φµ〉 . (3.25)These are two-
enter integrals that 
an be evaluated before the start of a 
al-
ulation on
e the atomi
 positions are known.The Kohn�Sham equations 
an be obtained by requiring that the total en-ergy (3.15) must be stationary with respe
t to the 
oe�
ients, and that theall-ele
tron Kohn�Sham states must be orthogonal. The orthogonality 
ondi-tion is

δnm = 〈ψn|ψm〉 = 〈ψ̃n|T̂
†T̂ |ψ̃m〉 =

∑

µν

c∗µnSµνcνm, (3.26)where Sµν is the overlap matrix
Sµν = 〈Φµ|T̂

†T̂ |Φν〉 = Θµν +
∑

aij

P a∗
iµ ∆Sa

ijP
a
jν . (3.27)Here Θµν = 〈Φµ|Φν〉 are two-
enter integrals, and the numbers ∆Sa

ij are atomi

onstants depending on the partial waves. The orthogonality 
riterion is in-
orporated using the method of Lagrange multipliers. Di�erentiating the totalenergy plus Lagrange term by c∗µn leads to a generalized eigenvalue equationwhi
h 
an be solved for the 
oe�
ients cνn and eigenvalues ǫn:
∑

ν

Hµνcνn =
∑

ν

Sµνcνnǫn. (3.28)Here we have de�ned the Hamiltonian matrix as the total derivative
Hµν =

dE

dρνµ
=

∂E

∂ρνµ
+

∫
δE

δñ(r)

∂ñ(r)

∂ρνµ
dr+

∑

aij

∂E

∂Da
ji

∂Da
ji

∂ρνµ
, (3.29)whi
h eventually leads to

Hµν = Tµν + Vµν +
∑

aij

P a∗
iµ ∆Ha

ijP
a
jν . (3.30)
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tor augmented wave methodThe �rst term is the 
onstant kineti
 matrix (3.24). The se
ond term is thematrix
Vµν =

∫
Φ∗

µ(r)ṽ(r)Φν (r) dr (3.31)of the total e�e
tive potential
ṽ(r) ≡

δE

δñ(r)
= ṽHa(r) + ṽxc(r) +

∑

a

v̄a(r−R
a). (3.32)The Hartree, XC and zero potential above emerge straightforwardly as deriva-tives of the 
orresponding energy terms in Eq. (3.16), with the Hartree potentialobeying the Poisson equation

∇2ṽHa(r) = −4πρ̃(r). (3.33)The last term in (3.30) involves the atomi
 Hamiltonian matri
es de�ned as
∆Ha

ij ≡
∂E

∂Da
ji

. (3.34)This derivative is horribly 
ompli
ated37 due amongst other things to atomi
XC 
orre
tions. However it is basis set independent, and it su�
es to note that
∆Ha

ij depend only on Da
ji plus a large number of purely atomi
 
onstants. Itis a spe
ial feature of PAW 
al
ulations 
ompared to ultrasoft pseudopotentialHamiltonians that the atomi
 
orre
tions 
an vary dynami
ally through 
hangesin Da

ji.3.6 OverviewBy now we 
an a

ount for the entire self-
onsisten
y 
y
le. All two-
enterintegrals su
h as Tµν and P a
iµ 
an be evaluated at the beginning, and a startingdensity (both ñ(r) andDa

ij) 
an be de�ned from the 
ontributions of the isolatedatoms. Then:
• The XC potential ṽxc(r) is 
al
ulated from the density ñ(r) depending onthe relevant XC approximation.
• The total pseudo
harge density ρ̃(r) from (3.11) is 
al
ulated by adding the
ompensation 
harges Z̃a(r) using (3.14) 
hosen to 
an
el atomi
 multipolemoments.
• The Hartree potential ṽHa(r) is 
al
ulated by solving the Poisson equation(3.33).
• The potential matrix Vµν (3.31) is 
al
ulated by integrating the e�e
tivepotential ṽ(r) (3.32) with the basis fun
tions.
• The Hamiltonian matrix Hµν (3.30) is 
al
ulated by adding kineti
, po-tential and atomi
 terms.
• The generalized eigenvalue problem (3.28) is solved for the 
oe�
ients
cµn and energies ǫn, and the lowest states are o

upied using a Fermidistribution.
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• The density matrix ρµν (3.20) is 
al
ulated from the 
oe�
ients and o
-
upations.
• The pseudodensity ñ(r) (3.21) and atomi
 density matri
es Da

ij (3.23) arere
al
ulated.Pulay mixing is generally used to stabilize 
hanges in density, preventing �
hargesloshing�.393.7 Atomi
 for
esAside from the self-
onsisten
y loop, stru
ture optimizations and mole
ular dy-nami
s simulations are formulated in terms of the for
e on an atom. The for
eon atom a is de�ned as the negative gradient
F

a = −
∂E

∂Ra
(3.35)of the total energy with respe
t to the position R

a of that atom. An expres-sion for this gradient 
an be derived analyti
ally from the energy expression.The gradient must be taken self-
onsistently in the sense that it should re�e
tthe a
tual 
hange in energy if two di�erent energy evaluations were made withslightly di�erent atomi
 positions, and it must di�erentially obey the orthogo-nality 
ondition. Using the Hellman�Feynman for
e theorem and the 
hain rule
arefully, the full for
e expression is
F

a = 2Re
∑

µ∈a;ν

dTµν
dRµν

ρνµ − 2Re
∑

µ∈a;ν

[∫
dΦ∗

µ(r)

dRa
ṽ(r)Φν(r) dr

]
ρνµ

− 2Re
∑

µ∈a;ν

dΘµν

dRµν
Eνµ + 2Re

∑

µν

Za
µνEνµ − 2Re

∑

b;µ∈a;ν

Zb
µνEνµ

− 2Re
∑

µν

Aa
µνρνµ + 2Re

∑

b;µ∈a;ν

Ab
µνρνµ

−

∫
ṽ(r)

dña
c (r −R

a)

dRa
dr−

∫
ñ(r)

dv̄a(r−R
a)

dRa
dr

−

∫
ṽHa(r)

∑

L

Qa
L

dg̃aL(r−R
a)

dRa
dr (3.36)with

Za
µν =

∑

ij

dP a∗
iµ

dRaµ
∆Sa

ijP
a
jν , (3.37)

Aa
µν =

∑

ij

dP a∗
iµ

dRaµ
∆Ha

ijP
a
jν , (3.38)

Eµν =
∑

n

cµnfnǫnc
∗
νn. (3.39)The formula 
ontains several extra terms 
ompared to grid-based or plane-wave-based PAW for
e expressions3, 5 be
ause an atomi
 displa
ement altersthe atomi
 basis; su
h for
es are 
alled Pulay for
es. A 
omplete derivation ofthe formula 
an be found in the appendix of Paper I.7
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Chapter 4Atomi
 basis setsBy now we know how the self-
onsisten
y 
y
le in PAW works with a lo
alizedbasis set. This 
hapter deals with the generation of basis sets and a few topi
sof more general utility.4.1 Generation of basis setsThis se
tion des
ribes how basis fun
tions are generated. Quite generally weuse the form of a radial fun
tion times an angular fun
tion whi
h is a spheri
alharmoni
:
Φ(r) = ϕ(r)YL(r̂). (4.1)The spheri
al harmoni
s are the angular eigenfun
tions of the lapla
ian oper-ator, and emerge as fa
tors in the solutions for any purely radial system. Aperturbation of this potential 
hanges both the radial and angular parts of asolution. Extra radial and angular degrees of freedom are therefore required todes
ribe the perturbed atom well. Basis sets therefore 
onsist of the followingtypes of fun
tions:

• One atomi
 orbital for ea
h valen
e state. This is the minimal sensiblebasis set, 
alled single-ζ.
• For ea
h atomi
 orbital, extra fun
tions 
an be added with the same angu-lar part, but di�erent radial parts. These are 
alled �multiple-ζ� fun
tions;these names 
omes from the tradition of enumerating them by their 
uto�radius, 
alled ζ.
• Polarization fun
tions, whi
h are extra fun
tions with angular parts thatare not present among the valen
e states.The pro
edure by whi
h these fun
tions are 
hosen is explained below.4.2 Atomi
 orbitalsIn a radial 
oordinate system the Kohn�Sham equations are separable into aradial and an angular equation, with the angular equation having spheri
al har-moni
 solutions as mentioned. Due to the strong Coulomb attra
tion for the21
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 basis setsheavier elements, parti
ularly Au, the 
ore ele
trons move at relativisti
 speeds,and must be des
ribed by the Dira
 equation. In the s
alar-relativisti
 ap-proximation, the spin�orbit-
oupling is negle
ted, whi
h simpli�es the solutionpro
edure.40 This results in the following radial equation:
−
d2u(r)

dr2
−

1

2Mc2
dv(r)

dr

[
du(r)

dr
−
u(r)

r

]

+

[
l(l+ 1)

r2
+ 2M(v(r)− ǫ)

]
u(r) = 0 (4.2)with

M = 1−
1

2c2
(v(r) − ǫ), (4.3)where v(r) is the e�e
tive potential, and u(r) is related to the a
tual all-ele
tronwavefun
tion X(r) by

u(r) = rX(r). (4.4)GPAW already 
ontains a radial atomi
 Kohn�Sham solver whi
h is used togenerate PAW setups. Eq. (4.2) is solved using non-equidistant grid representa-tion with very �ne grid spa
ing near 0. An initial guess for the energy is used toradially integrate the equation outward from 0 and inward from the outermostpoint. The two solutions must join smoothly in the middle; the energy guess isadjusted until they do. This way a solution is found for every atomi
 orbital
Xln(r), and a self-
onsistent density and potential are obtained.The atomi
 orbitals in prin
iple extend to in�nity. Two things must be donebefore they 
an be used as basis fun
tions: The fun
tions must be lo
alized, andthey must look like pseudowavefun
tions rather than all-ele
tron wavefun
tions.The simplest way to lo
alize the solution is to solve the atomi
 problem with theouter boundary at the desired 
uto�. This will however make the basis fun
-tion non-di�erentiable at the boundary, whi
h may 
ause the kineti
 energy todepend sensitively on the exa
t lo
ation of grid points 
ompared to the bound-ary. This is avoided by adding a smooth radial potential to the self-
onsistentpotential. We use the same fun
tional form as in Siesta:41

vconf(r) =





0, r ≤ rinner
A

rcut−r exp
(
− rcut−rinner

r−rinner

)
, rinner < r ≤ rcut

∞, rcut < r

(4.5)The radial equation is then non-self-
onsistently reintegrated to obtain fun
-tions that are lo
alized. Sin
e the di�erent atomi
 orbitals have quite di�erentrange, they should have di�erent 
uto�s rcut as well. Requiring a �xed in
rease
∆ǫ of the 
on�ned orbital energy 
ompared to the free atom universally de�nesreasonable 
uto�s for all elements. In normal 
al
ulations we 
hoose the 
on-�nement energy ∆ǫ = 0.1 eV, whi
h results in typi
al basis fun
tion 
uto�s of6�10 Bohr radii.Next step is to 
onvert the lo
alized fun
tions to pseudowavefun
tions. Thepro
edure is illustrated on Figure 4.1. It is done by solving

|X〉 = T̂ |Φ〉 = |Φ〉+
∑

i

(|φi〉 − |φ̃i〉) 〈p̃i|Φ〉 (4.6)
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Figure 4.1: Generation of atomi
 orbital basis fun
tion for S 2s-state. Theall-ele
tron partial wave is 
on�ned to a �nite range (∆ǫ = 0.3 eV), then trans-formed to a nodeless pseudowavefun
tion.for the basis fun
tion |Φ〉 given the 
on�ned all-ele
tron solution |X〉, e�e
-tively inverting the PAW transformation. Applying a proje
tor 〈p̃i| and usingthe 
ompleteness of the proje
tor�partial wave basis within the augmentationregion,
〈p̃i|X〉 =

∑

j

〈p̃i|φj〉 〈p̃j |Φ〉 . (4.7)This equation 
an be solved for the partial-wave expansion 
oe�
ients 〈p̃j |Φ〉whi
h 
ompletely determine |Φ〉 within the augmentation region. Note thatif the 
oe�
ients 〈p̃j |Φ〉 are plugged dire
tly into (4.6), the behaviour will beunstable near r = 0. This happens be
ause the partial-wave basis is in realityslightly in
omplete and does not entirely �lter out the all-ele
tron os
illationswhen inverted. It is more 
orre
t to use the partial-wave expansion of |Φ〉 withinthe augmentation region and join it smoothly with |X〉 at the boundary:
Φ(r) =

∑

i

φi(r) 〈p̃i|Φ〉 for small r. (4.8)The basis fun
tion generation pro
edure is illustrated on Figure 4.1.4.3 Multiple-ζ fun
tionsThe basis is improved by adding extra fun
tions for ea
h valen
e state. Funda-mentally the goal is to have a basis set whi
h is as 
omplete as possible and atthe same time 
heap, with the basis fun
tions being as lo
alized as possible. It isnatural to 
hoose the 
on�ned pseudoatomi
 orbital Φ0(r) as the longest-rangedbasis fun
tion, sin
e this fun
tion is physi
ally justi�ed. We then make up some
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 basis setsmore fun
tions Φζ(r) with smaller 
uto�s. De�ne the fun
tion
∆Φζ(r) =

{
rl(a+ br2) r < rζcut,

Φ0(r) rζcut ≤ r.
(4.9)The prefa
tor rl ensures that ∆Φζ(r) has the 
orre
t radial behaviour of awavefun
tion near r = 0 with angular momentum l. The parameters a and bare uniquely de�ned by requiring ∆Φζ(r) to be 
ontinuous and di�erentiable at

rζcut. The then de�ne the a
tual basis fun
tion as
Φζ(r) = Φ0(r) −∆Φζ(r), (4.10)whi
h is smooth and lo
alized within rζcut. More fun
tions 
an be added bysele
ting multiple 
uto�s rζcut. We have found that a sensible �rst 
uto� isobtained by de�ning rζcut su
h that 16% of the norm of Φ0(r) lies outside.4.4 Polarization fun
tionsConsider the lowest angular momentum l whi
h does not 
orrespond to anyo

upied valen
e state. This is typi
ally a d-state for main-group elementsor a p-state for transition metals. A perturbation of the valen
e state withangular momentum l − 1 will generally have a signi�
ant l-
omponent (whileit might have an l − 1 
omponent, there would already be basis fun
tions forthis angular momentum 
hannel). For this reason we add a polarization fun
tionwith angular momentum l whi
h, as we say, polarizes the pre
eding l−1 valen
estate.The fun
tion is 
hosen to have the same 
uto� as the orbital it polarizes. Theapproa
h used in Siesta is to 
onstru
t it as an a
tual perturbation.9 Previoustests have not revealed any overwhelmingly importan
e of the exa
t form, and sowe (still) use the rather primitive approa
h of de�ning a Gaussian-like fun
tion
Φpol

l (r) = Arl exp(−αr2). (4.11)The de
ay 
onstant α is 
hosen in terms of the norm of the tail of the polarizedfun
tion. As the analyti
 form is not essential for our purposes, the fun
tion ismodi�ed slightly so it smoothly approa
hes zero at a �nite range given in termsof the α.In
reasing the basis set will variationally de
rease the energy of a system,with the lower limit being rea
hable by a grid-based GPAW 
al
ulation. To-tal energies tend to be mu
h higher, while energy di�eren
es su
h as bindingenergies 
onverge more qui
kly with the 
ompleteness of the basis set. Tests
an be found in Paper I.7 In general, a good 
ompromise between e�
ien
y anda

ura
y is obtained by a double-ζ polarized (dzp) basis set. This 
onsists ofthe atomi
 orbitals plus one extra radial fun
tion ea
h, and a single polarizationfun
tion. As an example, the standard dzp basis set of gold is shown on Figure4.2. Within a self-
onsistent 
al
ulation ea
h radial fun
tion de�ned here 
on-tributes 2l+ 1 di�erent spheri
al harmoni
s. Most elements have 13 or 15 su
hbasis fun
tions with a dzp basis set.
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Figure 4.2: Radial parts of basis fun
tions of gold. Colours indi
ate angularmomentum. Line styles indi
ate generation pro
edure. The total number of basisfun
tions per gold atom is 15 if we 
ount the azimuthal quantum number m.4.5 Basis set superposition error 
orre
tionThe binding energy of some 
omposite system with respe
t to its 
onstituentsis 
al
ulated by subtra
ting the sum of the energies of the isolated 
onstituentsfrom the energy of the 
omposite system. In an atomi
 basis set, this introdu
esa basis set superposition error (BSSE): In the regions where basis fun
tionsoverlap, atoms in the 
omposite system e�e
tively borrow unused degrees offreedom from one another, whi
h arti�
ially stabilizes the 
omposite system. Inother words, basis sets tend to produ
e too large binding energies.The BSSE 
an be 
orre
ted by ensuring that the basis set of the 
ompositesystem mat
hes that of the isolated 
onstituent systems. Therefore the 
al
ula-tion of the 
onstituent systems should in
lude basis fun
tions on the sites whereextra atoms would have been in the 
omposite system. In GPAW this is imple-mented by adding an atom at that site equipped with the appropriate basis set,but without a pseudopotential. Su
h atoms are frequently 
alled ghost atoms.The BSSE is parti
ularly large for isolated atoms. Sin
e the basis fun
tionsare lo
alized by trun
ation su
h that ea
h orbital is 0.1 eV higher than on thefree atom, this may, for a typi
al main-group atom, 
ause a 
ombined in
reaseof the total energy on the order of 0.5 eV, whi
h the BSSE 
an partially �regain�in a 
omposite system. The BSSE 
an therefore be several tenths of an eV forisolated atoms with the standard 
uto�, but 
an be improved by de
reasing theorbital 
on�nement energy to e.g. ∆ǫ = 0.01 eV.4.6 Nonorthogonality and proje
ted density ofstatesWe will later 
al
ulate the proje
ted densities of states (PDOS) on various states.Within the PAW method the proje
ted density of states on an atomi
 orbital,
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 basis setsgiven as an all-ele
tron partial wave φai , 
an be approximated by37
ρai (ǫ) =

∑

n

| 〈φai |ψn〉 |
2δ(ǫ− ǫn)

≈
∑

n

| 〈p̃ai |ψ̃n〉 |
2δ(ǫ− ǫn). (4.12)This is the standard de�nition used in GPAW. To the extent that the partialwave�proje
tor basis is 
omplete, and augmentation regions of distin
t atoms donot overlap, the proje
ted density of states integrated over all energies shouldyield 1. Thus it is in pra
ti
e only approximate, as neither requirement isexa
tly ful�lled in normal 
al
ulations. This limits the use of this de�nition forele
tron-
ounting purposes, parti
ularly when the obje
tive is to �lter out thetotal number o

upation on a given atom or something similar. The atomi
orbital basis set provides a natural de�nition of proje
ted densities of stateswhi
h is guaranteed to integrate to the right number of ele
trons provided thatnonorthogonality is properly a

ounted for. Within the spa
e spanned by theatomi
 basis set, the identity operator is given by

Î =
∑

µν

|Φµ〉 [S
−1]µν 〈Φν | , (4.13)as 
an be veri�ed by applying the operator on an arbitrary linear 
ombinationof atomi
 orbitals. Suppose we are interested the proje
ted density of stateson an arbitrary subset M of orbitals, su
h as all the orbitals on atom a, or alld-type orbitals on all Au atoms. A proje
tion operator onto that spa
e is givenby

P̂M =
∑

µ∈M,ν∈M

|Φµ〉 [P
−1
M ]µν 〈Φν | , (4.14)where [P−1

M ]µν is the inverse of the submatrix of Sµν 
orresponding to the sub-spa
e M (not to be 
onfused with a submatrix of the inverse). Then we de�nethe proje
ted density of states on M as
ρM (ǫ) =

∑

n

〈ψ̃n|P̂M |ψ̃n〉 δ(ǫ− ǫn). (4.15)In the 
ase where the subspa
e M 
orresponds to a single state, the normaliza-tion is simply a division by the squared norm 〈Φµ|Φµ〉 of the basis fun
tion.



Chapter 5Development andparallelizationThis 
hapter des
ribes aspe
ts of the implementation and parallelization of lo-
alized basis set 
al
ulations and to a lesser extent real-spa
e 
al
ulations.GPAW is implemented in a 
ombination of Python and C. Python is a high-level language whi
h allows 
ompli
ated tasks to be programmed qui
kly andwith high 
larity. C, as a low-level language, is well suited for number 
run
hing.Most 
ode is therefore written in Python using the Numpy array library, whileonly expensive operations are delegated to C fun
tions or external libraries su
has BLAS.Input �les for DFT 
al
ulations are written as Python s
ripts using theAtomi
 Simulation Environment (ASE).42 This provides enough �exibility thatany 
al
ulated quantity, su
h as Hamiltonians or overlap matri
es whi
h we willuse later, 
an be extra
ted dire
tly from an input �le without spe
ial-purpose
ompilation or intermediate �le storage. MPI is used for parallelization. Thisis a distributed-memory framework where ea
h CPU 
ore runs a separate 
opyof the programme.5.1 Overview of parallelizationGPAW supports parallelization over several quantities. For real-spa
e grid 
al-
ulations, the 
omputational 
ost will normally be dominated by real-spa
e op-erations on the wavefun
tions ψ̃σk
n (r). Roughly in order from the most e�
ientto the least e�
ient, parallelization 
an be performed over k-points, spins σ,real-spa
e r and Kohn�Sham states n. Spin parallelization for many purposesresembles k-point parallelization, and we will only distinguish between thesewhen ne
essary. These parallelization modes 
an be used in any 
ombinationsimultaneously: to ea
h CPU is assigned a parti
ular set of k-points/spins, areal-spa
e domain and a set of states. The latter two parallelization modes arenormally 
alled domain de
omposition and band parallelization. For medium-sized real-spa
e 
al
ulations one usually maximizes k-point parallelization andthen uses domain de
omposition with the remaining CPUs. However the 
om-putational 
ost within a single domain in
reases with the number of ele
trons.27



28 Chapter 5. Development and parallelizationOperation Parallelization Complexity Eq.Poisson, multigrid r O(N) (3.33)Density ñ(r) r, σ O(N) (3.21)XC potential ṽxc(r) r, σ O(N) �Atomi
 XC / ∆Ha
ij r, σ O(N) �Potential matrix Vµν ν, r, σ, k O(N) (3.31)Diagonalization of Hµν µ, ν, σ, k O(N3) (3.28)Density matrix ρµν µ, ν, σ, k O(N3) (3.20)Table 5.1: Important operations in the self-
onsisten
y 
y
le and how the rel-evant data stru
tures are distributed over domains r, spins σ, basis fun
tions µand ν and k-points k. Only operations with the most signi�
ant 
omputational
ost have been in
luded.For su�
iently large systems it therefore be
omes in
reasingly relevant to par-allelize over bands.With the introdu
tion of the lo
alized basis set, or �LCAO mode�, the samedegrees of parallelization 
an be used (band parallelization in this 
ase then
orresponds to parallelization over orbitals). However most of the 
omputa-tional 
ost will be asso
iated with very di�erent operations, parti
ularly forlarge systems where the 
ubi
ally s
aling linear algebra operations, namely di-agonalization of the Hamiltonian and 
al
ulation of the density matrix, willeventually dominate.∗ Sin
e these are pure matrix operations, they not parallelover domains. Many other operations are only, or almost only, parallel over do-mains. An overview of the di�erent operations and how they 
an be parallelizedis shown in Table 5.1. Clearly, for su�
iently large systems a sparse methodwould be faster sin
e the Hamiltonian and overlap matrix are in fa
t sparse.The implementation of the more important individual steps of the 
al
ulationpro
edure will be des
ribed in the following.5.2 Linear algebraWe parallelize matrix operations using S
alable Linear Algebra PACKage, asoftware library for parallel dense linear algebra.44, 45 S
aLAPACK relies onstandard standard BLAS libraries for lo
al operations and BLACS,46 Basi
Linear Algebra Communi
ation Subroutines, for parallel 
ommuni
ation.Matri
es in S
aLAPACK are distributed among CPU 
ores a

ording to a2D blo
k 
y
li
 s
heme: A matrix is divided into re
tangular blo
ks of equalsize. Ea
h 
ore holds a set of blo
ks from distin
t parts of the matrix, and theownership of 
onse
utive blo
ks 
y
les between the available CPUs. The CPUsare themselves divided into a 2D grid su
h that rows and 
olumns are blo
ksare shared by rows and 
olumns of CPUs in the CPU grid. The distribution isillustrated on the left in Table 5.2. The algorithms in S
aLAPACK are opti-mized to emphasize 
ommuni
ation between adja
ent CPUs in the CPU grid.

∗The Hamiltonian and overlap matri
es are both sparse, and sparse methods will thereforebe favourable for the larger systems. The advantage of the sparsity of the Hamiltonian ishowever limited by the la
k of sparsity of the 
oe�
ients cµn, as the Kohn�Sham formulationis inherently global in nature. True O(N) methods must be formulated by alluding to lo
alityof e.g. the spatial density matrix ρ(r, r′), resulting in a quite di�erent formalism.43



5.3. Grids and lo
alized fun
tions 290 2 4 6 0 2 4 6 0 2 4 61 3 5 7 1 3 5 70 2 4 6 0 2 4 61 3 5 7 1 3 5 70 2 4 6 0 2 4 61 3 5 7 1 3 5 7Table 5.2: The two main matrix distributions used in 
al
ulations. Left: 2Dblo
k 
y
li
 matrix distribution. A matrix is divided into 6×8 blo
ks, ea
h repre-sented by a 
ell. The 
ells are shared by a grid of 2×4 CPUs numbered 0�7. Thenumber in ea
h 
ell indi
ates whi
h CPU stores that blo
k. Ea
h CPU stores 6blo
ks in total. Adja
ent CPUs in the grid should have fast inter
onne
t. Right:1D 
olumn distribution, perhaps of the same matrix. Only four of the eightCPUs are used in this 
ase.Thus, operations on the matrix in the example will be fast if CPU 1 has a fastinter
onne
t to CPUs 0, 3 and 7, but it does not need a fast inter
onne
t to theother CPUs. A simpler distribution using only half the CPUs is shown to theright in Table 5.2. Su
h a 
olumn-based distribution is useful for 
al
ulationsthat are parallel over real-spa
e domains and orbitals at the same time. CPUs0, 2, 4 and 6 would in this 
ase be responsible for one domain while 1, 3, 5 and7 would have a 
opy of the same matrix, but apply it to a di�erent domain.Parallel operations 
an be invoked from Python through an obje
t orientedPython interfa
e with the following 
lasses, ea
h of whi
h relies on the under-lying parallel libraries:
• Communi
ator: An obje
t resembling the standard MPI 
ommuni
atorinterfa
e for a set of CPUs.
• BLACS grid: Represents a 2D grid of CPUs. Ea
h BLACS grid is asso
i-ated with a 
ommuni
ator.
• BLACS des
riptor: A template for matri
es with a spe
i�
 2D blo
k 
y
li
layout (matrix size, blo
k size). Provides utility methods to build andperform operations on arrays. Ea
h BLACS des
riptor is asso
iated witha BLACS grid.
• Redistributor: Redistributes matri
es between di�erent BLACS grids ordes
riptors. Is asso
iated with two BLACS grids.Python interfa
e fun
tions for diagonalization and matrix multipli
ation areimplemented in terms of the above 
lasses.5.3 Grids and lo
alized fun
tionsThe 
al
ulation of the density ñ(r) and the potential matrix elements ṽ(r) in-volves basis fun
tions as well as extended real-spa
e fun
tions. Be
ause thebasis fun
tions are lo
alized, these operations are O(N). In terms of grid points

G, the potential matrix is 
al
ulated as
Vµν =

∑

G

Φ∗
GµṽGΦGν (5.1)
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it outer loop over G and an inner loop over all pairs (µ, ν) oflo
ally nonzero basis fun
tions. The density, sampled on a grid, is 
al
ulatedwith a similar loop over grid points G, for ea
h of whi
h a similar inner loop
ñG =

∑

µν

Φ∗
GµΦGνρνµ (5.2)is 
arried out.The basis fun
tion values ΦµG in ea
h grid point are pre-tabulated duringinitialization by expli
itly evaluating radial parts times spheri
al harmoni
s.Loops over pairs of nonzero basis fun
tions are possible by �rst registering, forea
h basis fun
tion, the grid 
oordinates Gz1 to Gz2 along the z axis betweenwhi
h the basis fun
tion is nonzero, for all pairs of grid 
oordinates Gx, Gyalong the other axes. This metadata allows us to maintain a list of lo
allynonzero basis fun
tions when looping over grid points: Basis fun
tion indi
esare dynami
ally added and removed from this list as the loop enters and leavestheir lo
alization areas. The entry/exit point metadata is stored in one bu�er,while the a
tual basis fun
tion values are stored in a di�erent (mu
h larger)bu�er, in an order 
onsistent with the list of 
urrently nonzero basis fun
tionsfor easy indexing.The operations (5.1) and (5.2) are naturally parallel over domains. They arefurther parallelized over orbitals ν in Vµν or ρνµ using the 
olumn layout fromTable 5.2. Ea
h CPU is responsible for one domain/
olumn 
ombination. After

Vµν is 
al
ulated, it must be redistributed from 
olumn form to blo
k 
y
li
form, where it is used to 
onstru
t the Hamiltonian. After the diagonalizationand 
al
ulation of ρµν from the 
oe�
ients, whi
h happens in blo
k 
y
li
 form,
ρµν is then distributed ba
k to 
olumn form to apply (5.2).In the for
e expression (3.36), the derivative of the potential matrix Vµν withrespe
t to a rigid displa
ement of a basis fun
tion must be 
al
ulated. This 
anbe done with a similar loop, ex
ept it is the derivatives

dΦ(r−R
a)

dRa
= −

dΦ(r−R
a)

dr
(5.3)whi
h are evaluated through

dΦ(r)

dr
=

dϕ(r)

dr
ȲL(r)r̂ + ϕ(r)

dȲL(r)

dr
. (5.4)Cir
um�ex denotes a unit ve
tor. The notation ȲL(R) = RlYL(R̂) refers to thereal solid spheri
al harmoni
s, whi
h are polynomials in the 
artesian 
oordi-nates. Their derivatives are therefore straightforward to evaluate.5.4 Two-
enter integrals and derivativesThe geometry-dependent but otherwise 
onstant overlap integrals Tµν , Sµν and

P a
iν are 
al
ulated through the pro
edure des
ribed by Sankey and Niklewsky47whi
h is also used by Siesta.9 The matri
es 
onsist of two-
enter integralsbetween lo
alized fun
tions whi
h are in all 
ases represented as a radial parton a one-dimensional grid times a spheri
al harmoni
 whi
h is implied from anangular momentum quantum number.
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hmarks 31Ea
h lo
alized fun
tion is Fourier transformed. The two-
enter integrals
an then 
an be evaluated 
heaply as 
onvolutions between a pair of Fouriertransformed fun
tions. This fun
tion is then transformed ba
k into real-spa
e.Due to the Fourier transform of the spheri
al harmoni
s it be
omes a sum ofmany spheri
al harmoni
s times di�erent radial parts:
∫

Φ∗(r)X(r −R) dr ≡ Θ(R) =
∑

L

ΘL(R)ȲL(R). (5.5)See also the master thesis by Vanin.25 Overlap matri
es su
h as Tµν or theirposition derivatives are 
onstru
ted by looping over all pairs of atoms whi
h are
lose enough for the lo
alized fun
tions to overlap. This operation is parallelizeda

ording to where atoms reside: the overlap between atom a and atom b with
a ≤ b is 
al
ulated on the CPU responsible for the domain in whi
h a resides.
Tµν and Sµν are then immediately distributed on the blo
k 
y
li
 grid.The for
e expression (3.36) involves a number of derivatives of overlaps.These are evaluated as

dΘ(R)

dR
= R̂

∑

L

dΘL(R)

dR
ȲL(R) +

∑

L

ΘL(R)
dȲL(R)

dR
. (5.6)The a
tual overlap derivative matri
es in the for
e formula (3.36) are evaluatedthis way, ex
ept they must also be antisymmetri
, re�e
ting that inter
hange oftwo basis fun
tions 
hanges the sign of R above.5.5 Performan
e ben
hmarksA few performan
e ben
hmarks are presented below. These are meant to providean idea about the performan
e on real systems, and are applied to some of the
lusters studied in later 
hapters.Figure 5.1a shows a ben
hmark of lo
alized basis set 
al
ulations on Au
lusters. The �gure is based on stru
ture relaxations of Au 
lusters generated bysimulated annealing with EMT. The pre
ise pro
edure is des
ribed in Chapter10. The tests run on one 8-
ore xeon node on Ni�heim.48 Performan
e isre
orded on the master 
ore. Parallelization is used with 2 × 2 × 2 domainde
omposition and a 4 × 2 
ore BLACS grid. The diagonalization uses thedivide & 
onquer algorithm.A breakdown of the walltime for di�erent operations is shown on Figure 5.1b,a

ounting for the total relative time spent with ea
h operation. S
aLAPACK isinvoked for 
lusters larger than N = 50 explaining the sudden shift. Some partsof the 
al
ulation, most importantly the for
e 
al
ulations, have not yet beenoptimized well in 
ombination with S
aLAPACK. Grid ops refers to the 
al
u-lation of Vµν and ñ(r), whi
h take roughly the same time; network represents
ommuni
ation in
luding waits due to load imbalan
e; atomi
 represents PAW
orre
tions, whi
h is dominated by radial XC; matrix ops refers to 
al
ulationof ρµν plus smaller operations su
h as two-
enter integral evaluation.Figure 5.2 shows s
aling of 
omputational time of individual fun
tions mea-sured per self-
onsisten
y step (whereas the previous �gure refers to an entireself-
onsisten
y loop; the number of ne
essary self-
onsisten
y steps in
reasesweakly with system size). S
aling powers are 
al
ulated by logarithmi
 �tting
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Figure 5.1: Performan
e of basis set 
al
ulations on gold 
lusters. Top: Wall-
lo
k time in minutes of one step in a stru
tural optimization as a fun
tion ofnumber of atoms. Note that the axis is quadrati
. Below: Relative time spentin di�erent parts of the 
ode. The qualitative 
hange at 50 atoms is due to aswit
h to parallel diagonalization.
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Figure 5.2: Doubly logarithmi
 plot of time per SCF iteration for di�erent op-erations. The s
aling powers are indi
ated in the legend. Colours are 
onsistentwith Figure 5.1.for N > 50 ex
ept for the serial diagonalization. �Grid ops� is nominally linear,but superlinear in this 
ase be
ause of a gradual in
rease in the ratio of bulkto surfa
e atoms with N . The in
reased density of orbitals around bulk atomsin
reases the 
ost. XC and Poisson performan
e appears sublinear be
ause ofthe non-proportinal relationship between volume and number of atoms; for ex-ample, a system with one atom needs about as mu
h va
uum as a system withtwo atoms.Overall, the main limitation on parallel performan
e is the matrix diago-nalization, as its non-lo
al 
hara
ter implies signi�
ant 
ommuni
ation. While
al
ulations even for systems beyond 1000 atoms have been tested and are in-deed faster than the real-spa
e 
ode, the time-
onsuming diagonalization is anobsta
le whi
h makes the approa
h pra
ti
al only for systems up to around400�600 atoms on the Ni�heim 
luster with the 
urrent inter
onne
t.5.6 Real-spa
e 
al
ulations and parallelizationIn real-spa
e 
al
ulations, the number of variational degrees of freedom is toolarge to dire
tly diagonalize the Hamiltonian like in the lo
alized basis set. In-stead an iterative pro
edure is used. For ea
h self-
onsisten
y iteration, guessesfor the pseudowavefun
tions are improved until they 
onverge alongside thedensity and potential.The Hamiltonian is applied to the pseudowavefun
tions in the real-spa
ebasis using a �nite-di�eren
e sten
il for the Lapla
ian:
〈r| ˆ̃H |ψ̃n〉 = −

1

2
∇2ψ̃n(r) + ṽ(r)ψ̃n(r) +

∑

aij

p̃ai (r)∆H
a
ij 〈p̃

a
j |ψ̃n〉 . (5.7)
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urrent pseudowavefun
tions, 〈ψ̃n|
ˆ̃H |ψ̃m〉,is then 
onstru
ted by real-spa
e integration. The operation involves all pairs ofbands n and m, and hen
e the entire pseudowavefun
tion arrays must be passedaround between band-parallelizing 
ores; this is why band parallelization is usu-ally more expensive than domain de
omposition, whi
h involves 
ommuni
ationat the domain boundaries. Following this step, the Hamiltonian matrix is diag-onalized using the S
aLAPACK implementation des
ribed previously, involvingredistribution to blo
k 
y
li
 form and ba
k. The 
oe�
ients obtained from thisdiagonalization are then used to rotate the wavefun
tions within their subspa
eso that they have de�nite eigenvalues.The wavefun
tions are improved by 
al
ulating the residual

Rn(r) =
ˆ̃Hψ̃n(r) − Ŝψ̃n(r)ǫn (5.8)and applying the residual minimization method des
ribed by Kresse and Furth-müller.35 The wavefun
tions are expli
itly orthogonalized by 
onstru
ting theoverlap matrix 〈ψ̃n|Ŝ|ψ̃m〉, and performing the rotation

ψ̃n(r)←
∑

m

ψ̃m(r)[L−1]mn, (5.9)where Lmn is the Cholesky de
omposition of Smn. S
aLAPACK is used againfor this inverse Cholesky de
omposition of the overlap matrix. The remainingsteps of the self-
onsisten
y 
y
le have for the most part been dis
ussed in theprevious 
hapter.The 
omputational 
ost for large systems is dominated by the 
ubi
ally s
al-ing and 
ommuni
ation-intensive matrix element 
al
ulations, plus the subse-quent rotations. Provided that the diagonalization is parallelized, it is notamong the most expensive operations. Parallel diagonalization is also impor-tant for another reason: The double-pre
ision �oating point representation ofa bands-by-bands matrix in a 10000-ele
tron system (e.g. 1000 Pt atoms) re-quires about 200MiB RAM. This is 
learly una

eptable on a BlueGene/P with512MiB RAM per 
ore.This is the 
al
ulation pro
edure for the large-s
ale DFT 
al
ulations pre-sented in later 
hapters. A s
aling ben
hmark 
an be found in Paper II.65.7 Parallelization on BlueGene/PIt is our intention to perform DFT 
al
ulations on very large gold 
lusters usingthe a

urate but expensive real-spa
e grid methods in GPAW. For this pur-pose we use the IBM BlueGene/P super
omputer lo
ated at Argonne NationalLaboratory. In the limit of very large systems, some of the otherwise inno
u-ous operations be
ome quite expensive and must be taken into a

ount in theimplementation.Super
omputers of small to medium size typi
ally 
ontain a number of dis-tin
t nodes, ea
h 
ontaining a small number of CPU 
ores. The nodes mightbe 
onne
ted by means of network swit
hes, providing the usual star-shapednetwork topology where all CPUs 
an 
ommuni
ate with ea
h other dire
tly.For su�
iently large 
omputers a network of this type will, however, su�er
ongestion be
ause all data must pass through the same swit
h. An inde�nitely
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alable 
omputer therefore 
annot have a star-shaped topology, but must makeuse of lo
alization. The parallel stru
ture of a programme must then take intoa

ount the network topology of the super
omputer on whi
h it runs, so that
ommuni
ation takes pla
e if possible only between neighbouring nodes.In the BlueGene/P super
omputer whi
h is our spe
i�
 target, the nodesare 
onne
ted in a three-dimensional grid. Ea
h 
ore is assigned a set of 
oordi-nates XYZT, where XYZ designate the position of the node in the grid, and Tenumerates the 
ores within a node (and a
ts as a very short fourth dimension).A 
ore is 
onne
ted dire
tly to its immediate neighbours along ea
h of thesefour grid dire
tions. The �rst and last CPUs in ea
h dire
tion are also dire
tly
onne
ted. The network topology is therefore a four-dimensional torus, whi
hhas a maximal of size 40 × 32 × 32 × 4 
ores, or 163840 CPUs. Cal
ulationsgenerally involve smaller sets (or partitions) of CPUs whi
h are also wired toform a torus. Sin
e solution of the Kohn�Sham equations is parallel over boththe three spatial dire
tions (x, y, z) and states n, the logi
al parallelization is tolet the XYZT network torus 
orrespond some permutation of x, y, z and n.
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Chapter 6Metal nanoparti
lesThis 
hapter provides a short introdu
tion to metal nanoparti
les. An overviewof the geometri
 stru
tures formed by nanoparti
les is given, and di�erent simplemodels for their stru
ture and properties are dis
ussed.Nanoparti
les have important appli
ations in 
atalysis, where size-dependent
hanges in 
hemi
al properties 
an have a big impa
t on 
atalyti
 a
tivity. Forexample gold 
lusters be
ome e�e
tive 
atalysts under some 
onditions. Of par-ti
ular note is the ability of gold 
lusters, when deposited on surfa
es of 
ertaintransition metal oxides, to oxidize CO at very low temperatures.49 This hasbeen observed for gold parti
les of around 4 nm in size.50 The high 
atalyti
a
tivity has been attributed to a number of e�e
ts, su
h as non-metalli
 be-haviour asso
iated with �at �islands� of gold atoms.51 Others attribute thein
rease in rea
tivity mainly to the availability of low-
oordinated atoms andsurfa
e roughness, although many e�e
ts are understood to be involved.52�56Understanding the 
atalyti
 a
tivity is part of the motivation for this work,although we fo
us on understanding the more fundamental properties of free-standing nanoparti
les. These are mu
h simpler systems than the 
ompli
atednanoparti
le/support-based systems used in 
atalysis.6.1 Pa
king and stru
tural motifs in 
lustersThe lowest-energy shapes of very large nanoparti
les are 
hara
terized by the
ombination of 
rystal planes whi
h yields the lowest total surfa
e energy, and
an be obtained by the Wul� 
onstru
tion method. For smaller 
lusters, sizee�e
ts will allow several di�erent stru
tural motifs to 
ompete. A few su
hstru
tures of parti
ular relevan
e will be des
ribed below.A number of highly symmetri
 stru
tures 
an be 
onstru
ted by su

essivelyadding shells of atoms. A simple su
h stru
ture is the 
ubo
tahedron. The�rst 
ubo
tahedron is formed by adding 12 neighbours around a 
entral atom,forming part of an f

 latti
e. Further 
ubo
tahedral stru
tures 
an be formedby adding further su
h shells, resulting in 
lusters with 13, 55, 147, 309, 561, 923,1415,. . . atoms. The �rst few 
ubo
tahedral 
lusters are shown on Figure 6.1.The 
ubo
tahedra are simple f

-based 
lusters with (111) and (100) surfa
es.By adjusting the number of (111) versus (100) surfa
e layers, one 
an also obtain
ubes, trun
ated 
ubes, 
ubo
tahedra, trun
ated o
tahedra and o
tahedra�see39
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Figure 6.1: The �rst three 
ubo
tahedral 
lusters, having 13, 55 and 147 atoms.
Figure 6.2: A family of f

 
lusters: 63-atom 
ube, 147-atom 
ubo
tahedron,201 and 225-atom trun
ated o
tahedra and 231-atom o
tahedron.Figure 6.2. Trun
ated o
tahedra are frequently the most stable stru
tures forlarge 
lusters, in
luding those of Au.57The 
lose-pa
ked (111) surfa
es of f

 stru
tures tend to have the lowest sur-fa
e energy. It is possible to form 
lusters with only (111)-like surfa
es, althoughthis happens at the expense of internally straining the 
luster by breaking thef

 stru
ture. This is the 
ase for the i
osahedral series of 
lusters. Like the
ubo
tahedra, these are generated by adding su

essive layers of atoms arounda single atom, resulting in the same geometri
 shell 
losings at 13, 55, 147,. . . atoms. The �rst few i
osahedra are shown on Figure 6.3. The distan
ebetween atoms in neighbouring i
osahedral shells di�ers from the distan
e be-tween atoms within the same shell. This 
auses an overall O(N) in
rease inenergy, while the de
rease in energy from the 
hange in surfa
e stru
ture mustbe proportional to the amount of surfa
e O(N2/3). The i
osahedral motif istherefore likely for medium-sized 
lusters. Many other latti
e-based stru
tures
an be imagined, of whi
h the most important for gold are probably trun
atedde
ahedra58, 59 whi
h are, like the i
osahedra, internally strained. A thorough
lassi�
ation of atomi
 shell stru
tures has been written by Martin.60 The free

Figure 6.3: I
osahedral 
lusters with 13, 55 and 147 atoms.
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lusters 41energy of di�erent stru
tural motifs depends on size as well as temperature,leading to 
ompli
ated phase diagrams with temperature-dependent preferen
efor di�erent stru
tures.61�63Due to the high 
omputational 
ost of ab-initio methods, the stru
turalproperties of large metal 
lusters are usually studied through simple models.Several su
h models are based on pair potentials with energy terms that modelthe attra
tive and repulsive parts of atomi
 intera
tions formulated e.g. as anenergy 
ontribution for ea
h pair of atoms. For example, the Sutton�Chen64 andGupta65 potentials both predi
t highly stable Ag 
lusters with 13 (i
osahedral),38 (trun
ated o
tahedral), 55 (i
osahedral) and 75 (de
ahedral) stru
ture.66The low energy 
oin
ides with parti
ularly regular atomi
 pa
king. Su
h many-body potentials 
an be well suited to des
ribe the spe
i�
 properties they weredesigned for, but make no referen
e to ele
troni
 stru
ture, whi
h limits theirability to des
ribe small 
lusters.6.2 Jellium 
lustersA simple model of materials 
an be obtained by entirely negle
ting atomi
 stru
-ture, and instead assuming that ele
trons are intera
ting in a smeared-out ba
k-ground 
harge so that the whole system is neutral. This �
titious material is
alled jellium. Jellium models of 
lusters have been studied extensively sin
e thedis
overy that alkali metal 
lusters with spe
i�
 �magi
� numbers of ele
tronsare parti
ularly stable and 
an be understood through jellium models.20, 21, 67�73Below we des
ribe the simplest imaginable jellium model of 
lusters, namely thatof independent ele
trons in an in�nite spheri
al well.Assume that a 
luster with N ele
trons is des
ribed by an in�nite spheri
alwell potential with radius R = N1/3. By separation of variables one obtainsdistin
t equations for radial and angular parts of the eigenstates, quite like inthe atomi
 problem from Se
tion 4.1, ex
ept for the shape of the radial poten-tial. The radial equation is the spheri
al Bessel equation with zero boundary
onditions, whose solutions are spheri
al Bessel fun
tions jl(r) of the �rst kind.∗The angular equation as always yields spheri
al harmoni
s Ylm(θ, φ). Thus
ψlnm(r, θ, φ) = αlnjl

(zlnr
R

)
Ylm(θ, φ), (6.1)where αln is a normalization fa
tor and zln is the n'th zero of jl. The energiesof these solutions are

ǫln =
1

2
k2ln =

1

2

z2ln
R2

. (6.2)Thus there exists a set of degenerate solutions for ea
h zero zln of ea
h spher-i
al Bessel fun
tion jl(r), with degenera
y 2(2l+ 1), 
ounting spin. The energylevels are ordered the same way as the zeros of the spheri
al Bessel fun
tions.This results in an Aufbau rule like in the periodi
 table, ex
ept a higher angularmomentum tends to be relatively more favourable for jellium 
lusters than addi-tional radial nodes. Con�gurations with a full shell are parti
ularly stable, and
∗The spheri
al Bessel fun
tions are related to the ordinary (�
ylindri
al�) Bessel fun
tionsby jl(r) =

√

π
2r

J
l+ 1

2

(r).
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les2 8 18 20 34 4058 68 90 92 106 132138 168 186 196 198 232254 268 306 312 338 380398 428 438 440 486 508542 556 562 612 638 . . .Table 6.1: Magi
 numbers of spheri
al non-intera
ting jellium 
lusters. Majormagi
 numbers, having parti
ularly large ele
troni
 gaps at the Fermi level, arehighlighted.the 
luster is said to 
ontain a magi
 number of ele
trons. In order of in
reasingenergy, the eigenstates are 1s, 1p, 1d, 2s, 1f, 2p, 1g, . . . , whi
h results in magi
numbers at the shell �llings N=2, 8, 18, 20, . . . ; see Figure 6.4 and Table 6.1.The spheri
al-well model above is the simplest possible jellium model. Manyother jellium-based models have been formulated to des
ribe alkali metal 
lus-ters. The in
lusion of ele
troni
 intera
tions, typi
ally through the solution ofthe Kohn-Sham equations using the lo
al density approximation, yields magi
numbers similar to those we found in the previous non-intera
ting model. Therelative importan
e of the di�erent magi
 numbers may shift depending on theexa
t model used, but the spheri
al shell 
losings are almost universally repro-du
ed as listed in Table 6.1. Further insight is gained by 
onsidering jellium
lusters of di�erent shapes. Commonly, the jellium 
lusters are allowed to de-form under some spe
i�ed set of rules.71, 74�77 An important result is that jellium
lusters with a non-magi
 number of ele
trons will deform into prolate (elon-gated along one axis) or oblate (�attened) shapes depending on the number ofele
trons. This allows non-magi
 
lusters to obtain lower energies, whi
h wewill also see in Chapter 10 using DFT 
al
ulations. Di�erent highly symmetri
shapes su
h as tetrahedra also lead to strong magi
 numbers.78The previously mentioned pair potentials are formulated only in terms ofatomi
 separations, while jellium models 
ompletely negle
t atomi
 stru
ture.Both ele
troni
 and stru
tural e�e
ts 
an be 
ombined in tight-binding models,su
h as the Hü
kel model.79�82 This model predi
ts ele
troni
 magi
 numbersin agreement with the jellium model.83, 846.3 Noble metal 
lusters, relativity and goldSin
e the noble metals have a fully o

upied d-band and a half-�lled s-band,they are ele
troni
ally similar to alkali 
lusters. Jellium-like magi
 numbershave been observed in the mass spe
tra of noble metal 
lusters, indi
ating par-ti
ular stability of 
lusters with 
losed ele
troni
 shells.22 While 
lusters of thethree noble metals show similar ele
troni
 shell stru
ture, gas-phase gold 
lus-ters form espe
ially remarkable geometri
 stru
tures. The smallest gold 
lustersare predi
ted to be planar, with a transition between planar and 3-dimensionalstru
tures usually put between 8�15 atoms depending on 
harge and other 
ir-
umstan
es.18, 85, 86 The exa
t transition between planar and 3-dimensional
lusters of various 
harge states has been dis
ussed extensively within DFTmethods and depends strongly on the XC approximation.19, 87�89 Larger gold
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Figure 6.4: Below: Energy levels and Fermi level of spheri
al-well jellium 
lus-ters as a fun
tion of number of ele
trons. Major magi
 numbers are indi
ated.Above: Se
ond-order energy di�eren
es ∆2(N) = E(N−1)−2E(N)+E(N+1),a measure of the 
urvature of the total energy with respe
t to the number of ele
-trons.
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les
lusters are predi
ted using DFT to form many more exoti
 stru
tures, su
h as
ages and tubes. This o

urs even beyond 30 atoms, with the 32-atom 
lusterbeing a 
age.19, 90, 91 The stability of planar stru
tures, along with pra
ti
allyall the pe
uliarities of subsequent Au 
lusters as 
ompared to Ag or Cu, 
an beattributed to the relativisti
 behaviour of the Au 
ore ele
trons. These e�e
ts
hange the s
reening of the outer ele
trons, leading to a 
ontra
tion of s-statesand an expansion of the d-states, and an in
rease in hybridization between the d-states.17 Gold in parti
ular has a tenden
y to form low-symmetry stru
tures.92Even the 55-atom Au 
luster does so rather than forming an i
osahedron as hasbeen found for Ag.93, 94 Determination of globally optimal stru
tures of mostlarger 
lusters must to some extent rely on simpler methods, although limitedstudies of large 
lusters with DFT have been made.95, 96



Chapter 7Chemi
al properties of large
lustersIn this 
hapter we examine the 
onvergen
e of 
hemi
al properties of 
lusterswith respe
t to 
luster size. This is done by 
al
ulating binding energies of sim-ple adsorbates on 
ubo
tahedral 
lusters up to 1415 atoms. The 
ubo
tahedraare not lowest-energy stru
tures,57, 97 and parti
ularly the small 
lusters Au13and Au55 are known to form entirely di�erent stru
tures in the gas phase. How-ever the 
ubo
tahedra provide a simple geometry whi
h 
an be 
ompared atdi�erent sizes and with di�erent metals. Here we 
ompare Au and Pt 
lusters,where the main di�eren
e is that Au, unlike Pt, has a �lled d-band.7.1 Stru
ture and 
al
ulation parametersWe 
al
ulate the binding energy of O and CO, ea
h on two di�erent adsorptionsites, and on Au as well as Pt 
ubo
tahedra. The motivation for spe
i�
ally
onsidering O and CO is the relevan
e of these adsorbates as intermediates inCO oxidation, although we make no attempt to model a
tual 
atalyti
 systemsat this time. Figure 7.1 shows the adsorption sites. They are:
• O on the f

 hollow site 
losest to the 
enter of an (111) fa
et

Figure 7.1: Adsorption sites, shown two at a time, of O and CO on the Au561
ubo
tahedron. 45
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Figure 7.2: Binding energy of O and CO on 
ubo
tahedral Au and Pt 
lustersof di�erent size. For ea
h series of datapoints, the bulk limit is indi
ated.
• O on the bridge site 
losest to the 
enter of an edge
• CO on top of the atom 
losest to the 
enter of an (111) fa
et
• CO on top of the atom 
losest to the 
enter of an edge, with O pointingaway from the 
lusterThe distan
e between adsorbate and metal atoms is in ea
h 
ase based on arelaxation of the adsorbate on an in�nite metal surfa
e lo
ally similar to the
luster. Sin
e no relaxation of the 
luster is performed, we do not 
are to deeplyabout the exa
t geometry of the adsorbate either. In the limit of in�nitely large
lusters, the environment around ea
h adsorbate approa
hes either that of a
lean surfa
e or a step 
on�guration. Su
h 
on�gurations are used to obtainvalues for the bulk limits. The 
al
ulations are performed using the RPBE XC-fun
tional with the real-spa
e grid implementation in GPAW. A grid spa
ingof 0.175Å is used for Au 
lusters, and 0.140Å for Pt 
lusters. The latti
e 
on-stants 4.218Å for Au or 3.999Å for Pt are used in the 
luster 
onstru
tion. Nostru
ture relaxation is performed in these 
al
ulations. The e�e
ts of stru
tureoptimization on the adsorption energies to Au 
ubo
tahedra has been found tobe small; see Paper III.98
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(a) (b) (
)Figure 7.3: O adsorption on adatom plateaus of sizes 3, 6 and 11 atoms. The
olouring only serves to distinguish adatoms from surfa
e atoms; adatoms andsurfa
e atoms are the same type.7.2 Adsorption energiesThe 
al
ulated adsorption energies as a fun
tion of 
luster size are shown onFigure 7.2. A 
ommon feature of both Pt and Au 
lusters is that small 
lusterstend to bind the adsorbates more strongly. A notable deviation from this trendis that the O on both (111) fa
et and bridge site of the Au55 binds extremelyweakly, weaker even than the bulk limit (upper left on Figure 7.2). The low rea
-tivity towards O of Au55 is 
onsistent with existing observations,99, 100 althoughthe real free-standing Au55 is known to have a quite di�erent low-symmetrystru
ture.93, 95 CO on Au exhibits a mu
h more smooth 
onvergen
e towardsthe bulk limit.For Pt, the overall size-dependent 
hange in adsorption energies is moreuniform than for Au. Almost all variation stops after N = 147, ex
ept a slight�u
tuating tenden
y whi
h is slowly damped.Variation in the 
luster size will ne
essarily 
hange both the lo
al stru
turearound of the adsorbate, and the overall 
luster size. The 
hanges in lo
alstru
ture 
an be studied separately from 
al
ulations on extended surfa
es. Thiswill be done in the next se
tion. In the next 
hapter we will study ele
troni
e�e
ts more 
losely.Further analysis of the large-s
ale results for Pt are in progress (unpub-lished). A more thorough dis
ussion of the results for Au 
an be found in PaperIII.987.3 Geometri
 e�e
ts on adsorptionPart of the size trend in the previous 
al
ulations must be attributable to the
hange in size of the fa
ets. To investigate this lo
al, geometri
 e�e
t we 
om-pare 
luster adsorption energies with adsorption energies 
al
ulated on in�nitesurfa
es with plateaus of various size. We 
on
entrate here on O adsorption onAu and Pt.We 
onsider an f

 (111) surfa
e slab with four layers of atoms and latti
e
onstants 4.218Å for Au or 3.999Å for Pt, as before. On top of the slab we
onstru
t plateaus with di�erent numbers of adatoms forming part of an extrasurfa
e layer. We start with an adatom trimer whose 
entral (111) f

 site islo
ally 
onsistent with the previously 
onsidered O adsorption site. The plateau
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Figure 7.4: Binding energy of O on 
entral f

 site of Au and Pt one-layeradatom plateaus as a fun
tion of the number of atoms in the plateau. The bulklimit is indi
ated by a dashed horizontal line. Ti
ks on x axis are pla
ed so they
orrespond to sizes of 
luster fa
ets (the 55-atom 
ubo
tahedron or i
osahedronhas 6 atoms in an (111) fa
et).is then expanded by adding one atom at a time on sites 
onsistent with thelatti
e. A few of the geometries are shown on Figure 7.3. Ea
h time, the atomis added as 
lose as possible to the adsorbate su
h that the adsorbate will alwaysbe 
lose to the 
enter of the plateau. In order to �t a plateau with 50 atomsin the 
ell (the 1415-atom 
ubo
tahedral (111) fa
et 
ontains 36 atoms), it isne
essary to in
lude a total of 365 atoms in the 
al
ulation. We use the lo
alizedbasis set with the standard double-ζ polarized basis sets.For ea
h of these geometries we then 
al
ulate the adsorption energy withoutany stru
ture relaxation. O is put at a �xed perpendi
ular distan
e of 1.37Å(Au) or 1.28Å (Pt) from the plateau atoms whi
h is 
onsistent with the �xed
luster geometries.The adsorption energy of O as a fun
tion of the number of adatoms is shownon Figure 7.4. For Au the adsorption energy in
reases swiftly and linearly be-tween plateau sizes of 3�6 atoms. On
e the triangular 6-atom plateau on Figure7.3 is 
ompleted, the energy remains largely 
onstant. The 6-atom plateau isidenti
al to the (111) fa
et on the Au55 
luster whi
h binds O very weakly, butthe geometri
 trend here is insu�
ient to explain the spe
ta
ularly weak bind-ing on Au55. Medium-sized plateaus up to 28 atoms (like the 923-atom 
luster)bind slightly more weakly than bulk Au, after whi
h the di�eren
e from bulkis tiny. This geometri
 trend thus a

ounts (partially) for the strong bindingon the 13-atom 
luster 
ompared to subsequent 
lusters, but agrees with noneof the behaviour of other 
lusters until near the bulk limit at 561 atoms and
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 effe
ts on adsorption 49larger.For Pt the smallest plateaus also bind strongly, but the trend di�ers fromthat of Au sin
e the binding energy varies mu
h more smoothly over the smallplateaus. The 
onvergen
e of the Pt binding energy with respe
t to plateau sizemat
hes roughly that of the Pt 
lusters: after a plateau size of 10 atoms (147-atom 
luster), most of the variation has stopped, and only weak os
illationsremain.In the next 
hapter we will 
onsider the e�e
t of ele
troni
 stru
ture onadsorption energies.
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Chapter 8Ele
troni
 stru
ture and
hemisorptionThe variation in adsorption energies for smaller 
lusters, and in parti
ular thevery weak adsorption of O on the Au55 
luster, remains to be explained. Tostudy ele
troni
 e�e
ts on adsorption in greater detail, we will in this 
hapter
onstru
t a 
ontiguous range of 
lusters up to several hundred atoms. Thisimplies a quite large number of 
al
ulations. Sin
e we are not interested inbinding energies with high a

ura
y, but rather the overall trend, the lo
alizedbasis set method is ideally suited for these 
al
ulations.8.1 Constru
tion of 
lustersConsider two 
onse
utive 
ubo
tahedral 
lusters. We 
an get a 
ontiguous rangeof intermediate 
lusters by stripping o� the outermost shell of atoms in the larger
luster one atom at a time, so that eventually only the smaller 
luster remains.The atoms 
an be removed in any order. To obtain reasonably realisti
 ge-ometries, we 
hoose to always remove at random one of the atoms with lowest
oordination. Sin
e we want to 
al
ulate an adsorption energy for ea
h size of
luster, and sin
e we are interested in overall ele
troni
 size e�e
ts rather thanthe e�e
ts of geometry, the lo
al geometry around the adsorption site shouldremain un
hanged during this pro
edure. This 
an be managed by e�e
tively re-moving two shells from the side of the 
luster opposite the adsorption site. Thispro
edure is shown on Figure 8.1. Sin
e atoms are removed at random, a pseu-dorandom number generator 
an be used to generate several series of 
lusters.This reveals how sensitive the pro
edure is to detailed stru
tural di�eren
es, al-though the stri
tly 
ubo
tahedral 
lusters always have the exa
t same geometry.The pro
edure 
an be used to generate any stru
ture based on geometri
 shells,and we will use this to 
ompare to i
osahedral 
lusters. However be
ause of theinternal straining of i
osahedra, the lo
al geometry around the adsorbate 
an-not be 
onserved for all sizes of 
lusters. For 
onvenien
e we therefore limit thisstudy to 
ubo
tahedra with the adsorbates lo
ated at the 
entral (111) f

 siteas indi
ated on Figure 8.1. The same site was also 
onsidered in our previousstudies. The Au13 
ubo
tahedron does not have an (111) f

 site (only an h
psite), so this 
luster 
annot be generated from the dis
ussed pro
edure; instead51
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Figure 8.1: Constru
tion of 
lusters with arbitrary number of atoms. Atomsin the 55-atom 
ubo
tahedron are white, while removable atoms are 
oloureda

ording to their 
oordination. At ea
h step, one of the removable atoms withlowest 
oordination is removed. An O atom is shown at the (111) f

 site.we use a 19-atom 
luster whi
h is the result of removing most of the atoms fromthe Au55 
ubo
tahedron without 
hanging the immediate environment aroundthe adsorbate.Over the next se
tions we perform 
al
ulations on 
lusters up to 200 or320 atoms in size. For 
lusters larger than 150 atoms we skip two thirds of the
lusters to save CPU time. This may appear as pixelation in some of the �gures,but does not represent any physi
al e�e
t.8.2 Cal
ulation parametersFor four di�erent series of randomly generated Au 
lusters we 
al
ulate theadsorption energy of O using the lo
alized basis sets in GPAW. The 
al
ulationsuse somewhat 
oarse parameters to improve e�
ien
y. The grid spa
ing is0.2Å, and 5.0Å va
uum is added in all dire
tions. Ea
h atom has the standarddouble-zeta polarized basis set and the standard PAW setup pa
kage suppliedwith GPAW. The RPBE XC fun
tional is used as in the previous 
al
ulations.A Fermi temperature of 0.01 eV is used. We do not 
onsider spin-polarizationex
ept in atomi
 referen
e 
al
ulations.For ea
h 
luster a stru
ture optimization is performed with O lo
ated at the
entral (111) f

 site. The implementation of the BFGS stru
ture optimizationalgorithm from ASE is used.42 Stru
ture optimizations terminate when thefor
es are no greater than 0.075 eV/Å.Sin
e we are not interested in high a

ura
y, but rather in a broad size-
omparison of di�erent 
lusters, we 
al
ulate adsorption energies in a more roughway than normally. First a stru
ture relaxation of the 
ombined system, 
lusterplus adsorbate, is performed, yielding a total energy. The binding energy is then
al
ulated by subtra
ting the total energy of the isolated atom and the totalenergy of the isolated 
luster. In the 
al
ulation for the isolated 
luster we do
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Figure 8.2: Binding energies of O on Au 
lusters as a fun
tion of 
luster size.Major jellium magi
 numbers are indi
ated.not perform a separate stru
ture relaxation. Aside from saving time, the bene�tof this pro
edure is that we do not have to worry about the egg-box e�e
t : Ifwe relaxed both the 
ombined system and the isolated 
luster, the atoms wouldhave moved slightly relative to the grid points, whi
h 
auses a small di�eren
e inevaluated energies. For large systems su
h an error will eventually be signi�
ant
ompared to a one-atom binding energy. The overall e�e
t of not relaxing theisolated 
luster is that all binding energies are overestimated. Furthermore, weshall not 
are to apply a basis set superposition error 
orre
tion (Se
tion 4.5).This error is similar for all the 
lusters sin
e the lo
al environment around theatom is similar, and therefore shifts all the energies by approximately the sameamount.8.3 Adsorption energy and magi
 numbersFigure 8.2 shows the adsorption energy of O on the 
entral f

 site on Au
ubo
tahedra as a fun
tion of number of atoms. Four di�erent series of randomlygenerated 
lusters are shown. The binding energy os
illates with an amplitudeof 0.5�1.0 eV. Minima in binding o

urs at or 
lose to the jellium magi
 numbers
N = 34, 58, 92, 138, 186 and 254, in most 
ases followed by a sudden in
reasebinding.Figure 8.3 shows the density of states (DOS) of the Au 
ubo
tahedra as afun
tion of 
luster size and energy. The d-band lies between -10 and -6, eV and
hanges relatively little. The s-states, however, split up into distin
t ele
troni
shells separated by gaps. As 
luster size in
reases, shells are �lled one ele
tronat a time. When a shell is full, ele
trons must be �lled into the next highershell, resulting in an abrupt in
rease in Fermi level at the magi
 numbers 34,58, 92 and 138 mat
hing the jellium model. The subsequent magi
 numbers arenot as 
learly resolved, but the shell stru
ture is still evident. This ele
troni
shell stru
ture is not spe
i�
 to 
ubo
tahedra. Figure 8.4 shows a 
loser view ofthe DOS of 
ubo
tahedra 
ompared and i
osahedra near the Fermi level. Thei
osahedra are generated by the same pro
edure by stripping o� atomi
 shellsone atom at a time. The two types of stru
ture have highly similar ele
troni
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Figure 8.3: DOS of Au 
lusters based on the 
ubo
tahedral series as a fun
tionof 
luster size and energy. The Fermi level is indi
ated by a white line. Magi
numbers are asso
iated with abrupt jumps in the Fermi energy.

Figure 8.4: DOS of 
ubo
tahedral (top; a subset of the data in Figure 8.3) andi
osahedral (bottom) Au 
lusters near Fermi level. The Fermi level is indi
ated.
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 numbers 55shell stru
ture. It has previously been shown in models based on spheri
al,
ubo
tahedral and i
osahedral potential wells that the DOS remains highlysimilar up to several hundred atoms in size.101 In small jellium 
lusters themagi
 numbers are also known to be robust to geometri
 variations as long asthe gaps between shells are large 
ompared to the e�e
t of distortion.102The trend in adsorption energy is roughly 
onsistent with the notion that theloosely bound ele
trons of a 
luster just after a magi
 number are more easilydonated to O, 
ausing an abrupt in
rease in O binding energy at the magi
numbers (this is most 
learly seen at N = 138). As 
luster size in
reases further,the energeti
 distan
e between subsequent shells de
reases, 
ausing the shellstru
ture to be
ome less well resolved. However we still see from Figure 8.2 howthe magi
 numbers 186 and 254 
orrespond to parti
ularly weak binding, evenif no well-resolved magi
 number is immediately visible in the spe
trum fromFigure 8.3. In general, the ele
troni
 shell stru
ture is very well resolved 
lose tothe geometri
 shell �llings (55 and 147 for both 
ubo
tahedra and i
osahedra),and for smaller 
lusters where the energeti
 separations between ele
troni
 shellsare large. Au55 is just below a magi
 number, while Au147 os slightly above one.This a

ounts for the observations in the previous 
al
ulations that Au55 bindsO mu
h more weakly 
ompared to Au147.Magi
-number 
lusters far from geometri
 shell �llings, su
h as the N = 92
luster, may be deformed signi�
antly due to the generation pro
edure. This isprobably why the magi
 number appears to be slightly smaller from the 
urrentresults (minimal binding is found 
lose to 88 atoms) than in the jellium model.We note that stru
ture relaxations tend to enhan
e the shell stru
ture, andthe magi
 number at N ≈ 92 is only visible for 
ubo
tahedra due to this relax-ation. Evidently the e�e
t of a 
lear shell stru
ture is stabilizing. We will studystability more systemati
ally in Chapter 10.The 
urrent results suggest that the Fermi level a
ts as a des
riptor for therea
tivity with O. While variations in the oxygen binding energy do tend to
orrelate with in the Fermi level, this 
orrelation is however far from perfe
t.Aside from geometri
 e�e
ts as we have seen, a large DOS near the Fermi levelmay also in
rease adsorption strength (e.g. near N = 309). A more 
ompletepi
ture would be that the overall a

essibility of loosely bound ele
trons fromthe adsorption site plays an important role. Su
h an e�e
t has previously beenpointed out for the adsorption of mole
ular oxygen on Au 
lusters.53On a side note, the 
lear relationship between the ele
troni
 shell stru
-ture 
lusters and the 
hemi
al properties of gold 
lusters raises the question ofwhether the previous 
on
lusions, pla
ing the 
onvergen
e of adsorption energieswith Au 
luster size at about 600 atoms, might be wrong due to magi
 numbersin between the 
ubo
tahedral geometri
 shell 
losings. The spe
tra from i
osa-hedral and spheri
al potential-well models have been found to be highly similaras high as 1000 atoms, while 
ubo
tahedral potential wells deviate mu
h morequi
kly beyond a few hundred atoms.101 Au 
lusters have been predi
ted toform trun
ated o
tahedra from somewhere around 500 atoms and above, pre-
eded by de
ahedral 
lusters.57, 59 The lower symmetries of trun
ated o
tahedraand de
ahedra (
ompared to 
ubo
tahedra and i
osahedra) will to some extentdisfavour the formation of large gaps.Another e�e
t whi
h works to disfavour highly magi
 numbers for 
lustersmu
h larger than 500 atoms, at least to the extent that the 
lusters 
an stillbe 
onsidered vaguely spheri
al, is the supershell stru
ture. The relationship
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H
LiFigure 8.5: Adsorption energy of H and Li on Au 
ubo
tahedra as a fun
tion of
luster size. Clusters are generated with several di�erent pseudorandom seeds.between ele
troni
 shells of di�erent radial and angular dependen
ies resultsin a beat phenomenon su
h that major shell e�e
ts are mostly extinguishedbetween 500-1000 atoms.103 The supershell e�e
t on
e again allows for well-resolved magi
 numbers for 
lusters larger than 1000 atoms, at whi
h point itseems less likely for trun
ated o
tahedral 
lusters to have gaps. Ele
troni
 shellstru
ture has however been observed in alkali metal 
lusters up to 1500 atoms,after whi
h point geometri
 magi
 numbers 
orresponding to 
ubo
tahedral ori
osahedral shell 
losings take over.104 This shift in 
hara
ter of magi
 numberswas attributed to solidi�
ation of the 
lusters. Another study has observedele
troni
 shell stru
ture as high as 3000 alkali atoms.105 In 
on
lusion it 
an beargued that large ele
troni
 gaps are unlikely beyond 500 atoms, but we 
annotstate with 
omplete 
ertainty that ele
troni
 e�e
ts are always insigni�
ant.8.4 Main-group atoms on goldWe 
an investigate the ele
troni
 shell e�e
ts more thoroughly by 
onsideringadsorption of several di�erent atomi
 spe
ies. In this se
tion we 
al
ulate ad-sorption energies of many di�erent main-group atoms on gold 
ubo
tahedra.These 
al
ulations are straightforward and use the same parameters as previ-ously.The binding energies of H and Li on Au 
lusters are shown on Figure 8.5.Again, magi
-number 
lusters are universally unrea
tive. H and Li follow theopposite behaviour of O: past a magi
 number, a sharp de
rease in bindingtakes pla
e. This is not surprising for Li whi
h has a loosely bound ele
tron.However H would sooner be expe
ted to re
eive partial 
harge, so this behaviouris somewhat perplexing. An existing study of H adsorption on very small Au
lusters has found a similar behaviour whi
h was deemed �anomalous�.106 Wewill look further into this in Chapter 9.Figure 8.6 shows the adsorption energies of atoms of ten 2p and 3p ele-ments. The behaviour near magi
 numbers is 
onsistent with the pi
ture ofele
tron donation or ele
tron a

eptan
e: For a 
luster slightly smaller thana magi
 number the Fermi level is low, and so the donation of an ele
tron toan ele
tronegative adsorbate is asso
iated with weak adsorption energy, while
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Figure 8.6: Adsorption energy of main group elements on Au 
ubo
tahedra asa fun
tion of 
luster size. Two series of generated 
lusters are shown on ea
h�gure.
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troni
 stru
ture and 
hemisorptionthe a

eptan
e of an ele
tron leads to strong adsorption. The opposite is the
ase after a magi
 number. The 2p elements generally have higher ele
troneg-ativities than the 3p elements, and this is re�e
ted in their adsorption energieson 
lusters. In general, Au 
lusters near magi
 numbers 
an in light of theseobservations be viewed as alkali-like or halogen-like. For the halogens F andCl, the in
rease in energy just past a magi
 number is quite abrupt. For lessele
tronegative elements (O and S) the 
hange in energy is larger but moregradual, happening over the addition of several atoms to the 
luster. This 
anbe interpreted as a transfer of several ele
trons gaining more energy. Su
h a
harge transfer interpretation should not be taken literally, however. The typeof bond more 
losely resembles 
ovalen
y as has been found for Au�S.107 A
loser analysis follows in Chapter 9.In all 
ases, 
ompletion of the triangular 6-atom fa
et 
auses a sharp de
reasein binding leading up to the N = 55 
ubo
tahedron. As we saw for oxygenbefore, N = 92 is not 
learly distinguishable as an ele
troni
 magi
 number, butweak binding is generally found around 80 < N < 90. The overall amplitudeof variation 
an be several eV and tends to be higher for the ele
tropositiveadsorbates.8.5 Oxygen on transition metal 
lustersTo expand our study in a slightly di�erent dire
tion, let us �nally 
onsider thetrends in O adsorption for 
lusters of di�erent metals. We 
ompare the noblemetals Au and Ag, plus several other transition metals with un�lled d-bands,using the same geometri
 series of 
lusters.Figure 8.7 shows the adsorption energy of O on 
ubo
tahedral 
lusters ofvarious f

 transition metals. Pt adsorption energies are shown separately sin
esome of the Pt 
lusters frequently re
onstru
t 
onsiderably, whi
h 
auses a mu
hmore noisy trend. Stru
ture optimizations of these Pt 
lusters require aroundthree times as many steps as the 4d metals due to these signi�
ant reorganiza-tions.Au and Ag, having similar ele
troni
 stru
ture, behave almost identi
ally,with Au binding more weakly as expe
ted. Evidently the relativisti
 e�e
tsof Au do not 
ause signi�
ant 
hanges in the rea
tivity trend towards O on
ubo
tahedra (however the relativisti
 e�e
ts are known to have profound im-pli
ations on 
luster stru
ture, and so would therefore be indire
tly important inany 
ase; relativisti
 e�e
ts 
ould also be related to the tenden
y of Pt 
lustersto restru
ture mu
h more than other d-band metals, although this has not beeninvestigated).The transition metals Ru, Rh, Pd and Pt show mu
h simpler trend than thenoble metals. Three overall size regimes 
an be identi�ed.
• From around 160 atoms and above, the binding energy is mostly 
onstant,varying by about 0.1 eV. This agrees well with the previous real-spa
e
al
ulations, where the 
hanges in adsorption energy on Pt 
onverged moresmoothly with 
luster size than for Au. In the d-band model, the bindingenergies of adsorbates is predi
ted to vary among transition metals. Forthe largest 
lusters (150�200 atoms), the binding strength very 
loselyfollows the �lling of the d-band. The approximate fra
tional d-band �llingsare 0.7, 0.8, 0.9 and 1.0 respe
tively for the series Ru�Rh�Pd/Pt�Ag/Au.
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PtFigure 8.7: Binding energy of O on 
ubo
tahedral 
lusters of di�erent metalsas a fun
tion of 
luster size.
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Figure 8.8: DOS of Pt 
ubo
tahedra as a fun
tion of 
luster size and energy.The Fermi level is indi
ated.Higher �lling leads to weaker binding in agreement with the d-band model(see however the dis
ussion below).
• Between 55�100 atoms the binding is generally weaker than for smaller orlarger 
lusters, but without any large variations (ex
ept for Pt). In thisregion the O atom binds to a 6-atom (111) fa
et. This spe
i�
 site onthat fa
et is apparently parti
ularly unrea
tive: The in
rease in bindingenergy for larger 
lusters happens when the fa
et is further expanded, andthe very steep 
hange at N ≈ 50�55 happens when the 6-atom fa
et is
ompleted.
• Before the 6-atom fa
et is 
omplete, the binding energy is mu
h stronger,and generally binding energy in
reases steeply with size in the limit ofsmall 
lusters. This 
an be a 
ombination of several e�e
ts. In this region,the Fermi level and absolute d�band 
enter both 
hange in a similar way.The exa
t 
ause for this 
hange may be attributable to some 
ombinationof movement of the d-band, lo
ation of the Fermi level and geometri
nearest-neighbour 
hanges. The variation of d-band lo
ation, and hen
eFermi level whi
h is pinned to the upper part of the d-band, takes pla
eover roughly this same size range. For some reason Pd has a mu
h weakersu
h variation than Ru, Rh and Pt.The 
ru
ial 
hemi
al di�eren
e between the noble metal 
lusters and theremaining transition metals is 
learly the ele
troni
 shell e�e
ts. Figure 8.8shows the DOS of Pt 
lusters as a fun
tion of 
luster size. The overall DOSis remarkably similar to that of Au, with the s-ele
trons forming graduallybroadening subshells. However the Fermi level is lo
ated within the d-bandwhere the DOS is very high, whi
h lo
ks it in pla
e and this prevents the 
reationof any gaps. (Note that the atomi
 basis set is not expe
ted to be a

urate for
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lusters 61high-lying uno

upied states, and so these results do not 
on
lusively provepersisten
e of shell stru
ture among the unbound states.)It is natural to ask to what extent the size-dependen
e of adsorption energieswithin a series of 
lusters of the same metal 
an be understood from the d-band model. The d-band model predi
ts that binding energies of adsorbateson transition metal surfa
es 
an be understood from the �lling of antibondingstates on the adsorbate, with a high �lling 
ausing low binding energies.108 Asimple des
riptor for the tenden
y of su
h states to be �lled is usually taken to be
ǫd− ǫF , the di�eren
e in energy between the weighted 
enter of the d-proje
teddensity of states on the atoms next to the adsorbate and the Fermi level. If theFermi level is high 
ompared to the lo
ation of the d-band, antibonding statesresulting from the hybridization of adsorbate states with the d-band will tend tolie below the Fermi level, whi
h amongst other things explains the low rea
tivityof noble metals.108 By itself this notion is 
learly not su�
ient to explain thetrends for noble metal 
lusters Ag and Au, where the ele
troni
 shell stru
tureand resulting size-dependent os
illations of the Fermi level appear to be themost important fa
tors in the determination of adsorption energies.For metals with un�lled d-bands, the smallest 
lusters have higher-lying d-bands as well as higher-lying Fermi level (this 
an be seen on Figure 8.8). Theadsorption energy 
orrelates to some extent with either of these quantities, butpreliminary results we have not revealed any sensible or 
lear 
orrelation fromthe 
ombined des
riptor ǫd−ǫF . The simple des
riptor ǫd−ǫF therefore does notexplain the size variation of binding energies even for the metals with partially�lled d-bands. The 
on
lusion so far must be that a number of di�erent sizee�e
ts parti
ipate simultaneously to determine the adsorption energy, makingthe 
ommon ǫd − ǫF des
riptor less useful for 
lusters than for bulk systems.
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Chapter 9Analysis of 
hemisorption ongold 
lustersWe have seen how magi
 numbers a�e
t the binding energy of various adsorbateson gold 
lusters, with 
lusters appearing alkali-like or halogen-like depending onthe number of atoms. However a few questions are not resolved by the simpleprevious analysis. In parti
ular the apparent donation of an ele
tron by H, whi
hwould be expe
ted to attra
t 
harge, is perplexing. A Newns�Anderson modelwill be applied below to better understand the bonding of di�erent adsorbates.9.1 The Newns�Anderson modelThe Newns�Anderson model des
ribes the 
hemisorption of an atom on a metalsurfa
e.109 It is a tight-binding model whi
h des
ribes the hybridization ofa single state |a〉 on an atom with the 
ontinuum of states |k〉 of a surfa
e
hara
terized by a Fermi energy ǫF . The model 
onsiders the Hamiltonian
Ĥ = Ĥ0 + V̂ , (9.1)where Ĥ0 is the Hamiltonian of the un
oupled metal and adsorbate, and V̂des
ribes the 
oupling. In the basis of un
oupled eigenstates |k〉 and |a〉, theHamiltonian takes the form

H =




. . . 0
...

ǫk vka

0
. . . ...

· · · vak · · · ǫa



, (9.2)where Ĥ0 and V̂ 
orrespond to the diagonal and o�-diagonal blo
ks, respe
tively.The parameters are the un
oupled energy of the adsorbate ǫa, the energies ǫkof the metal states, and the adsorbate�metal 
ouplings vak.The strength of this model is, as we shall see in the following, that it 
an beused to attribute parts of the binding to di�erent energy ranges, providing qual-itative information whi
h is not easily obtained from a DFT 
al
ulation. WhileDFT 
al
ulations themselves 
an provide a

urate results, the self-
onsisten
y63



64 Chapter 9. Analysis of 
hemisorption on gold 
lusterspro
edure eventually results in every quantity depending on every other quan-tity. What we would like is a simple, more qualitative understanding, whi
h ismore easily obtained through a non-self-
onsistent model.In the following we will des
ribe a method to extra
t a Hamiltonian matrixfrom a DFT 
al
ulation using the lo
alized basis set, whi
h 
an be used withinthe Newns�Anderson model.9.2 Newns�Anderson Hamiltonian from DFTThe Hamiltonian matrix 
al
ulated in the lo
alized basis set is far from theNewns�Anderson form (9.2). In order to apply the model, we must �nd a wayto transform the matrix.Suppose we have 
al
ulated a Hamiltonian using DFT and apply a �small�perturbation whi
h self-
onsistently would 
hange both the Hamiltonian, den-sity and wavefun
tions. By the for
e theorem, sin
e both wavefun
tions anddensity are at variational minima, the 
hange in energy due to this perturba-tion 
orresponds spe
i�
ally to the 
hange in Hamiltonian. Thus, from a smallperturbation of a self-
onsistent Hamiltonian we 
an obtain the 
hanges in ad-sorption energy knowing only the 
hange in the Hamiltonian.We will use this to perform a DFT 
al
ulation for a 
ombined system in-
luding both 
luster and adsorbate, then modify this Hamiltonian to obtainexpressions for the un
oupled 
ases.In the lo
alized basis, the Hamiltonian 
al
ulated by DFT will 
onsist ofblo
ks HM ,HA,HAM and H
MA pertaining to the basis fun
tions on the metalatoms, adsorbate and the intera
tion:

HDFT =

[
H

M
H

AM

H
MA

H
A

]
. (9.3)The metalli
 and the atomi
 submatri
es 
an ea
h be brought on diagonalform by diagonalizing them independently. Sin
e the lo
alized basis set is non-orthogonal, we solve the generalized eigenvalue equations involving also theoverlap matrix Sµν :

∑

ν

HM
µνc

M
νk =

∑

ν

SM
µνc

M
νkǫk, (9.4)

∑

ν

HA
µνc

A
νa =

∑

ν

SA
µνc

A
νaǫa. (9.5)Sin
e the solutions cMνk and cAνa diagonalize ea
h of the submatri
es HM and

HA, they 
an be used to transform the intera
tion blo
ks HAM
ak and SAM

ak :
vak =

∑

a′k′

cA∗
a′aH

AM
a′k′ cMk′k, (9.6)

sak =
∑

a′k′

cA∗
a′aH

AM
a′k′ cMk′k. (9.7)By now the DFT-based Hamiltonian has been brought on the form (9.2) ex
eptfor two issues: First of all there are several states on the atom, whereas Eq.(9.2) only allows one. We will assume that ea
h of the atomi
 states hybridizes



9.3. Binding energy from Newns�Anderson 65independently, resulting in a separate Hamiltonian for ea
h su
h state. Thismethod has been used previously to des
ribe the intera
tion of several mole
ularorbitals with metal surfa
es. Se
ond, the basis fun
tions on the atom have anoverlap sak = 〈a|k〉 with the metal states. Grimley has solved this problem ina non-orthogonal basis, and that approa
h will be used in the following.1109.3 Binding energy from Newns�AndersonThe energy of the un
oupled metal 
an be written in terms of the metalli
density of states ρ(ǫ), as an integral up to the Fermi level
E = 2

∫ ǫF

−∞

ρ(ǫ)ǫ dǫ, (9.8)where the fa
tor 2 denotes spin-degenera
y. Suppose now that a single atomi
state 
ouples to the metal surfa
e, 
ausing a 
hange δρ(ǫ) in the density ofstates. The 
hange in energy 
an then be obtained by integrating δρ(ǫ)ǫ overthe o

upied states, ex
ept 
are must be taken to ensure that the right numberof ele
trons is 
ounted in this integration. First of all the adsorbate 
ontributesa number na of ele
trons (probably 1 or 2), whose initial energy naǫa must besubtra
ted. These ele
trons are deposited at the Fermi level ǫF .Consider the integral of the indu
ed density of states
∆N =

∫ ǫF

−∞

δρ(ǫ) dǫ. (9.9)This is the number of states that have, by the 
hemisorption event, been in-trodu
ed below the Fermi level. If this is nonzero, a number of ele
trons willhave moved from the Fermi level down into these newly available states. Thus,a number 2∆N (
ounting spin) of ele
trons has been removed from the Fermilevel. Taking these ele
tron 
ounting 
orre
tions into a

ount, the adsorptionenergy 
an be written as
Eads = 2

∫ ǫF

−∞

δρ(ǫ)ǫ dǫ− 2∆NǫF + na(ǫF − ǫa). (9.10)The indu
ed density of states, and thus the energy, 
an be 
al
ulated usingGreen's fun
tions. The theory behind this will be brie�y sket
hed next.The Green's operator Ĝ(z) is de�ned for some Hamiltonian Ĥ by
(z − Ĥ)Ĝ(z) = Î , (9.11)where z = ǫ+ iλ is a 
omplex number. The retarded Green's fun
tion is de�nedby taking the limit λ→ 0+, whi
h will be impli
it in all expressions from nowon. With this 
onvention, the matrix element Gα(ǫ) ≡ 〈α|Ĝ(ǫ)|α〉 
orrespondingto some state |α〉 is related to the proje
ted density of states ρα(ǫ) through∗

Im 〈α|Ĝ(ǫ)|α〉 = −iπρα(ǫ). (9.12)
∗This uses the relation limλ→0

1

x+iλ
= P

x
− iπδ(x), where P is the Cau
hy prin
ipal value,known from 
omplex analysis.



66 Chapter 9. Analysis of 
hemisorption on gold 
lustersTherefore the full density of states 
an likewise be obtained from the tra
eas ImTr Ĝ(ǫ), allowing us to a
tually 
al
ulate binding energies. We need to
al
ulate the Green's fun
tion Ĝ(ǫ) of the 
ombined system in order to be ableto integrate the indu
ed density of states and obtain a binding energy, a taskwhi
h is made more 
ompli
ated by the fa
t that the basis is non-orthogonal.By making use of the proje
tion operator for non-orthogonal basis sets,(4.13), the matrix elements of (9.11) are
∑

ξλ

〈Φµ|ǫ − Ĥ|Φξ〉S
−1
ξλ 〈Φλ|Ĝ(ǫ)|Φν〉 = 〈Φµ|Φν〉 = Sµν , (9.13)and hen
e in matrix notation

(ǫS−H)G̃(ǫ) = I, G̃(ǫ) = S
−1

G(ǫ)S−1, (9.14)where G̃(ǫ) is the usual non-orthogonal Green's fun
tion.111 This 
an be rewrit-ten as a perturbation series
G̃(ǫ) = G

0(ǫ) +G
0(ǫ)X(ǫ)G̃(ǫ), (9.15)with G

0(ǫ) being the known Green's fun
tion of the un
oupled system, and
X(ǫ) = V − ǫs, S = I + s. (9.16)Then X(ǫ) 
ontains only elements that 
ouple between adsorbate and metal.Using the perturbation series, all matrix elements Ga, Gk, Gka, Gak are rela-tively straightforward to write down. With this 
hange, the remaining part ofthe 
al
ulation mostly resembles the non-orthogonal 
ase,109 where the bindingenergy (9.10) be
omes an integral

Eads =
2

π

∫ ǫF

−∞

η(ǫ) dǫ + na(ǫF − ǫa) (9.17)over a phase shift η(ǫ) 
al
ulated from the real and imaginary parts Λ(ǫ) and
∆(ǫ) of the self-energy:

tan η(ǫ) =
∆(ǫ)

ǫ− ǫa − Λ(ǫ)
. (9.18)These fun
tions are given by

∆(ǫ, ǫ′) =
∑

k

|Xak(ǫ)|
2δ(ǫ′ − ǫk), (9.19)

Λ(ǫ) = P

∫ ∞

−∞

∆(ǫ, ǫ′)

ǫ− ǫ′
dǫ′, (9.20)with the short-hand ∆(ǫ) = ∆(ǫ, ǫ).110 The notation P∫ refers to the Cau
hyprin
ipal value. The ǫ and ǫ′-dependent fa
tors in ∆(ǫ, ǫ′) 
an be 
al
ulateddire
tly from the 
ouplings of the transformed DFT Hamiltonian and overlapmatrix, and used to evaluate the rest of the quantities.The phase shift η(ǫ), whi
h determines the entire 
hemisorption energy ex-
ept for the 
harge transfer terms, is related to the 
umulative indu
ed DOS

N(ǫ) =

∫ ǫ

−∞

δρ(ǫ′) dǫ′ = −
η(ǫ)

π
(9.21)
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Figure 9.1: PDOS (arb. units) for O on Au 
lusters as a fun
tion of energyand 
luster size. The Fermi level is indi
ated. The most visible 
hanges, su
has the one at N ≈ 105, happen when the lo
al fa
et is modi�ed. However theimpa
t on binding energy is small 
ompared to that of shell stru
ture.The proje
ted density of states on the adsorbate, whi
h will be used in thefollowing, 
an be 
al
ulated from
ρa(ǫ) =

∆(ǫ)

(ǫ− ǫa − Λ(ǫ))2 +∆2(ǫ)
. (9.22)9.4 In�uen
e of d-bandBefore using the full non-orthogonal model on DFT Hamiltonians, we 
an ob-tain a qualitative understanding of this model by playing around with a simple
hemisorption fun
tion. The overall rea
tivity of di�erent metals is well de-s
ribed by the d-band model, whi
h attributes the variations to the position or�lling of the d-band.To do this we must 
hoose the adsorbate level ǫa and the 
hemisorptionfun
tion ∆(ǫ). We will 
hoose these values su
h that the proje
ted densityof states (PDOS) on the adsorbates mat
h those 
al
ulated with DFT. Figure9.1 shows the PDOS on the atomi
 basis fun
tions of O using (4.15). The Ostates split into states on either side of the d-band, whi
h 
an be understoodas bonding and antibonding. The PDOS does not qualitatively 
hange with
luster size, although some variations are seen near the magi
 numbers. In all
ases, the antibonding states are largely o

upied.Assume �rst that the adsorbate 
ouples to an idealized metalli
 s-band andd-band, where the 
oupling to ea
h band 
an be approximated as semiellipti

ontributions V 2

s ρs(ǫ) and V 2
d ρd(ǫ) to ∆(ǫ), where ρs(ǫ) and ρd(ǫ) integrate to1. Thus

∆(ǫ) = πV 2
s ρs(ǫ) + πV 2

d ρd(ǫ). (9.23)
Vs and Vd determine the 
oupling strength. s and d bandwidths are 
hosen toroughly mat
h those of real Au. On Figure 9.2a,∆(ǫ) (full lines) and 
orrespond-ing Λ(ǫ) (broken lines) are shown for two di�erent 
hoi
es of semiellipti
 d-band.
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Figure 9.2: (a) Two 
hoi
es of semiellipti
 ∆(ǫ) (full lines) and resulting Λ(ǫ)(broken lines). Bonding and antibonding states appear at interse
tions between
Λ(ǫ) and the shown line ǫ − ǫa. (b) The proje
ted density of states on theadsorbate showing bonding and antibonding states. (
) The 
umulative indu
edDOS N(ǫ). (d) The adsorption energy as a fun
tion of the lo
ation of the Fermilevel. If the Fermi level is lo
ated above the antibonding PDOS peak, d-bandlo
ation no longer a�e
ts adsorption energy.
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Figure 9.3: Binding energy as a fun
tion of Fermi level for two di�erent d-bandlo
ations. The adsorbate 
ontributes a single ele
tron in this example.One represents an ordinary Au surfa
e while the other is shifted higher in energyand made more narrow, representing e.g. an under
oordinated site su
h as maybe found on a 
luster. The adsorbate energy level is set to ǫa = −7 eV.The 
oupling results in two states with the PDOS shown on Figure 9.2b.They 
orrespond to 
lear bonding and antibonding states broadened into reso-nan
es by the s-band. Also shown is the indu
ed DOS δρ(ǫ). The bonding andantibonding states are, together and 
ounting spins, 
apable of a

epting fourele
trons. However a single state is eliminated from within the d-band, so thata total of only two extra ele
trons is indu
ed. The 
umulative indu
ed DOS isshown on Figure 9.2
.We 
an now 
al
ulate the binding energy, shown on Figure 9.3 as a fun
tionof the Fermi level. Clusters 
lose to a magi
-number 
luster will presumablyhave almost the same 
hemisorption fun
tion, and vary only by having di�erentFermi levels. Considering the variation of the energy as a fun
tion of Fermilevel therefore 
orresponds to the transition past a magi
 number. Sin
e theFermi level is lo
ated at approximately −4.5 eV for Au, the binding energyvaries with the Fermi level but is lo
ally independent of the lo
ation and widthof the d-band. In fa
t, in this simple 
ase, the lo
ation of the d-band a�e
tsthe adsorption energy only if the Fermi level lies between the bonding and theantibonding states.This variation of binding energy with Fermi level agrees with the behaviourof O on Au 
lusters 
lose to magi
 numbers. The adsorption of an O atom withtwo empty p-states 
reates states below the Fermi level that 
an a

ept twoele
trons in total. These two ele
trons are removed from the Fermi level, andtherefore an in
rease of the Fermi level 
orresponds to an in
rease in adsorptionenergy by twi
e as mu
h. An analysis of the o

upation of the O p-states (usingthe DOS expression in terms of the basis fun
tions, (4.15)) reveals that the e�e
tof in
reasing the Fermi level on the 
luster is not to transfer signi�
antly more
harge to the atom. Instead the in
rease in binding due to a higher Fermi levelhappens be
ause the ele
trons whi
h would anyway be going from the Fermilevel into the indu
ed states, 
an now do so from a higher-lying Fermi level.9.5 Main-group elementsWe now use the full non-orthogonal model with DFT Hamiltonians. ConsiderO as a �rst example. A DFT 
al
ulation is performed on one of the previously
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Figure 9.4: Newns�Anderson model applied to O on Au58. (a) ∆(ǫ) and Λ(ǫ)for the three p states, with x and y being almost identi
al. The grey line is
ǫ− ǫa (ǫa of the three states lie 
lose) whose interse
tions with Λ(ǫ) 
orrespondto energies of 
reated states. The Fermi level is indi
ated. (b) PDOS. (
)Cumulative indu
ed DOS for ea
h state. Total 
umulative indu
ed DOS N(ǫ) =
Nx(ǫ) +Ny(ǫ) +Nz(ǫ).relaxed Au58 
lusters with O adsorbed on it. The DFT 
al
ulation uses theusual parameters, ex
ept we use only a single-ζ basis set for the atoms su
h thatwe only have fun
tions for the a
tual atomi
 orbitals. From this 
al
ulation weexport the overlap matrix and Hamiltonian and 
al
ulate 
hemisorption fun
tionand other quantities. We 
onsider only the 2p states.

∆(ǫ) and Λ(ǫ) are shown on Figure 9.4a for the pz state (blue) and the pxand py states (red), whi
h are degenerate and have the same 
oupling. Thepz state 
ouples strongly in the region ǫ ≈ −11 eV while the two other states
ouple to higher energies, in
luding the two peaks above the Fermi level that
orrespond to ele
troni
 shells. The resulting PDOS (Figure 9.4b) shows a 
learstate just below the Fermi level, like previously in Figure 9.1. Note that theexa
t behaviour of the PDOS above the Fermi level may not be realisti
, asthe atomi
 basis set is not well suited for higher-lying unbound states, andbe
ause the PDOS plotted here is based on (9.22) whi
h does not a

ount fornon-orthogonality. The PDOS therefore does not 
annot represent numbers ofele
trons, but does show in a sense the presen
e of states. Higher-lying peaksare generally exaggerated due to this e�e
t.The 
umulative indu
ed DOS N(ǫ) for ea
h of the states is shown on Figure9.4
. They behave in a manner 
onsistent with the simple model 
onsidered
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Figure 9.5: (a) PDOS 
al
ulated as a sum over px, py and pz for elements B�F. Splitting of the adsorbate state generally de
reases with 2p �lling. (b) Total
N(ǫ) of the three 2p states for ea
h of the elements B�F.previously: The additional states introdu
ed into the spe
trum with the bondingpeaks are 
an
elled out by the elimination of metalli
 states, so that the N(ǫ)remains low e.g. at ǫ = −7.5 eV. The antibonding states, however, all lie belowthe Fermi energy whi
h means a total of three extra states have been introdu
edin the spe
trum below the Fermi level. The four ele
trons from O �ll only twoof these, and thus two ele
trons 
an be moved from the Fermi level down to theindu
ed states. In
reasing the Fermi level would thereby in
rease binding bytwi
e that amount. The hybridization of ea
h state with the un�lled ele
troni
shells above the Fermi level 
an be understood as a slight movement of thestates within the ele
troni
 shells. If the Fermi level had been lo
ated withinthese, the relationship between Fermi level and adsorption energy would havebeen more 
ompli
ated. Thus, the simple relationship exists only be
ause of thegap at the Fermi level. Figure 9.4d shows the sum of the 
umulative indu
edDOS for ea
h state, whi
h therefore rea
hes 3.Figure 9.5 shows the behaviour for the 2p elements B�F. The PDOS (Figure9.5a) very high splitting between bonding and antibonding states for B, de
reas-ing towards F whi
h has only a fully o

upied resonan
e peak. The �lling ofantibonding states is normally taken as the primary reason why Au binds adsor-bates weakly. It is seen here that it is really N(ǫ) whi
h 
ontains all quantitativeinformation, and from whi
h 
on
lusions 
an be drawn.Finally the PDOS and N(ǫ) for H and Li are shown on Figure 9.6. Liindu
es a state above the Fermi level from whi
h one ele
tron is 
ontributed,
onsistently with expe
tations. The H 
oupling is so strong that a low-lyingbonding state appears at−12 eV, the bottom of the s-band (a similar e�e
t hasbeen des
ribed in Ref. 112, while the antibonding state is above the Fermi level.Sin
e one state is eliminated from the metalli
 DOS (at approximately −10 eV),the total indu
ed DOS up to the Fermi level integrates to approximately zero.The ele
tron introdu
ed by H therefore e�e
tively goes on top of the Fermi level,explaining why it behaves like Li.In 
on
lusion, we understand from this model that the shift in adsorptionenergy a
ross a magi
 number 
an be positive or negative depending on whetherstates are indu
ed above or below the Fermi level. If ex
ess states are intro-
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Figure 9.6: (a) PDOS and (b) 
umulative indu
ed DOS of H and Li on Au58.du
ed below the Fermi level, the in
rease in Fermi level asso
iated with a magi
number will allow ele
trons to transfer from the higher Fermi level, leading tostronger adsorption. If states are introdu
ed above the Fermi level, the ele
-trons 
ontrobuted by the atom must be deposited onto the Fermi level, insteadleading to weaker adsorption. The 
ase of hydrogen is explained by a strongsplitting with the introdu
tion of a low-lying bonding state far below the Fermilevel, but the elimination of e�e
tively one state from the metal below the Fermilevel. Therefore hydrogen behaves like Li, though a more appropriate pi
ture isthat of a 
ovalent bond.



Chapter 10Ele
troni
 stru
ture andgeometryUntil now we have 
onsidered Au 
lusters whi
h are based on regular stru
tures.While these stru
tures make it easy to 
ompare adsorption energies sin
e thelo
al geometry around the adsorbate 
an be retained a
ross di�erent 
lustersizes, it is not 
ertain how well our 
on
lusions apply to 
lusters with realisti
stru
tures. As previously mentioned, small Au 
lusters in parti
ular form quitevaried stru
tures that are far from the regular stru
tures 
onsidered previously.Optimizations of 
luster stru
tures based on ab-initio methods with the obje
-tive of �nding the globally optimal stru
tures are prohibitively expensive in therange of 
luster sizes we are 
onsidering. However if our obje
tive is to obtaina qualitative idea about the behaviour of real 
lusters (or even a realisti
 idea,given that �nite-temperature ensembles will naturally 
onsist of mixtures), thenthe exa
t determination of stri
t lowest-energy stru
tures is not essential. Inthe following we perform simulated annealings on Au 
lusters using the simpleEMT potential113, 114 implemented in ASAP,115 and then with DFT using thelo
alized basis sets.10.1 Mole
ular dynami
sWe will in the following use simulated annealing within mole
ular dynami
s(MD) as a means to globally optimize stru
tures. This method simulates thata 
olle
tion of atoms is 
ooled down from above its melting point until it 
om-pletely freezes, allowing the atoms to gradually arrange themselves the sameway they would in nature. There exist mu
h more e�
ient global optimizationalgorithms than simulated annealing, but sin
e this method simulates a physi
alpro
ess, it will be guaranteed to produ
e stru
tures whi
h are at least in somesense physi
al. We a
knowledge that due to the limited annealing employedhere, there is a possibility that the determined shapes of 
lusters may be morelike those found at higher temperatures. In parti
ular the 
reation of regularlatti
es is disfavoured by this pro
edure.MD simulations solve Newton's equations of motion for the atomi
 positionsas a fun
tion of time. This requires subsequent 
al
ulations of the for
es on ea
hatom to update momenta and positions, and will preserve the total energy of73
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Figure 10.1: Energy per atom of Au 
lusters based on simulated annealing withEMT, 
ompared to regular 
ubo
tahedra and i
osahedra. The referen
e energyis bulk Au.the system, but not ne
essarily the temperature whi
h it is more desirable for usto 
ontrol. The temperature 
an be regulated or �xed by applying an arti�
ialadjustment of atomi
 velo
ities on ea
h iteration. Su
h a 
orre
tion is 
alled athermostat. Here we use Langevin dynami
s, adding a �rst-order damping termto Newton's equations, whi
h for ea
h iteration slightly adjusts the temperaturetowards the desired value.10.2 Simulated annealing with EMTFor 
lusters of 6�200 atoms we perform a simulated annealing using the em-piri
al potential in the ASAP 
ode.115 Sin
e this is a 
lassi
al potential, wewould expe
t it to emphasize e�
ient atomi
 pa
king. The potential makes noreferen
e to the 
on
ept of ele
trons, so the ele
troni
 stru
ture for this series of
lusters will stri
tly be a fun
tion of the geometri
 stru
ture. The simulated an-nealing is performed from a starting temperature above the bulk melting point,and stops at 200K. The temperature is lowered by 1K for ea
h 200 MD steps.After the annealing we perform a stru
ture optimization using DFT with thelo
alized basis and the usual 
al
ulation parameters. Thus we 
an obtain ele
-troni
 spe
tra and total energies that 
an be 
ompared to the those of previous
hapters.Figure 10.1 
ompares the energies of stru
tures obtained with EMT to thoseof the regular 
ubo
tahedra and i
osahedra generated by the pro
edure fromChapter 8. Four independent annealings have been performed, and four dif-ferent series of randomly generated i
osahedral and 
ubo
tahedral 
lusters areshown. The EMT stru
tures generally have the lowest energies, with i
osahedrabeing favourable to 
ubo
tahedra within this size range. The ele
troni
 magi
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Figure 10.2: DOS of Au 
lusters as a fun
tion of number of atoms and energyobtained by simulated annealing using EMT. The white line indi
ates the Fermilevel.numbers 34, 58 and 92 are 
learly visible as kinks with parti
ularly low energiesfor all types of 
lusters. However, no in
rease in stability is seen near the geo-metri
 shell 
losings 55 and 147 of i
osahedra and 
ubo
tahedra. This suggeststhat the ele
troni
 stru
ture is mu
h more energeti
ally important than e�
ientatomi
 pa
king, up to at least 100 atoms. Even beyond this point, the roughlyoptimized EMT-based 
lusters tend to have lower energies than the entirelyregular i
osahedra and 
ubo
tahedra.Figure 10.2 shows the spe
trum as a fun
tion of 
luster size, with shellstru
tures in agreement with those of 
ubo
tahedra and i
osahedra from e.g.Figure 8.4. Large ele
troni
 gaps persists until around 90 atoms. Beyond thispoint the ele
troni
 shells start to overlap due to the lower symmetry 
omparedto the i
osahedra and 
ubo
tahedra, although shell stru
ture as a whole persistslonger.10.3 First-prin
iples global optimizationEMT-based stru
tures may in prin
iple be 
orre
t to the extent that ele
troni
stru
ture 
an be somehow regarded as a stri
t fun
tion of geometri
 stru
ture.But the results so far indi
ate that ele
troni
 stru
ture is a more importantfa
tor in the total energy, and thus ele
troni
 e�e
ts are quite likely to a�e
tthe geometry even for the larger 
lusters. This prompts us to expli
itly in
ludeele
troni
 e�e
ts by using DFT to perform the annealing.Due to the prodigious amount of 
al
ulations ne
essary, we have to make
ertain sa
ri�
es of numeri
al pre
ision. Several parameters lend themselvesfor su
h 
ompromise. The annealing pro
ess itself 
an be shortened, the timestep in
reased, and the temperature range narrowed. Also the DFT parameters
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an be sa
ri�
ed: most importantly the grid spa
ing and basis set quality. Theamount of va
uum surrounding the 
luster must however be kept high to preventsystemati
ally biasing 
ompa
t stru
tures. The 
hoi
es des
ribed below arebased on test runs for 
lusters about 30 atoms in size with the spe
i�
 obje
tiveof determining the 
oarsest parameters that still yield a sane behaviour.An MD simulation aiming for realism might use a time step of only a few fs.Higher time steps make it di�
ult to ensure energy 
onservation be
ause of thelarge atomi
 movements with every step. We 
hoose here to in
rease the timestep and leave it to the thermostat to damp any energy instabilities by using ahigh fri
tion 
oe�
ient of 0.06 with the Langevin implementation of ASE. Testswith the EMT potential have revealed that with a time step larger than about30 fs, atoms will be randomly eje
ted from the 
luster at high speed due to thepoor detailed des
ription of 
ollisions. We have therefore 
hosen a time step of24 fs, whi
h does not exhibit su
h behaviour even during long simulations.We 
hoose the EMT-optimized 
lusters as starting points for the DFT an-nealing. The temperature must be high enough, and the number of MD stepslarge enough, for the end result to be independent of the initial stru
ture. Au
lusters melt at 
onsiderably lower temperatures than bulk Au. The thermody-nami
s of 
lusters have been investigated in many works, mostly based on MDsimulations with empiri
al potentials.61, 116 The largest 
luster we optimize has150 atoms and melts at around 625K,63 so we start the annealing at 750K andend it at 300K. The temperature is high enough to entirely remodel the surfa
estru
ture in all 
ases.Two series of MD annealings are performed:
• A �high-quality� series for N=6�60 with grid spa
ing 0.24Å and the stan-dard dzp basis set. The temperature is lowered by 1K every 5+N/2 MDsteps.
• A �low-quality� series for N=6�150 with grid spa
ing 0.25Å, and the samebasis set ex
ept the se
ond of the d-type orbitals is ex
luded. The tem-perature is lowered by 1K every 20 MD steps.Tests with further redu
ed basis set or grid quality tend to yield some highlypi
turesque stru
tures, albeit of little s
ienti�
 value. At the end of the an-nealing pro
edure, a stru
ture relaxation is performed with the standard DFTparameters su
h that energies 
an be dire
tly 
ompared with previous 
al
ula-tions.Many of the 
lusters exhibit re
ognizable stru
tural motifs. The 
lusterswith 6�9, 12 and 13 atoms are found to be planar. The 
lusters from 19�23atoms 
onsist of the extraordinarily stable Au20 tetrahedron78, 117, 118 plus orminus a few atoms. Several of the larger 
lusters involve stru
tures suggestiveof tetrahedra in spite of many stru
tural irregularities. The energy per atom asa fun
tion of the number of atoms is shown on Figure 10.3, 
omparing the twoseries of annealed 
lusters with the four previous series obtained from EMT.The small DFT-based 
lusters are, as 
an be expe
ted, far lower in energy thanthose of EMT. The di�eren
e is smaller for larger 
lusters, where the short DFTannealing times tend to produ
e many imperfe
tions∗.

∗An extremely long EMT annealing yields energies that are better than the DFT-based
lusters from about 80 atoms, although the DFT 
lusters still prevail 
lose to the magi
numbers 92 and 138. However this pro
edure yields worse energies than those of the EMT
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Figure 10.3: Energy per atom for 
lusters obtained with simulated annealingwith DFT and EMT. Inset: Magni�ed view for smaller 
lusters.Figure 10.4 shows the DOS as a fun
tion of 
luster size and energy for the 6�60-atom series (top) and the 6�150 series (bottom). The optimization pro
eduretends to yield ele
troni
 gaps at the Fermi level not only at the magi
-number
lusters, but for almost every 
luster. For uneven-numbered 
lusters, the half-�lled state at the Fermi level is lo
ated in the middle of a gap between fullyo

upied and fully empty states. The same phenomenon has been found forother monovalent 
lusters.82, 119�121 The 
reation of su
h a gap is 
onsistent withthe prin
iple of maximum hardness .122, 123 The energy is lowered by pushingall o

upied states down, while uno

upied states are pushed up at no 
ost.The prin
iple behind Jahn�Teller deformations is in many ways similar. Ofparti
ular note is the qualitative feature of the DOS that the ele
troni
 shellsstay at 
onstant energy levels for all sizes, rather than move 
ontinuously downin energy as seen for the EMT stru
tures and regular geometries. The shellstru
ture is greatly enhan
ed 
lose to the magi
 numbers, resolving here intothe same bands as in EMT-based or regular stru
tures.Figure 10.5 shows the gaps of the 
lusters 
al
ulated as a di�eren
e betweenstates of 
harge +1 and −1. This reveals that the real magi
 numbers of thesestru
tures are, surprisingly, 90 and 132 rather than the expe
ted 92 and 138.Both 90 and 132 are minor spheri
al shell 
losings of the simple jellium modelpresented in Chapter 6, di�ering respe
tively by an s-orbital and a p-orbital fromthe subsequent major shell 
losings. There are strong odd�even alternationsdue to the half-�lled state for uneven 
lusters. These are well-known from amultitude of theoreti
al models.124, 125 The alternations 
an exist as long as the
reation of a gap is possible, implying that they may be found in larger 
lustersas well. Alternations have been also shown in mole
ular adsorption energies forannealings presented here for most of the smaller 
lusters. The EMT stru
tures obtained inthis range from long annealing times are mostly de
ahedral, with i
osahedra 
lose to N = 147



78 Chapter 10. Ele
troni
 stru
ture and geometry

10 20 30 40 50 60
Number of atoms

�12

�10

�8

�6

�4

�2

0

En
er

gy
 [e

V]

0.00 0.25 0.50 0.75 1.00

Figure 10.4: DOS of Au 
lusters obtained by simulated annealing with DFT asa fun
tion of 
luster size and energy. The white line indi
ates the Fermi level.
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Figure 10.5: Gaps, 
al
ulated as 
hemi
al hardness, for the two series of DFTstru
tures. This is the di�eren
e (I −A)/2, where I is the ionization potential,and A is the ele
tron a�nity. Top: The 6�60-atom series. Bottom: The 6�150-atom series. For 
larity, separate graphs for even and uneven 
lusters areshown. The dotted lines indi
ate the magi
 numbers 20, 34, 58, 90 and 132.The last two magi
 numbers di�er from the usual major spheri
al jellium shell
losings.
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Figure 10.6: Ratios of moments of inertia for the 6�60 (top) and 6�150 series(bottom) of DFT-annealed Au 
lusters. The area between the larger and thesmaller moments is shaded for 
larity.small 
lusters.126�128 This would also be expe
ted from our previous attributionof the Fermi level as a des
riptor for rea
tivity.Stru
tural trends of the optimized 
lusters are revealed by 
onsidering theirmoments of inertia. For ea
h 
luster we 
al
ulate the three prin
ipal momentsof inertia, I1 ≤ I2 ≤ I3. Figure 10.6 shows the quantities √I1/I3 and √
I2/I3as a fun
tion of 
luster size for the two series of 
lusters. Large deformationsare 
hara
terized by large deviations of either ratio from 1. Small deformationsindi
ate spheri
al or otherwise symmetri
 stru
tures su
h as the Au20 tetrahe-dron. These deformations are similar to the well-known distortions of jellium
lusters,74 and 
an also emerge from tight-binding models.119 The deformationdue to shell stru
ture is however a fundamentally non-lo
al phenomenon whi
h
annot be a

ounted for using simple atomi
 potentials. Re
all from Figure 10.3how the EMT potential generates stru
tures of about the same energy as DFTnear magi
 numbers, while the intermediate EMT-stru
tures, parti
ularly be-tween 34 and 58 atoms, are systemati
ally higher in energy than those obtainedfrom DFT. The e�e
ts of ele
troni
 shell stru
ture are essential to the determi-nation of 
orre
t geometries of 
lusters well above hundred atoms in size, withdeformations as large as 10�15% even at N = 150 whi
h is the largest 
luster
onsidered.



Chapter 11Con
lusionA lo
alized basis set implementation in GPAW has been presented whi
h pro-vides a very e�
ient alternative to the real-spa
e 
ode, as demonstrated by mostof the results presented later in this work. More systemati
 testing of furtherof basis sets beyond dzp is desirable in the future. O(N) or other low-s
alingmethods would also be a logi
al next step to improve performan
e on systemsbeyond 200�300 atoms.Using the real-spa
e representation of GPAW, we have performed large-s
aleDFT 
al
ulations on Au and Pt 
lusters with up to 1415 atoms using 65536 
oreson the BlueGene/P super
omputer at Argonne National Laboratory. From these
al
ulations it appears that the size-dependent 
hemi
al properties of 
lusters,as measured by adsorption of O and CO, roughly 
onverge with size at 600atoms for Au and 200 atoms for Pt, although small variations within 0.1 eV ofthe bulk limit exist. The tenden
y of small 
lusters to bind more strongly 
an tosome extent be understood as a geometri
 e�e
t attributable to small fa
et sizes,although variations of adsorption energy on Au do not 
orrelate with geometrybe
ause of profound ele
troni
 e�e
ts.Using the basis set 
ode, we have studied the trends in adsorption energy ofatomi
 adsorbates on full ranges of Au 
ubo
tahedron-based 
lusters, usuallyup to 200 atoms. It is revealed that ele
troni
 size e�e
ts relating to the jellium-like ele
troni
 stru
ture entirely dominate the 
hemi
al properties of noble-metal
lusters in this size range, with os
illations in adsorption energy on the order of1 eV depending on adsorbate. While the DOS of the d-states varies little beyond50 atoms, the s-states split into ele
troni
 subshells that �ll one by one as 
lustersize in
reases. From 
al
ulations with several di�erent atomi
 adsorbates, Au
lusters 
an be 
ategorized as alkali-like, noble or halogen-like depending ontheir number of atoms relative to magi
 numbers. At a magi
 number, theFermi level jumps a
ross the ele
troni
 gap into the next ele
troni
 shell, fromwhi
h it is more easily donated to an adsorbate.Transition metal 
lusters of Ru, Rh, Pd and Pt exhibit similar shell stru
tureof the s-ele
trons, but the Fermi level is lodged within the d-band preventingany signi�
ant variation. Adsorption energies on su
h 
lusters therefore showno tra
e of shell stru
ture. The main variation in binding energy on these
lusters stops around 50�60 atoms when fa
ets are su�
iently large that thelo
al geometry around the adsorbate does not 
hange 
onsiderably with 
lustersize anymore. 81



82 Chapter 11. Con
lusionUsing a Newns�Anderson model, we have found that the abrupt variationsof adsorption energy at magi
 numbers 
an be understood from the lo
ationof adsorbate-indu
ed states within the 
luster relative to the Fermi level. Foradsorbates that indu
e states only below the Fermi level, ele
trons will be trans-ferred from the Fermi level down into the indu
ed states, su
h that variationsof the Fermi level dire
tly 
orrespond to variations of the adsorption energy.Adsorbates that only indu
e states above the Fermi level have the oppositebehaviour. H displays a more 
omplex behaviour, where a bonding state wellbelow the Fermi level is 
an
elled by the elimination of one state from the 
lus-ter, whi
h implies that H e�e
tively adds an ele
tron to the 
luster.We have performed simulated annealings of Au 
lusters with DFT using very
oarse parameters. The shell stru
ture is similar to the previously 
onsideredstru
tures near the magi
 numbers, but di�ers markedly away from magi
 num-bers. Ele
troni
 gaps at the Fermi level are 
reated for all 
lusters up to 150atoms, whi
h is the maximum size studied. The opening of gaps is fa
ilitatedby large geometri
 deformations of the 
lusters, with magi
-number 
lusters be-ing spheri
al and other 
lusters being mostly oblate. The 
omplex relationshipbetween ele
troni
 and geometri
 e�e
ts persists with deformations of 10�15%well beyond 100 atoms.
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