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Abstract

Nano-scale structures are increasingly applied in the design of catalysts and
electronic devices. A theoretical understanding of the basic properties of such
systems is enabled through modern electronic structure methods such as density
functional theory. This thesis describes the development of efficient approaches
to density functional theory and the application of these methods to metal
nanoparticles.

We describe the formalism and implementation of localized atom-centered
basis sets within the projector augmented wave method. Basis sets allow for a
dramatic increase in performance compared to plane-wave or real-space meth-
ods, but sacrifice accuracy in doing so. This approach is implemented in the
GPAW code where it complements the existing real-space approach. For both
the real-space and basis set methods we implement parallel code to adapt GPAW
for large-scale calculations on the BlueGene/P architecture.

Real-space calculations are performed to investigate the convergence of chem-
ical properties of Au and Pt clusters toward the bulk limit. Specifically we study
chemisorption of O and CO on cuboctahedral clusters up to 1415 atoms using up
to 65536 CPU cores. Small clusters almost universally bind more strongly than
large ones. This can be understood mostly as a geometric effect. Convergence of
chemisorption energies within 0.1 eV of bulk values happens at about 200 atoms
for Pt and 600 atoms for Au. Particularly for O on Au, large variations due to
electronic effects are seen for smaller clusters.

The basis set method is used to study the electronic effects for the contiguous
range of clusters up to several hundred atoms. The s-electrons hybridize to form
electronic shells consistent with the jellium model, leading to electronic “magic
numbers” for clusters with full shells. Large electronic gaps and jumps in Fermi
level near magic numbers can lead to alkali-like or halogen-like behaviour when
main-group atoms adsorb onto gold clusters.

A non-self-consistent Newns—Anderson model is used to more closely study
the chemisorption of main-group atoms on magic-number Au clusters. The
behaviour at magic numbers can be understood from the location of adsorbate-
induced states relative to the Fermi level.

The relationship between geometric and electronic effects in Au is studied
by rough first-principles simulated annealings with up to 150 atoms. Non-magic
clusters are found to deform considerably, reducing the total energy through the
creation of gaps. Clusters larger than 100 atoms can elongate systematically by
up to 15%. This demonstrates a complex interdependence between electronic
and geometric structure in a size regime which in most cases has been studied
semiempirically.

iii



iv




Resumé

Strukturer i nanoskala finder i stigende grad anvendelse inden for design af
katalysatorer og elektroniske enheder. En grundlaeggende teoretisk forstaelse af
sadanne systemer muligggres af moderne elektronstrukturmetoder sasom taetheds-
funktionalteori. Denne athandling omhandler udviklingen af effektive metoder
inden for teethedsfunktionalteori samt anvendelsen af disse metoder pa metal-
nanopartikler.

Vi beskriver formalismen og implementationen af lokaliserede atomare ba-
sisseet i PAW-metoden. Basissaet muligger betydeligt hurtigere udregninger
end planbglge- eller realrumsgittermetoder, dog pa bekostning af beregningsng-
jagtighed. Metoden implementeres i programmet GPAW, hvor den supplerer
den eksisterende gittermetode. For bade realrums- og basisseetmetoden imple-
menteres parallelle metoder med henblik pa afvikling af store beregninger pa
BlueGene/P-arkitekturen.

Ved hjelp af gitterbaserede beregninger undersgges konvergensen af kemiske
egenskaber for store Au- og Pt-klynger. Specifikt udregnes kemisorptionsen-
ergier for O og CO pa kuboktahedrale klynger med op til 1415 atomer ved
brug af 65536 CPU-kerner. Sma klynger binder naesten universelt staerkere end
store, hvilket kan forstas som en primaert geometrisk effekt. Kemisorptionsen-
ergien konvergerer inden for 0,1eV af krystalgraensen ved henholdsvis 200 og
600 atomer for Pt og Au. Der ses sarligt for O pa Au store variationer for de
mindre klynger, som kan henfgres til elektroniske effekter.

Basissaetmetoden bruges til at underspge disse elektroniske effekter for en
sammenhangende felge af klynger op til flere hundrede atomer. s-elektronerne
hybridiserer i elektronskaller i overensstemmelse med jelliummodellen, og disse
forer til elektroniske “magiske tal” for klynger med fyldte skaller. Store elek-
troniske gab og hop i Fermienergi ved magiske tal kan medfgre alkali- eller
halogenagtig opfersel, nar hovedgruppeatomer binder til guldklynger.

Der formuleres en ikke-selvkonsistent Newns—Anderson-model, som bruges
til naermere at undersgge kemisorptionen af hovedgruppeatomer pa magiske
guldklynger. Opfgrslen kan forstas ud fra placeringen af adsorbatinducerede
tilstande i forhold til Ferminiveauet.

Forholdet mellem geometriske og elektroniske effekter i guldklynger under-
spges ved hjzlp af simulerede afkglinger baseret pa taethedsfunktionalteori med
grove parametre op til 150 atomer. Energien af ikke-magiske klynger mindskes
gennem en betydelig deformation hvorved der abnes et elektronisk gab. Klyn-
ger pa mere end 100 atomer kan saledes systematisk deformere med op til
15%. Dermed vises en kompleks gensidig afhaengighed af elektronisk og ge-
ometrisk struktur i et stgrrelsesregime som ellers primeert har veret behandlet
med semiempiriske metoder.
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Chapter 1

Introduction

This thesis concerns the chemical properties of metal nanoparticles and the de-
velopment of theoretical methods to describe them. In this work, a nanoparticle
or cluster refers to an assembly of a few to a few thousand atoms of a chemical
element which would normally form a bulk crystalline phase. A typical size of
such a particle may be a few nanometres, small enough that quantum mechan-
ical effects cause the particle to behave differently from the bulk material.

With modern computers and numerical methods it is possible to predict
the behaviour of quantum mechanical systems using ab initio methods such as
density functional theory (DFT).'2 The term ab initio or first principles sig-
nifies that a method is based on solving fundamental physical equations such
as the Schriédinger equation. For systems with more than a few particles, the
Schrédinger equation itself is too computationally demanding to solve directly,
and computational methods must rely on a range of reformulations and ap-
proximations to make computations tractable. We describe one such approach,
where an atomic orbital basis set is combined with the projector augmented
wave method.®* This approach is implemented in GPAW, an electronic struc-
ture code based on a more accurate but also more computationally expensive
real-space representation of wavefunctions.”” The localized basis set is sim-
ilar to the SIESTA code, with the difference that SIESTA is based on simpler
norm-conserving pseudopotentials.®>? The combination in GPAW of the high-
performance localized basis set with the more accurate real-space method pro-
vides a number of advantages. In particular, the basis set is useful for calculating
structures efficiently, while the real-space code can be used to evaluate binding
energies which are less accurate with the basis set. The basis set is also useful for
applications that mathematically emphasize a finite or localized basis set. For
example the basis set is now used for Green’s function based electron transport
calculations.'® Another development for the GPAW code is the parallelization
of the real-space code for massively parallel calculations. The main advantage
of real-space methods is the ability to parallelize over many quantities at the
same time, which allows the calculations to scale efficiently up to thousands of
processors.

The second part of this thesis applies these methods with the main objective
of understanding the chemical behaviour of nanoparticles, focusing on gold.
Gold is normally thought of as inert, but this really applies to bulk gold. The
chemistry of gold is in fact extremely diverse.!'™'3 Due to the large nuclear

3



4 CHAPTER 1. INTRODUCTION

charges, core electrons of the late transition metals exhibit relativistic behaviour,
which alters the electrostatic screening felt by the remaining electrons. The
relativistic effects lead to a contraction of the s electrons compared to d electrons,
which in the end is responsible for most of the unusual properties of gold.'4 16
These relativistic effects, along with the full d-shell which places less energetic
emphasis on atomic packing, cause gold clusters to form structures that differ
not only from those of other late transition metal clusters, but also those of the
other noble metals.!” Small gold clusters of different size have been predicted to
form a large variety of structures including flakes and cages.'®'® A significant
electronic effect of gold clusters is the organization of the s-electrons into global
electronic shells that extend over the entire cluster. Such shell structure is
found in many free-electron-like materials, particularly the alkali metals, and
gives rise to electronic magic numbers where clusters have increased stability
and large electronic gaps.2°~2® Many properties of clusters depend sensitively on
the electronic shell structure including their chemistry.2* However, limitations
in available computational power has prevented thorough modelling of larger
clusters.

The efficiency of the localized basis set allows us to study, at modest compu-
tational cost, such effects for contiguous ranges of typically 20-200 atoms. We
find that large size-dependent variations in binding energy are associated with
the shell structure of gold clusters. These calculations are performed for many
different adsorbates, and comparisons are made between clusters of several dif-
ferent metals. A recurring theme in these calculations is the study of overall
trends from large numbers of systems, although this happens at the sacrifice of
accuracy of the individual calculations. This is probably the first computational
study from first principles of such large ensembles of systems.

The thesis is structured as follows.

e Chapter 2 gives a brief introduction of computational methods in quantum
theory, including density functional theory which practically all results in
this work are based on.

e Chapter 3 describes the projector augmented wave method and the mathe-
matical formalism of the atomic basis set expansion. An initial implemen-
tation was written in cooperation with Marco Vanin and documented in
Refs. 25,26, although many further developments have taken place since.

e The generation of basis functions from atomic reference calculations is
described in Chapter 4 along with other issues of practical interest to
basis sets.

e Chapter 5 discusses the efficiency and parallelization of the basis set code,
and explains the implementation of some of the more important steps in
a calculation. Performance benchmarks are included. Adaptation of the
real-space code for massively parallel calculations is further described.

e Chapter 6 acts as an introduction to Part IT of this thesis, wherein the
properties of nanoparticles are investigated. Brief descriptions are given
of the geometric structures of clusters and relevant theoretical methods.

e Large-scale DFT calculations of adsorption of O and CO on Au and Pt
clusters with up to 1415 atoms are presented in Chapter 7, and the effect
of facet size is discussed.



The effect of electronic shell structure on the chemistry of clusters, focusing
on gold, is studied in detail in Chapter 8 by considering adsorption of a
range of adsorbates.

In Chapter 9 a non-selfconsistent Newns—Anderson model is used to an-
alyze the bonding of several adsorbates using Hamiltonian matrices ob-
tained from DFT calculations.

In Chapter 10, gold cluster structures are optimized using simulated an-
nealing with simple EMT and DFT.

Chapter 11 summarizes and concludes the work.
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Chapter 2

Theoretical methods

This chapter gives a brief review of quantum mechanics from the perspective of
computationally predicting the properties of an interacting system of electrons
and nuclei.

2.1 Quantum mechanics

The properties of matter at small scales are described by the Schrédinger equa-
tion. For a system with N particles, the (time-independent) Schrédinger equa-
tion is a differential equation for the many-body wavefunction V(rq,ra,...,rN)
with a total of 3V spatial parameters, and this function entirely characterizes
the system. The storage required to explicitly represent such an object in a
computer is therefore exponential in the number of particles, making numer-
ical calculations in this form impossible beyond a small number of particles.
This is commonly referred to as the “exponential wall”.?” Computational ap-
proaches to quantum mechanics are therefore generally based on methods that
recast the Schrodinger equation into more tractable forms by applying several
approximations.

Because of the large ratio between electronic and nuclear masses, electrons
and nuclei exhibit quantum mechanical behaviour on different length and time
scales. The Born—Oppenheimer approximation assumes that the wavefunction
of a combined electronic and nuclear system can be expressed as a product of
an electronic and a nuclear wavefunction. Going one step further, the nuclei
can for most purposes be assumed to behave like classical point particles. This
reduces a quantum mechanical calculation to a purely electronic problem, which
will be the subject of the next several sections.

2.2 The Hartree—Fock method

Electrons are by the symmetrization postulate fermions, meaning that elec-
tronic wavefunctions are antisymmetric with respect to the interchange of any
two position variables r; and r;. From any set of orthogonal single-particle
states, an appropriately antisymmetric many-body wavefunction can be formed
as a Slater determinant from the single-particle states. Any many-body wave-
function can be written as a linear combination of such determinants. In the
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Hartree—Fock method it is assumed that the many-body wavefunction can be
written as a single such determinant. This assumption leads to a set of equa-
tions, the Hartree—Fock equations, for each single-particle state minimizing the
total energy. These equations can be solved numerically by iteratively adjusting
wavefunctions and potential until obtaining self-consistent single-particle states
and potential.

In the Hartree-Fock method, the electronic interaction energy can be un-
derstood as being comprised of two terms: the direct or Hartree term, and the
exchange term. The Hartree term is the Coulomb energy of the full charge
density, so it incorporates the Coulomb repulsion of every electron with every
electron. Clearly, each electron interacts with every other electron, but not with
the specific part of the charge distribution that it itself contributed. One term
in the exchange contribution can be understood as a correction which compen-
sates for this self-interaction part in the Hartree energy. The exchange term as
a whole is a manifestation of Pauli exclusion.

While the Hartree—Fock approach is suited for numerical calculations, it is
still an approximate many-body method. As mentioned, a general many-body
wavefunction must be described as a linear combination of multiple Slater deter-
minants. Any discrepancy between exact Hartree—Fock theory as compared to a
full linear combination of Slater determinants, which yields the exact many-body
wavefunction, is somewhat vaguely called correlation. Methods that improve on
Hartree-Fock theory through various ways to include correlation are called post-
Hartree—Fock methods. Within these methods, accuracy generally comes at the
price that the computational cost scales with high powers of the number of
electrons, and so these accurate methods are limited to small systems.

2.3 Density functional theory

Density functional theory (DFT) is an approach to solving the many-body prob-
lem using the electron density instead of the many-body wavefunctions. DFT
evolved from the Thomas—Fermi theory, a more intuitive approach; Hohenberg
and Kohn later developed the concept as a formally correct many-body method.!

The foundation of DFT is the insight that the ground-state electron density
n(r) of an electronic system is sufficient to entirely characterize that system.
Thus any property which can be derived from the many-body wavefunction can
in fact be derived knowing only the ground-state density. The total energy of a
system of interacting electrons in a potential can be expressed as a functional of
the electron density, and the ground-state density variationally minimizes this
functional. All one has to do is, in principle, to perform such a minimization.
This turns out to be tricky, since it is not known how to evaluate quantities
such as the energy directly from an electron density without first using it to
calculate the wavefunctions.

Kohn and Sham suggested an approach to solve this problem by introduc-
ing a fictional system of non-interacting particles represented by single-particle
wavefunctions in a shared effective potential.®> In this picture the potential must
account for all interactions. Subject to a few representability issues, such as
whether the true ground-state electron density can be expressed from single-
particle wavefunctions, a universal form of the effective potential can be shown
to exist which makes the method formally exact. Explicit expressions for phys-
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ical quantities can then be written down in terms of the Kohn—Sham wavefunc-
tions and the electron density, such as the energy:

Bxs =3 fo nllo) + [[ X arar 4 Bl @21

Here the energy is split into three terms. The first term is the single-particle
kinetic energy of the Kohn—Sham states |v,,) weighted by their occupation num-
bers f,. The second term is the Coulomb energy of the total charge distribution
p(r) in the system, including the electron density and the nuclear point charges.
The third term Ex.[n] is a density functional which must describe the effect of
the particle interactions otherwise neglected in the single-particle picture, and
should therefore account for exchange, as considered in Hartree—Fock theory,
and correlation. It is called the exchange—correlation (XC) functional. No one
knows the true XC functional, and so it is generally approximated. This is a
fundamental point of DFT as it is the only “uncontrolled” approximation.

From the energy expression one can, similarly to the Hartree-Fock method,
derive a variational equation for the Kohn—Sham states. These Kohn—-Sham
equations can then be solved on a computer using an iterative procedure. Roughly
speaking this involves choosing an initial electron density and repeating three
steps:

e (Calculate potential from density
e Calculate wavefunctions from potential by solving Kohn—Sham equations
e (Calculate density by occupying the states with lowest energy

The procedure stops when density, potential and wavefunctions are self-consistent,
in the sense that things no longer change on every iteration. At that point one
has obtained the true ground-state density and energy of the system, at least if
using the exact XC functional.

2.4 Exchange—correlation functionals

As previously mentioned, there exists a general XC density functional which
makes the Kohn—Sham approach exact. No one knows what the exact functional
looks like, so it is instead approximated.

A natural starting point for such an approximation is the homogeneous elec-
tron gas, which is entirely characterized by the constant density. In this simple
case the exchange and correlation functional can be obtained. This case leads
to the local density approximation (LDA): The assumption that each point in
space contributes an XC energy which depends only on the density n(r) in that
point, and that this energy is the same as that of an electron gas with the same
density.

A better approximation can be obtained by extending the LDA so that
each point contributes an amount to the energy depending both on the value
and the gradient of the density in that point. These approximations are called
generalized gradient approximations (GGAs). The most widely used one is
probably the Perdew—Burke-Ernzerhof (PBE) functional.?®
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A modification of the PBE functional, RPBE, is specifically designed to
provide a better description of metal surfaces and adsorption (at the expense of a
slightly worse description of bulk metals).?? Throughout this work, calculations
generally employ the RPBE functional.

2.5 Pseudopotentials

For all except the smallest atoms, electrons can be divided into tightly bound
core states and loosely bound wvalence states. The strong Coulomb attraction
from the nucleus localizes the core states so that they do not interact much with
states on other atoms. Core states are therefore not essential to a numerical
description of chemistry. However the valence states must be orthogonal to
the core states, and therefore oscillate rapidly within the core region. Such
oscillations are shown on Figure 2.1 for the 4s atomic orbital of iron (black
line). The accurate representation of core states and oscillatory valence states
in terms of real-space grids or plane-waves is expensive, and unnecessary in the
sense that the chemical properties of an atom depend mostly on the behaviour of
electrons far from the nucleus. Pseudopotential methods deal with this problem
by replacing the steep potential of the nuclei as well as the core electrons with
a smooth effective potential felt by the valence electrons. The exclusion of core
states from the calculation procedure is called the frozen core approximation.
Within the smooth potential, the oscillatory behaviour of valence states can
be eliminated, resulting in smooth, nodeless pseudowavefunctions which are
cheap to represent numerically. This is shown for the HGH pseudopotentials®®
on Figure 2.1 (green). The pseudowavefunctions are identical to the real (“all-
electron” or AE) wavefunctions far from the nucleus, but are replaced by smooth
functions close to it.

Clearly the pseudopotential approach makes sense only if it can be guaran-
teed that the pseudopotentials accurately reflect the behaviour of real atoms. A
common way to do this is to add Kleinman—Bylander projectors to the Hamil-
tonian.?! These are fixed functions which, by their scalar products with the
pseudowavefunctions, adjust the energy of different states depending on their
angular momentum and radial structure. These can be chosen to ensure that
the atomic states have the correct energies and response to perturbations. The
latter ensures better transferability of the pseudopotential between different sys-
tems.?? While the pseudopotential approximation is conceptually simple, the
generation of good pseudopotentials can be quite complicated due to the large
number of parameters involved.33

There are two main kinds of pseudopotentials: norm-conserving and more
recently “ultrasoft”. With norm-conserving pseudopotentials it is expensive to
represent highly localized states, such as the d-states of transition metals. From
the figure, the 3d pseudowavefunction is significantly less smooth than the 4s
one because the 3d state must be normalized to contain one electron. Ultrasoft
pseudopotentials avoid the norm-conservation restriction through more compli-
cated mathematics.>® This allows smooth wavefunctions to be used also for
localized states. The projector augmented wave method (red curves on Figure
2.1) is similar to ultrasoft pseudopotentials, but uses a transformation to also
retain the all-electron information, thus eliminating pseudopotential transfer-
ability errors.
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Figure 2.1: Pseudopotential approaches for the 4s and 8d valence states of iron.
Atomic orbitals (black) are replaced by smooth, norm-conserving pseudowave-
functions (green). Localized states such as the 3d state can be made more smooth
by ultrasoft pseudopotentials or the projector augmented wave method (red).

2.6 Basis sets

To perform a DFT calculation one must choose a representation of the Kohn—
Sham states, and this choice has significant implications on performance.

One way is to expand the wavefunctions as linear combinations of plane-
waves, then variationally optimize the coefficients. Plane-waves are economical
in the sense that relatively few plane-waves can represent a typical wavefunc-
tion well. Plane-waves are also complete, and a single parameter, namely the
energy cutoff, can be used to control the quality of the basis set without any
upper limit on precision. The number of plane-waves is generally large enough
that iterative methods must be employed to solve the Kohn—Sham equations.??
A disadvantage of plane-waves methods is that each plane-wave overlaps with
atoms no matter their distance. Fast Fourier transforms, an integral element
of plane-wave methods, are known to parallelize poorly, limiting the number of
processors that can efficiently contribute to the same calculation.

More scalable methods must rely on localization to some extent. GPAW
normally uses real-space grids to represent the wave-functions. These require
significantly more memory than a plane-wave basis of equivalent quality, but are
well suited for parallelization.®® This allows efficient division of the system into
spatial domains, with limited communication between adjacent domains. The
real-space representation is similar to plane-waves since its quality can increased
to any desired precision by reducing the grid spacing.

A different approach is to use atomic basis sets, where a limited set of fixed
basis functions is assigned to each atom. FEach function is chosen carefully
so only few basis functions are required to represent the wavefunctions. This
greatly speeds up the solution of the Kohn—Sham equations, and several oper-
ations which scale quadratically in plane-wave or real-space methods will scale
linearly due to the localization of the basis functions. The main disadvantage
of basis set approaches is that no single parameter can practically control the
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accuracy, and the precision can only approach that of plane-wave or real-space
methods. Atomic basis sets can be based on numerical atomic orbitals (NAO),
where the actual orbitals are sampled on a grid and used as basis functions. They
can also be based on simple analytic functions such as Gaussians or exponen-
tials; commonly referred to as Gaussian-type orbitals (GTO) and Slater-type
orbitals (STO). The advantage of such methods is that matrix elements can
be calculated analytically, although more basis functions are needed than with
NAO-based approaches.

The specific subject in the following is the implementation of a basis set of
numerical atomic orbitals in GPAW, based on the projector augmented wave
method.



Chapter 3

The projector augmented
wave method

One of the main developments discussed in this thesis is the use of localized
atomic orbitals as a basis set to describe electronic wave functions within the
projector augmented wave method (PAW). In the light of the brief review in the
previous chapter, it should be clear how this combination fits among the existing
methods. A more complete and technical derivation of this specific method is
given in this chapter.

The PAW method by Blschl®# is an approach to solving the Kohn-Sham
equations which is based on a transformation T between smooth, computation-
ally convenient pseudowavefunctions |7,/~1n> and the rapidly oscillating all-electron
wavefunctions [y, ):

Numerical calculations are performed using the pseudowavefunctions |1/~1n>, while
the transformation 7 ensures that the all-electron information is retained. This
makes PAW calculations in many ways similar to ultrasoft pseudopotentials,>®
while PAW is in fact an all-electron method.

3.1 Transformation operator

The transformation operator 7 is defined as the identity operator plus a local
contribution around each atom a. It is defined to map a set of chosen smooth
functions |¢¢) for each atomic valence state i to the all-electron eigenstates |¢¢):

T=1 +Z(|¢>§’> —16)) (3¢ (3-2)

The functions |¢%) and |¢¢) are called all-electron partial waves and pseudo
partial waves, respectively. They are chosen to be equal outside a certain radius
of a, so that the PAW transformation as a whole has no effect in regions far
from atoms. The functions (p¢| are Kleinman-Bylander projectors. They are
localized, and the region in which they are nonzero is called the augmentation

13
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region. Together with the pseudo partial waves they should form a complete
orthonormal basis within this region:

> (rlgf) (Br) = d(r —x')  where (B}[7) = 6i;. (3.3)

%

As an all-electron method, the PAW method is exact if projectors and partial
waves form a complete basis around each atom, and the augmentation regions
of distinct atoms do not overlap.*

3.2 Atomic corrections and expectation values

The expectation value of a local operator O can be written in terms of the pseu-
dowavefunctions by inserting the PAW transformation (3.2) and industriously
applying the completeness relation (3.3). Eventually

=" fu (BalOli) + Y ((6£10165) = (6210165) ) D+ Ocore (3.4)

atj
where

D§; =3 (B3 |6n) o (Pl (3.5)

n

are called atomic density matrices. The first term in (3.4) involves only the
pseudowavefunctions and can be calculated efficiently with real-space grids or
plane-waves. The second term involves the fixed atomic quantities (¢f|O|¢)

and (éf|0|<531) These calculations involve the rapidly oscillating all-electron
wavefunctions, but they can be performed in a spherical coordinate system and
stored once and for all for each type of atom. The only quantities in the second
and third terms which depend on the system are D;. The scalar products

(p%|1hy) are cheap to evaluate since the projectors are localized, and since both
functions are smooth. The last term in (3.4) is an extra, fixed contribution Oceye
due to the frozen core states.

The important implication of expression (3.4) is that the calculations are
divided into an extended pseudo-part suitable for grid or plane-wave represen-
tations, which will account for most computational cost associated with the
method, coupled to a set of constant, pre-evaluated atomic corrections only
through the atomic density matrices Dj;. Most importantly the electron den-
sity is decomposed as

n(r) =n(r) + Zna(r —R%) — Zﬁ“(r - RY), (3.6)

a

*Usually a couple of projectors are used for each atomic valence state. The necessary
additional all-electron partial waves can be generated by radially integrating the atomic Kohn—
Sham equations using an energy which is not an eigenvalue.
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where

A(r) =D fo (alr) (el) + Dl (r — R, (3.7)

n®(r) =Y (¢}[r) (r¢}) DY + ni(r), (3.8)

ij
it(r) =Y () (x|éf) D +7ig (x). (3.9)
j
Here an arbitrary pseudo-core density n%(r) has been included in (3.7) which is
cancelled by the atomic correction (3.9).

3.3 Compensation charges

A recurring feature in the PAW method is the addition of something to a quan-
tity, which is cancelled out by subtracting the atomic expansion of the same
quantity. The reason for doing so is to make the wavefunctions, density and
potential as smooth and well-behaved as possible. In this way, compensation
charges Z(r) are added around each atom to the charge distribution to eliminate
the direct electrostatic interaction between atoms in favour of having a single
smooth charge distribution which can be treated on a grid. Considering again
the Kohn—Sham energy expression, the charge density is the sum

p(r) =n(r) + Z(r) (3.10)

of the all-electron density n(r) and the atomic point charges Z(r). The com-
pensation charges are used to regroup the charge into two neutral distributions

p(r) = p(r)+ Y p"(r—=R*) = > §*(r—RY), (3.11)

neutral

such that the electrostatic singularities near the nuclei disappear in p(r). The
atomic charges are

p*(r) =n"(r) + Z%(r), (3.12)
p(r) = a%(r) + Z%(r). (3.13)

Going one step further, the compensation charges are defined as a linear com-
bination

Z(r) =) _Q1gi(r) (3.14)

of smooth localized functions §¢(r) with real spherical harmonics Y7 (0, ¢) as
angular parts. L is a composite index for the usual angular indices (I,m).
The coefficients ¢ are uniquely defined by requiring that the compensation
charges must cancel out the multipole moments of the charges represented on
radial grids. Thereby all electrostatic interactions between atoms are contained
in p(r) up to any chosen order. This makes the expansion coefficients Q¢ a
function of the atomic density matrices Df;. A complete derivation is given by
Rostgaard.?”
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3.4 Total energy

With these modifications, the total Kohn-Sham energy (2.1) can be written as
three rather elaborate terms

E=E+) E*-) E° (3.15)
with a a
B =X g Gl + 5 [ G020 arar
+Z/ 7% (r — R%) dr + By, (3.16)

B =3 (01T165) DS, // |r—r'|| ) v ar

%]

+ Eyc[n®] + ES5C, (3.17)
B Z<¢G|T|¢a Dj; // HI._I./H drdr
ij
+ Eyc[n®] + /ﬁ“ (r)o®(r) dr. (3.18)

Here Ef9'° is the fixed kinetic energy of the frozen core states, and v%(r) is
an arbitrary localized potential which is “added and subtracted” similarly to
compensation charges to make the total potential as smooth as possible. Note
how the XC energy can be divided in this way only if it is assumed to be local,
so that Eq. (3.4) applies. Non-local XC functionals can be incorporated but are
considerably more complicated.?®

A set of Kohn—Sham equations can be derived by requiring that the pseu-
dowavefunctions should be simultaneously orthogonal and minimize the total
energy, which will be done in the context of localized basis sets in the following.

3.5 Basis set formalism

The pseudowavefunctions |¢,,) are expanded as linear combinations

of atom-centered, localized basis functions |®,) with coefficients c,,,. The coef-
ficients shall be variational parameters, while the basis functions are fixed. To
have a working ground-state calculation procedure, we must implement each
of the Kohn—Sham steps, i.e. we must be able to calculate density from the
wavefunctions, calculate the potential from the density (this step is unrelated
to the basis), and be able to solve the Kohn—Sham equations. Most quantities
are conveniently expressed in terms of the density matrix

Puv = Z C;mfnczin (3.20)



3.5. BASIS SET FORMALISM 17

The total energy, which we want to minimize, depends on the wavefunctions
through the pseudodensity 7(r), the atomic density matrices Dy, and explicitly
through the smooth part T of the kinetic energy in (3.16). These quantites are

straightforwardly rewritten in terms of the density matrix:

= @4 (1),(r)py + ¥ Al(r — RY), (3.21)

DY =" Phpuw P, (3.22)
T =3 foltalTldn) =Y Tuwpups (3.23)
m P
where we have defined
T = (®,|T1,), (3.24)
Py, = (7). (3.25)

These are two-center integrals that can be evaluated before the start of a cal-
culation once the atomic positions are known.

The Kohn-Sham equations can be obtained by requiring that the total en-
ergy (3.15) must be stationary with respect to the coefficients, and that the
all-electron Kohn—Sham states must be orthogonal. The orthogonality condi-
tion is

Sm = (Yn[tom) = Wal TTTm) = D Sy Cum, (3.26)
pv

where S,,,, is the overlap matriz

Suw = (Qu|TIT|®,) = O + Y PirASEPL,. (3.27)

ijt gve
aij

Here ©,, = (®,|®,) are two-center integrals, and the numbers ASf; are atomic
constants depending on the partial waves. The orthogonality criterion is in-
corporated using the method of Lagrange multipliers. Differentiating the total
energy plus Lagrange term by c},,, leads to a generalized eigenvalue equation
which can be solved for the coefficients c¢,,, and eigenvalues e,,:

Z H,con = Z Sy Con€n. (3.28)

Here we have defined the Hamiltonian matrix as the total derivative

oD,
g _dE _ 9E SE On(r Z&E

L = = 3.29
. de,u apvu ( ) apvu 8D 8puu ( )

which eventually leads to

=T+ Viw + 3 _ PiTAHSPL,. (3.30)

12
atj
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The first term is the constant kinetic matrix (3.24). The second term is the
matrix

Viw = /@Z(r)fz(r)@,,(r) dr (3.31)
of the total effective potential
B(r) = < = by () o) + 3 5 (r — RY) (332
vrf(m(r)vaar D (T av r . .

The Hartree, XC and zero potential above emerge straightforwardly as deriva-
tives of the corresponding energy terms in Eq. (3.16), with the Hartree potential
obeying the Poisson equation

V20ha(r) = —47p(r). (3.33)
The last term in (3.30) involves the atomic Hamiltonian matrices defined as

o OFE

AHj; = 8D3?1-' (3.34)
This derivative is horribly complicated®” due amongst other things to atomic
XC corrections. However it is basis set independent, and it suffices to note that
AH;’j depend only on Df; plus a large number of purely atomic constants. It
is a special feature of PAW calculations compared to ultrasoft pseudopotential
Hamiltonians that the atomic corrections can vary dynamically through changes
in D;lz

3.6 Overview

By now we can account for the entire self-consistency cycle. All two-center
integrals such as 7T}, and P}, can be evaluated at the beginning, and a starting
density (both 72(r) and Dg;) can be defined from the contributions of the isolated
atoms. Then:

e The XC potential Ux(r) is calculated from the density n(r) depending on
the relevant XC approximation.

e The total pseudocharge density 5(r) from (3.11) is calculated by adding the
compensation charges Z%(r) using (3.14) chosen to cancel atomic multipole
moments.

e The Hartree potential oy, (r) is calculated by solving the Poisson equation

e The potential matrix V},, (3.31) is calculated by integrating the effective
potential o(r) (3.32) with the basis functions.

e The Hamiltonian matrix H,, (3.30) is calculated by adding kinetic, po-
tential and atomic terms.

e The generalized eigenvalue problem (3.28) is solved for the coefficients
cun and energies €,, and the lowest states are occupied using a Fermi
distribution.
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e The density matrix p,, (3.20) is calculated from the coefficients and oc-
cupations.

e The pseudodensity 7(r) (3.21) and atomic density matrices Df; (3.23) are
recalculated.

Pulay mixing is generally used to stabilize changes in density, preventing “charge
sloshing”.3?

3.7 Atomic forces

Aside from the self-consistency loop, structure optimizations and molecular dy-
namics simulations are formulated in terms of the force on an atom. The force
on atom a is defined as the negative gradient

oE

OR?
of the total energy with respect to the position R* of that atom. An expres-
sion for this gradient can be derived analytically from the energy expression.
The gradient must be taken self-consistently in the sense that it should reflect
the actual change in energy if two different energy evaluations were made with
slightly different atomic positions, and it must differentially obey the orthogo-
nality condition. Using the Hellman—Feynman force theorem and the chain rule
carefully, the full force expression is

F* = —

(3.35)

doy (r
=2Re Z dR — o, — 2Re Z [/ IRe ( )tl)l,(r)dr] Pup
HEav peasv
—2Re ) dRWEwwReZ By —2Re Y Zb,E,,
pnea;v b;pucasv
— 2ReZAWpW + 2Re Z A;wﬁ’vu
b;ucasv
_, dn%(r — R%) do*(r — R%)
‘/”“)Tdf‘/ ) —qge I
_Ro
_ /UH ZQL (r — ) dr (3.36)
with
Z# a pa
R AS”PJ,,, (3.37)
Z# a pa
R AH”PJV, (3.38)
E,, = Z Cpn fr€nCp- (3.39)

The formula contains several extra terms compared to grid-based or plane-
wave-based PAW force expressions®® because an atomic displacement alters
the atomic basis; such forces are called Pulay forces. A complete derivation of
the formula can be found in the appendix of Paper 1.7
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Chapter 4

Atomic basis sets

By now we know how the self-consistency cycle in PAW works with a localized
basis set. This chapter deals with the generation of basis sets and a few topics
of more general utility.

4.1 Generation of basis sets

This section describes how basis functions are generated. Quite generally we
use the form of a radial function times an angular function which is a spherical
harmonic:

O(r) = @(r)YL(7). (4.1)

The spherical harmonics are the angular eigenfunctions of the laplacian oper-
ator, and emerge as factors in the solutions for any purely radial system. A
perturbation of this potential changes both the radial and angular parts of a
solution. Extra radial and angular degrees of freedom are therefore required to
describe the perturbed atom well. Basis sets therefore consist of the following
types of functions:

e One atomic orbital for each valence state. This is the minimal sensible
basis set, called single-C.

e For each atomic orbital, extra functions can be added with the same angu-
lar part, but different radial parts. These are called “multiple-¢” functions;
these names comes from the tradition of enumerating them by their cutoff
radius, called (.

e Polarization functions, which are extra functions with angular parts that
are not present among the valence states.

The procedure by which these functions are chosen is explained below.

4.2 Atomic orbitals

In a radial coordinate system the Kohn—Sham equations are separable into a
radial and an angular equation, with the angular equation having spherical har-
monic solutions as mentioned. Due to the strong Coulomb attraction for the

21
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heavier elements, particularly Au, the core electrons move at relativistic speeds,
and must be described by the Dirac equation. In the scalar-relativistic ap-
proximation, the spin—orbit-coupling is neglected, which simplifies the solution
procedure.?® This results in the following radial equation:

Cu(r) 1 du(r) [du(r)_u(r)}

dr2 2M¢2 dr | dr r
+ [W; Y L om(u(r) - e)] w(r) =0 (4.2)
with
M=1- (o)~ o) (4.3)

where v(r) is the effective potential, and u(r) is related to the actual all-electron
wavefunction X(r) by

u(r) = rX(r). (4.4)

GPAW already contains a radial atomic Kohn—-Sham solver which is used to
generate PAW setups. Eq. (4.2) is solved using non-equidistant grid representa-
tion with very fine grid spacing near 0. An initial guess for the energy is used to
radially integrate the equation outward from 0 and inward from the outermost
point. The two solutions must join smoothly in the middle; the energy guess is
adjusted until they do. This way a solution is found for every atomic orbital
Xin (1), and a self-consistent density and potential are obtained.

The atomic orbitals in principle extend to infinity. Two things must be done
before they can be used as basis functions: The functions must be localized, and
they must look like pseudowavefunctions rather than all-electron wavefunctions.
The simplest way to localize the solution is to solve the atomic problem with the
outer boundary at the desired cutoff. This will however make the basis func-
tion non-differentiable at the boundary, which may cause the kinetic energy to
depend sensitively on the exact location of grid points compared to the bound-
ary. This is avoided by adding a smooth radial potential to the self-consistent
potential. We use the same functional form as in SIESTA:*!

0, 7 < Tinner
_ A Teut —Ti
veont(r) =4 A exp (— Tt ) | <7 v (45)
o0, Teut < T

The radial equation is then non-self-consistently reintegrated to obtain func-
tions that are localized. Since the different atomic orbitals have quite different
range, they should have different cutoffs r.,; as well. Requiring a fixed increase
Ae of the confined orbital energy compared to the free atom universally defines
reasonable cutoffs for all elements. In normal calculations we choose the con-
finement energy Ae = 0.1eV, which results in typical basis function cutoffs of
6-10 Bohr radii.

Next step is to convert the localized functions to pseudowavefunctions. The
procedure is illustrated on Figure 4.1. It is done by solving

X)=T12) =) +Z(|¢>i> —16:)) (il ®) (4.6)
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Figure 4.1: Generation of atomic orbital basis function for S 2s-state. The
all-electron partial wave is confined to a finite range (Ae = 0.3eV ), then trans-
formed to a nodeless pseudowavefunction.

for the basis function |®) given the confined all-electron solution |X), effec-
tively inverting the PAW transformation. Applying a projector (p;| and using
the completeness of the projector—partial wave basis within the augmentation
region,

BilX) = > (Biley) (B;®) . (4.7)

J

This equation can be solved for the partial-wave expansion coefficients (p;|®)
which completely determine |®) within the augmentation region. Note that
if the coefficients (p;|®) are plugged directly into (4.6), the behaviour will be
unstable near r = 0. This happens because the partial-wave basis is in reality
slightly incomplete and does not entirely filter out the all-electron oscillations
when inverted. It is more correct to use the partial-wave expansion of |®) within
the augmentation region and join it smoothly with |X) at the boundary:

d(r) = Z bi(r) (pi|®)  for small 7. (4.8)

The basis function generation procedure is illustrated on Figure 4.1.

4.3 Multiple-( functions

The basis is improved by adding extra functions for each valence state. Funda-
mentally the goal is to have a basis set which is as complete as possible and at
the same time cheap, with the basis functions being as localized as possible. It is
natural to choose the confined pseudoatomic orbital ®°(r) as the longest-ranged
basis function, since this function is physically justified. We then make up some
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more functions ®¢(r) with smaller cutoffs. Define the function

1 2 ¢
<o) — r(a+br?) r<riu
ADS(r) = { () Tgut <y (4.9)

The prefactor v ensures that A®S(r) has the correct radial behaviour of a
wavefunction near r = 0 with angular momentum [. The parameters a and b
are uniquely defined by requiring A®¢(r) to be continuous and differentiable at
7S, The then define the actual basis function as

o (r) = ®O(r) — ADS(r), (4.10)

which is smooth and localized within rﬁut. More functions can be added by
selecting multiple cutoffs rgut. We have found that a sensible first cutoff is

obtained by defining S, such that 16 % of the norm of ®°(r) lies outside.

4.4 Polarization functions

Consider the lowest angular momentum [ which does not correspond to any
occupied valence state. This is typically a d-state for main-group elements
or a p-state for transition metals. A perturbation of the valence state with
angular momentum [ — 1 will generally have a significant {-component (while
it might have an [ — 1 component, there would already be basis functions for
this angular momentum channel). For this reason we add a polarization function
with angular momentum [ which, as we say, polarizes the preceding [ — 1 valence
state.

The function is chosen to have the same cutoff as the orbital it polarizes. The
approach used in STESTA is to construct it as an actual perturbation.? Previous
tests have not revealed any overwhelmingly importance of the exact form, and so
we (still) use the rather primitive approach of defining a Gaussian-like function

<I>f°1(7°) = Arl exp(—ar?). (4.11)

The decay constant « is chosen in terms of the norm of the tail of the polarized
function. As the analytic form is not essential for our purposes, the function is
modified slightly so it smoothly approaches zero at a finite range given in terms
of the a.

Increasing the basis set will variationally decrease the energy of a system,
with the lower limit being reachable by a grid-based GPAW calculation. To-
tal energies tend to be much higher, while energy differences such as binding
energies converge more quickly with the completeness of the basis set. Tests
can be found in Paper 1.7 In general, a good compromise between efficiency and
accuracy is obtained by a double-( polarized (dzp) basis set. This consists of
the atomic orbitals plus one extra radial function each, and a single polarization
function. As an example, the standard dzp basis set of gold is shown on Figure
4.2. Within a self-consistent calculation each radial function defined here con-
tributes 2/ + 1 different spherical harmonics. Most elements have 13 or 15 such
basis functions with a dzp basis set.
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1
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! \, = p Gaussian
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Figure 4.2: Radial parts of basis functions of gold. Colours indicate angular
momentum. Line styles indicate generation procedure. The total number of basis
functions per gold atom is 15 if we count the azimuthal quantum number m.

4.5 Basis set superposition error correction

The binding energy of some composite system with respect to its constituents
is calculated by subtracting the sum of the energies of the isolated constituents
from the energy of the composite system. In an atomic basis set, this introduces
a basis set superposition error (BSSE): In the regions where basis functions
overlap, atoms in the composite system effectively borrow unused degrees of
freedom from one another, which artificially stabilizes the composite system. In
other words, basis sets tend to produce too large binding energies.

The BSSE can be corrected by ensuring that the basis set of the composite
system matches that of the isolated constituent systems. Therefore the calcula-
tion of the constituent systems should include basis functions on the sites where
extra atoms would have been in the composite system. In GPAW this is imple-
mented by adding an atom at that site equipped with the appropriate basis set,
but without a pseudopotential. Such atoms are frequently called ghost atoms.

The BSSE is particularly large for isolated atoms. Since the basis functions
are localized by truncation such that each orbital is 0.1 eV higher than on the
free atom, this may, for a typical main-group atom, cause a combined increase
of the total energy on the order of 0.5 eV, which the BSSE can partially “regain”
in a composite system. The BSSE can therefore be several tenths of an eV for
isolated atoms with the standard cutoff, but can be improved by decreasing the
orbital confinement energy to e.g. Ae = 0.01¢€V.

4.6 Nonorthogonality and projected density of
states

We will later calculate the projected densities of states (PDOS) on various states.
Within the PAW method the projected density of states on an atomic orbital,
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given as an all-electron partial wave ¢¢, can be approximated by®’

pee) = [ {07 1vn) P0(e — €n)
A Y (B8 ) [20(e — €n). (4.12)

This is the standard definition used in GPAW. To the extent that the partial
wave—projector basis is complete, and augmentation regions of distinct atoms do
not overlap, the projected density of states integrated over all energies should
yield 1. Thus it is in practice only approximate, as neither requirement is
exactly fulfilled in normal calculations. This limits the use of this definition for
electron-counting purposes, particularly when the objective is to filter out the
total number occupation on a given atom or something similar. The atomic
orbital basis set provides a natural definition of projected densities of states
which is guaranteed to integrate to the right number of electrons provided that
nonorthogonality is properly accounted for. Within the space spanned by the
atomic basis set, the identity operator is given by

1= 1@, (5w (@], (4.13)

as can be verified by applying the operator on an arbitrary linear combination
of atomic orbitals. Suppose we are interested the projected density of states
on an arbitrary subset M of orbitals, such as all the orbitals on atom a, or all
d-type orbitals on all Au atoms. A projection operator onto that space is given
by

Pu= > @) [Pyl (Do, (4.14)
neEM,veM

where [PA}l] uv 1s the inverse of the submatrix of S, corresponding to the sub-
space M (not to be confused with a submatrix of the inverse). Then we define
the projected density of states on M as

par(€) =D (Un| Prrln) 6(e — €n). (4.15)

In the case where the subspace M corresponds to a single state, the normaliza-
tion is simply a division by the squared norm (®,|®,) of the basis function.



Chapter 5

Development and
parallelization

This chapter describes aspects of the implementation and parallelization of lo-
calized basis set calculations and to a lesser extent real-space calculations.

GPAW is implemented in a combination of Python and C. Python is a high-
level language which allows complicated tasks to be programmed quickly and
with high clarity. C, as alow-level language, is well suited for number crunching.
Most code is therefore written in Python using the Numpy array library, while
only expensive operations are delegated to C functions or external libraries such
as BLAS.

Input files for DFT calculations are written as Python scripts using the
Atomic Simulation Environment (ASE).*? This provides enough flexibility that
any calculated quantity, such as Hamiltonians or overlap matrices which we will
use later, can be extracted directly from an input file without special-purpose
compilation or intermediate file storage. MPI is used for parallelization. This
is a distributed-memory framework where each CPU core runs a separate copy
of the programme.

5.1 Overview of parallelization

GPAW supports parallelization over several quantities. For real-space grid cal-
culations, the computational cost will normally be dominated by real-space op-
erations on the wavefunctions ¢¥2%(r). Roughly in order from the most efficient
to the least efficient, parallelization can be performed over k-points, spins o,
real-space r and Kohn—Sham states n. Spin parallelization for many purposes
resembles k-point parallelization, and we will only distinguish between these
when necessary. These parallelization modes can be used in any combination
simultaneously: to each CPU is assigned a particular set of k-points/spins, a
real-space domain and a set of states. The latter two parallelization modes are
normally called domain decomposition and band parallelization. For medium-
sized real-space calculations one usually maximizes k-point parallelization and
then uses domain decomposition with the remaining CPUs. However the com-
putational cost within a single domain increases with the number of electrons.
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| Operation Parallelization Complexity Eq. |

Poisson, multigrid r O(N) (3.33)
Density n(r) r,o O(N) (3.21)
XC potential Uy (r) r,o O(N) —
Atomic XC / AH r,o O(N) —
Potential matrix V,,, v,r,o, k O(N) (3.31)
Diagonalization of H,, w, v, o,k O(N?) (3.28)
Density matrix p,, w, v, o,k O(N?) (3.20)

Table 5.1: Important operations in the self-consistency cycle and how the rel-
evant data structures are distributed over domains r, spins o, basis functions u
and v and k-points k. Only operations with the most significant computational
cost have been included.

For sufficiently large systems it therefore becomes increasingly relevant to par-
allelize over bands.

With the introduction of the localized basis set, or “LCAO mode”, the same
degrees of parallelization can be used (band parallelization in this case then
corresponds to parallelization over orbitals). However most of the computa-
tional cost will be associated with very different operations, particularly for
large systems where the cubically scaling linear algebra operations, namely di-
agonalization of the Hamiltonian and calculation of the density matrix, will
eventually dominate.* Since these are pure matrix operations, they not parallel
over domains. Many other operations are only, or almost only, parallel over do-
mains. An overview of the different operations and how they can be parallelized
is shown in Table 5.1. Clearly, for sufficiently large systems a sparse method
would be faster since the Hamiltonian and overlap matrix are in fact sparse.

The implementation of the more important individual steps of the calculation
procedure will be described in the following.

5.2 Linear algebra

We parallelize matrix operations using Scalable Linear Algebra PACKage, a
software library for parallel dense linear algebra.**%> ScalLAPACK relies on
standard standard BLAS libraries for local operations and BLACS,*® Basic
Linear Algebra Communication Subroutines, for parallel communication.
Matrices in ScaLAPACK are distributed among CPU cores according to a
2D block cyclic scheme: A matrix is divided into rectangular blocks of equal
size. Each core holds a set of blocks from distinct parts of the matrix, and the
ownership of consecutive blocks cycles between the available CPUs. The CPUs
are themselves divided into a 2D grid such that rows and columns are blocks
are shared by rows and columns of CPUs in the CPU grid. The distribution is
illustrated on the left in Table 5.2. The algorithms in ScalLAPACK are opti-
mized to emphasize communication between adjacent CPUs in the CPU grid.

*The Hamiltonian and overlap matrices are both sparse, and sparse methods will therefore
be favourable for the larger systems. The advantage of the sparsity of the Hamiltonian is
however limited by the lack of sparsity of the coefficients c,n, as the Kohn—Sham formulation
is inherently global in nature. True O(N) methods must be formulated by alluding to locality
of e.g. the spatial density matrix p(r,r’), resulting in a quite different formalism.*3
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Table 5.2: The two main matriz distributions used in calculations. Left: 2D
block cyclic matrixz distribution. A matriz is divided into 6x 8 blocks, each repre-
sented by a cell. The cells are shared by a grid of 2x4 CPUs numbered 0-7. The
number in each cell indicates which CPU stores that block. Each CPU stores 6
blocks in total. Adjacent CPUs in the grid should have fast interconnect. Right:
1D column distribution, perhaps of the same matriz. Only four of the eight
CPUs are used in this case.

Thus, operations on the matrix in the example will be fast if CPU 1 has a fast
interconnect to CPUs 0, 3 and 7, but it does not need a fast interconnect to the
other CPUs. A simpler distribution using only half the CPUs is shown to the
right in Table 5.2. Such a column-based distribution is useful for calculations
that are parallel over real-space domains and orbitals at the same time. CPUs
0, 2, 4 and 6 would in this case be responsible for one domain while 1, 3, 5 and
7 would have a copy of the same matrix, but apply it to a different domain.

Parallel operations can be invoked from Python through an object oriented
Python interface with the following classes, each of which relies on the under-
lying parallel libraries:

e Communicator: An object resembling the standard MPI communicator
interface for a set of CPUs.

e BLACS grid: Represents a 2D grid of CPUs. Each BLACS grid is associ-
ated with a communicator.

e BLACS descriptor: A template for matrices with a specific 2D block cyclic
layout (matrix size, block size). Provides utility methods to build and
perform operations on arrays. Each BLACS descriptor is associated with
a BLACS grid.

e Redistributor: Redistributes matrices between different BLACS grids or
descriptors. Is associated with two BLACS grids.

Python interface functions for diagonalization and matrix multiplication are
implemented in terms of the above classes.

5.3 Grids and localized functions

The calculation of the density n(r) and the potential matrix elements (r) in-
volves basis functions as well as extended real-space functions. Because the
basis functions are localized, these operations are O(N). In terms of grid points
G, the potential matrix is calculated as

Vi =Y _ 05, 560a (5.1)
G
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using an explicit outer loop over G and an inner loop over all pairs (u,v) of
locally nonzero basis functions. The density, sampled on a grid, is calculated
with a similar loop over grid points G, for each of which a similar inner loop

ia =Y P5,Pcupuy (5.2)

nv

is carried out.

The basis function values ®, in each grid point are pre-tabulated during
initialization by explicitly evaluating radial parts times spherical harmonics.
Loops over pairs of nonzero basis functions are possible by first registering, for
each basis function, the grid coordinates G, to G, along the z axis between
which the basis function is nonzero, for all pairs of grid coordinates G, G,
along the other axes. This metadata allows us to maintain a list of locally
nonzero basis functions when looping over grid points: Basis function indices
are dynamically added and removed from this list as the loop enters and leaves
their localization areas. The entry/exit point metadata is stored in one buffer,
while the actual basis function values are stored in a different (much larger)
buffer, in an order consistent with the list of currently nonzero basis functions
for easy indexing.

The operations (5.1) and (5.2) are naturally parallel over domains. They are
further parallelized over orbitals v in V), or p,, using the column layout from
Table 5.2. Each CPU is responsible for one domain/column combination. After
Vi is calculated, it must be redistributed from column form to block cyclic
form, where it is used to construct the Hamiltonian. After the diagonalization
and calculation of p,,,, from the coefficients, which happens in block cyclic form,
puv is then distributed back to column form to apply (5.2).

In the force expression (3.36), the derivative of the potential matrix V,,,, with
respect to a rigid displacement of a basis function must be calculated. This can
be done with a similar loop, except it is the derivatives

d®(r—R%)  dd(r — RY)

drR® dr (5:3)
which are evaluated through
do(r) de(r) o , . dYr(r)
— = Y, ) A4
-2 = Y+ () SR (5.4)

Circumflex denotes a unit vector. The notation Y7 (R) = R'Yy(R) refers to the
real solid spherical harmonics, which are polynomials in the cartesian coordi-
nates. Their derivatives are therefore straightforward to evaluate.

5.4 Two-center integrals and derivatives

The geometry-dependent but otherwise constant overlap integrals 7},,,, S, and
P2 are calculated through the procedure described by Sankey and Niklewsky*”
which is also used by STESTA.° The matrices consist of two-center integrals
between localized functions which are in all cases represented as a radial part
on a one-dimensional grid times a spherical harmonic which is implied from an
angular momentum quantum number.
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Each localized function is Fourier transformed. The two-center integrals
can then can be evaluated cheaply as convolutions between a pair of Fourier
transformed functions. This function is then transformed back into real-space.
Due to the Fourier transform of the spherical harmonics it becomes a sum of
many spherical harmonics times different radial parts:

/ *(r)X(r - R)dr = O(R) = 3 0, (R)V,(R). (5.5)

See also the master thesis by Vanin.?® Overlap matrices such as 7}, or their
position derivatives are constructed by looping over all pairs of atoms which are
close enough for the localized functions to overlap. This operation is parallelized
according to where atoms reside: the overlap between atom a and atom b with
a < b is calculated on the CPU responsible for the domain in which a resides.
T, and S, are then immediately distributed on the block cyclic grid.

The force expression (3.36) involves a number of derivatives of overlaps.
These are evaluated as

dO(R) d@L dYL R)
R RZ YL +Z®L . (5.6)

The actual overlap derivative matrices in the force formula (3.36) are evaluated
this way, except they must also be antisymmetric, reflecting that interchange of
two basis functions changes the sign of R above.

5.5 Performance benchmarks

A few performance benchmarks are presented below. These are meant to provide
an idea about the performance on real systems, and are applied to some of the
clusters studied in later chapters.

Figure 5.1a shows a benchmark of localized basis set calculations on Au
clusters. The figure is based on structure relaxations of Au clusters generated by
simulated annealing with EMT. The precise procedure is described in Chapter
10. The tests run on one 8-core xeon node on Niflheim.*® Performance is
recorded on the master core. Parallelization is used with 2 x 2 x 2 domain
decomposition and a 4 x 2 core BLACS grid. The diagonalization uses the
divide € conquer algorithm.

A breakdown of the walltime for different operations is shown on Figure 5.1b,
accounting for the total relative time spent with each operation. ScaLAPACK is
invoked for clusters larger than N = 50 explaining the sudden shift. Some parts
of the calculation, most importantly the force calculations, have not yet been
optimized well in combination with ScaLAPACK. Grid ops refers to the calcu-
lation of V,,, and n(r), which take roughly the same time; network represents
communication including waits due to load imbalance; atomic represents PAW
corrections, which is dominated by radial XC; matriz ops refers to calculation
of p,. plus smaller operations such as two-center integral evaluation.

Figure 5.2 shows scaling of computational time of individual functions mea-
sured per self-consistency step (whereas the previous figure refers to an entire
self-consistency loop; the number of necessary self-consistency steps increases
weakly with system size). Scaling powers are calculated by logarithmic fitting
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Figure 5.1: Performance of basis set calculations on gold clusters. Top: Wall-
clock time in minutes of one step in a structural optimization as a function of
number of atoms. Note that the azis is quadratic. Below: Relative time spent
in different parts of the code. The qualitative change at 50 atoms is due to a
switch to parallel diagonalization.
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Figure 5.2: Doubly logarithmic plot of time per SCF iteration for different op-
erations. The scaling powers are indicated in the legend. Colours are consistent
with Figure 5.1.

for N > 50 except for the serial diagonalization. “Grid ops” is nominally linear,
but superlinear in this case because of a gradual increase in the ratio of bulk
to surface atoms with V. The increased density of orbitals around bulk atoms
increases the cost. XC and Poisson performance appears sublinear because of
the non-proportinal relationship between volume and number of atoms; for ex-
ample, a system with one atom needs about as much vacuum as a system with
two atoms.

Overall, the main limitation on parallel performance is the matrix diago-
nalization, as its non-local character implies significant communication. While
calculations even for systems beyond 1000 atoms have been tested and are in-
deed faster than the real-space code, the time-consuming diagonalization is an
obstacle which makes the approach practical only for systems up to around
400-600 atoms on the Niflheim cluster with the current interconnect.

5.6 Real-space calculations and parallelization

In real-space calculations, the number of variational degrees of freedom is too
large to directly diagonalize the Hamiltonian like in the localized basis set. In-
stead an iterative procedure is used. For each self-consistency iteration, guesses
for the pseudowavefunctions are improved until they converge alongside the
density and potential.

The Hamiltonian is applied to the pseudowavefunctions in the real-space
basis using a finite-difference stencil for the Laplacian:

(| 10) = =5 V300 (1) + 50)0a(r) + 3B WAHS G10). (1)

atj
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The Hamiltonian in the basis of the current pseudowavefunctions, <1/~)n|ﬁ |1/~)m>,
is then constructed by real-space integration. The operation involves all pairs of
bands n and m, and hence the entire pseudowavefunction arrays must be passed
around between band-parallelizing cores; this is why band parallelization is usu-
ally more expensive than domain decomposition, which involves communication
at the domain boundaries. Following this step, the Hamiltonian matrix is diag-
onalized using the ScaLAPACK implementation described previously, involving
redistribution to block cyclic form and back. The coefficients obtained from this
diagonalization are then used to rotate the wavefunctions within their subspace
so that they have definite eigenvalues.
The wavefunctions are improved by calculating the residual

Ro(r) = Hin(r) — S0 (t)en (5.8)

and applying the residual minimization method described by Kresse and Furth-
miiller.?®> The wavefunctions are explicitly orthogonalized by constructing the
overlap matrix (¢,,|S]1,,), and performing the rotation

1/371(1‘) = Z@m(r)[l’_l]mm (5.9)

where L,,, is the Cholesky decomposition of S,,,,. ScaLAPACK is used again
for this inverse Cholesky decomposition of the overlap matrix. The remaining
steps of the self-consistency cycle have for the most part been discussed in the
previous chapter.

The computational cost for large systems is dominated by the cubically scal-
ing and communication-intensive matrix element calculations, plus the subse-
quent rotations. Provided that the diagonalization is parallelized, it is not
among the most expensive operations. Parallel diagonalization is also impor-
tant for another reason: The double-precision floating point representation of
a bands-by-bands matrix in a 10000-electron system (e.g. 1000 Pt atoms) re-
quires about 200 MiB RAM. This is clearly unacceptable on a BlueGene/P with
512 MiB RAM per core.

This is the calculation procedure for the large-scale DFT calculations pre-
sented in later chapters. A scaling benchmark can be found in Paper IL.5

5.7 Parallelization on BlueGene/P

It is our intention to perform DFT calculations on very large gold clusters using
the accurate but expensive real-space grid methods in GPAW. For this pur-
pose we use the IBM BlueGene/P supercomputer located at Argonne National
Laboratory. In the limit of very large systems, some of the otherwise innocu-
ous operations become quite expensive and must be taken into account in the
implementation.

Supercomputers of small to medium size typically contain a number of dis-
tinct nodes, each containing a small number of CPU cores. The nodes might
be connected by means of network switches, providing the usual star-shaped
network topology where all CPUs can communicate with each other directly.
For sufficiently large computers a network of this type will, however, suffer
congestion because all data must pass through the same switch. An indefinitely
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scalable computer therefore cannot have a star-shaped topology, but must make
use of localization. The parallel structure of a programme must then take into
account the network topology of the supercomputer on which it runs, so that
communication takes place if possible only between neighbouring nodes.

In the BlueGene/P supercomputer which is our specific target, the nodes
are connected in a three-dimensional grid. Each core is assigned a set of coordi-
nates XYZT, where XYZ designate the position of the node in the grid, and T
enumerates the cores within a node (and acts as a very short fourth dimension).
A core is connected directly to its immediate neighbours along each of these
four grid directions. The first and last CPUs in each direction are also directly
connected. The network topology is therefore a four-dimensional torus, which
has a maximal of size 40 x 32 x 32 x 4 cores, or 163840 CPUs. Calculations
generally involve smaller sets (or partitions) of CPUs which are also wired to
form a torus. Since solution of the Kohn—Sham equations is parallel over both
the three spatial directions (z,y, z) and states n, the logical parallelization is to
let the XYZT network torus correspond some permutation of z, y, z and n.
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Electronic and chemical
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Chapter 6

Metal nanoparticles

This chapter provides a short introduction to metal nanoparticles. An overview
of the geometric structures formed by nanoparticles is given, and different simple
models for their structure and properties are discussed.

Nanoparticles have important applications in catalysis, where size-dependent,
changes in chemical properties can have a big impact on catalytic activity. For
example gold clusters become effective catalysts under some conditions. Of par-
ticular note is the ability of gold clusters, when deposited on surfaces of certain
transition metal oxides, to oxidize CO at very low temperatures.*® This has
been observed for gold particles of around 4 nm in size.’® The high catalytic
activity has been attributed to a number of effects, such as non-metallic be-
haviour associated with flat “islands” of gold atoms.’! Others attribute the
increase in reactivity mainly to the availability of low-coordinated atoms and
surface roughness, although many effects are understood to be involved.??56
Understanding the catalytic activity is part of the motivation for this work,
although we focus on understanding the more fundamental properties of free-
standing nanoparticles. These are much simpler systems than the complicated
nanoparticle/support-based systems used in catalysis.

6.1 Packing and structural motifs in clusters

The lowest-energy shapes of very large nanoparticles are characterized by the
combination of crystal planes which yields the lowest total surface energy, and
can be obtained by the Wulff construction method. For smaller clusters, size
effects will allow several different structural motifs to compete. A few such
structures of particular relevance will be described below.

A number of highly symmetric structures can be constructed by successively
adding shells of atoms. A simple such structure is the cuboctahedron. The
first cuboctahedron is formed by adding 12 neighbours around a central atom,
forming part of an fcc lattice. Further cuboctahedral structures can be formed
by adding further such shells, resulting in clusters with 13, 55, 147, 309, 561, 923,
1415,... atoms. The first few cuboctahedral clusters are shown on Figure 6.1.
The cuboctahedra are simple fec-based clusters with (111) and (100) surfaces.
By adjusting the number of (111) versus (100) surface layers, one can also obtain
cubes, truncated cubes, cuboctahedra, truncated octahedra and octahedra—see
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Figure 6.2: A family of fec clusters: 63-atom cube, 1/7-atom cuboctahedron,
201 and 225-atom truncated octahedra and 231-atom octahedron.

Figure 6.2. Truncated octahedra are frequently the most stable structures for
large clusters, including those of Au.?”

The close-packed (111) surfaces of fcc structures tend to have the lowest sur-
face energy. It is possible to form clusters with only (111)-like surfaces, although
this happens at the expense of internally straining the cluster by breaking the
fce structure. This is the case for the icosahedral series of clusters. Like the
cuboctahedra, these are generated by adding successive layers of atoms around
a single atom, resulting in the same geometric shell closings at 13, 55, 147,

atoms. The first few icosahedra are shown on Figure 6.3. The distance
between atoms in neighbouring icosahedral shells differs from the distance be-
tween atoms within the same shell. This causes an overall O(N) increase in
energy, while the decrease in energy from the change in surface structure must
be proportional to the amount of surface O(N?/3). The icosahedral motif is
therefore likely for medium-sized clusters. Many other lattice-based structures
can be imagined, of which the most important for gold are probably truncated
decahedra®®®® which are, like the icosahedra, internally strained. A thorough
classification of atomic shell structures has been written by Martin.5% The free
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Figure 6.3: Icosahedral clusters with 13, 55 and 147 atoms.
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energy of different structural motifs depends on size as well as temperature,
leading to complicated phase diagrams with temperature-dependent preference
for different structures.6'-%3

Due to the high computational cost of ab-initio methods, the structural
properties of large metal clusters are usually studied through simple models.
Several such models are based on pair potentials with energy terms that model
the attractive and repulsive parts of atomic interactions formulated e.g. as an
energy contribution for each pair of atoms. For example, the Sutton-Chen®* and
Gupta® potentials both predict highly stable Ag clusters with 13 (icosahedral),
38 (truncated octahedral), 55 (icosahedral) and 75 (decahedral) structure.
The low energy coincides with particularly regular atomic packing. Such many-
body potentials can be well suited to describe the specific properties they were
designed for, but make no reference to electronic structure, which limits their
ability to describe small clusters.

6.2 Jellium clusters

A simple model of materials can be obtained by entirely neglecting atomic struc-
ture, and instead assuming that electrons are interacting in a smeared-out back-
ground charge so that the whole system is neutral. This fictitious material is
called jellium. Jellium models of clusters have been studied extensively since the
discovery that alkali metal clusters with specific “magic” numbers of electrons
are particularly stable and can be understood through jellium models.?%:21,67-73
Below we describe the simplest imaginable jellium model of clusters, namely that
of independent electrons in an infinite spherical well.

Assume that a cluster with IV electrons is described by an infinite spherical
well potential with radius R = N'/3. By separation of variables one obtains
distinct equations for radial and angular parts of the eigenstates, quite like in
the atomic problem from Section 4.1, except for the shape of the radial poten-
tial. The radial equation is the spherical Bessel equation with zero boundary
conditions, whose solutions are spherical Bessel functions j;(r) of the first kind.*
The angular equation as always yields spherical harmonics Y}, (6, ¢). Thus

ZinT

wlnm(ra 9; ¢) = CYlnjl (?) lem(ea ¢)a (61)

where «y,, is a normalization factor and z;, is the n’th zero of j;. The energies
of these solutions are

1.4 1 212

€ln = §kln == §R_g (62)

Thus there exists a set of degenerate solutions for each zero z;,, of each spher-

ical Bessel function j;(r), with degeneracy 2(2[ 4 1), counting spin. The energy

levels are ordered the same way as the zeros of the spherical Bessel functions.

This results in an Aufbau rule like in the periodic table, except a higher angular

momentum tends to be relatively more favourable for jellium clusters than addi-

tional radial nodes. Configurations with a full shell are particularly stable, and

*The spherical Bessel functions are related to the ordinary (“cylindrical”) Bessel functions
by Gi(r) = \/E i1 (0)-
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2 8 18 20 34 40
58 68 90 92 106 132
138 168 186 196 198 232
25 268 306 312 338 380
398 428 438 440 486 508
542 556 562 612 638

Table 6.1: Magic numbers of spherical non-interacting jellium clusters. Major
magic numbers, having particularly large electronic gaps at the Fermi level, are
highlighted.

the cluster is said to contain a magic number of electrons. In order of increasing
energy, the eigenstates are 1s, 1p, 1d, 2s, 1f, 2p, 1g, ..., which results in magic
numbers at the shell fillings N=2, 8, 18, 20, ...; see Figure 6.4 and Table 6.1.

The spherical-well model above is the simplest possible jellium model. Many
other jellium-based models have been formulated to describe alkali metal clus-
ters. The inclusion of electronic interactions, typically through the solution of
the Kohn-Sham equations using the local density approximation, yields magic
numbers similar to those we found in the previous non-interacting model. The
relative importance of the different magic numbers may shift depending on the
exact model used, but the spherical shell closings are almost universally repro-
duced as listed in Table 6.1. Further insight is gained by considering jellium
clusters of different shapes. Commonly, the jellium clusters are allowed to de-
form under some specified set of rules.”"* 77" An important result is that jellium
clusters with a non-magic number of electrons will deform into prolate (elon-
gated along one axis) or oblate (flattened) shapes depending on the number of
electrons. This allows non-magic clusters to obtain lower energies, which we
will also see in Chapter 10 using DFT calculations. Different highly symmetric
shapes such as tetrahedra also lead to strong magic numbers.”®

The previously mentioned pair potentials are formulated only in terms of
atomic separations, while jellium models completely neglect atomic structure.
Both electronic and structural effects can be combined in tight-binding models,
such as the Hiickel model.”® 82 This model predicts electronic magic numbers
in agreement, with the jellium model.3% 84

6.3 Noble metal clusters, relativity and gold

Since the noble metals have a fully occupied d-band and a half-filled s-band,
they are electronically similar to alkali clusters. Jellium-like magic numbers
have been observed in the mass spectra of noble metal clusters, indicating par-
ticular stability of clusters with closed electronic shells.2? While clusters of the
three noble metals show similar electronic shell structure, gas-phase gold clus-
ters form especially remarkable geometric structures. The smallest gold clusters
are predicted to be planar, with a transition between planar and 3-dimensional
structures usually put between 8-15 atoms depending on charge and other cir-
cumstances.'®8%86  The exact transition between planar and 3-dimensional
clusters of various charge states has been discussed extensively within DFT
methods and depends strongly on the XC approximation.'® 878 Larger gold



6.3. NOBLE METAL CLUSTERS, RELATIVITY AND GOLD 43

0.0
—-0.5

12

N | B ! ! ! T T
S 15

<10

Z 05

(3]

4

10

Energy [arb.]
(=]

—— Energy levels
Lono . - m— Fermi level

0 || | | | [ I I

Q \» ‘bb‘ & oV \.ob‘b \%GJ (ﬁbb‘ (g)‘b

Number of electrons

Figure 6.4: Below: Energy levels and Fermi level of spherical-well jellium clus-
ters as a function of number of electrons. Major magic numbers are indicated.
Above: Second-order energy differences Ay(N) = E(N—1)—2E(N)+E(N+1),
a measure of the curvature of the total energy with respect to the number of elec-
trons.
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clusters are predicted using DFT to form many more exotic structures, such as
cages and tubes. This occurs even beyond 30 atoms, with the 32-atom cluster
being a cage.'? %091 The stability of planar structures, along with practically
all the peculiarities of subsequent Au clusters as compared to Ag or Cu, can be
attributed to the relativistic behaviour of the Au core electrons. These effects
change the screening of the outer electrons, leading to a contraction of s-states
and an expansion of the d-states, and an increase in hybridization between the d-
states.!” Gold in particular has a tendency to form low-symmetry structures.??
Even the 55-atom Au cluster does so rather than forming an icosahedron as has
been found for Ag.”®?* Determination of globally optimal structures of most
larger clusters must to some extent rely on simpler methods, although limited
studies of large clusters with DFT have been made.??%6



Chapter 7

Chemical properties of large
clusters

In this chapter we examine the convergence of chemical properties of clusters
with respect to cluster size. This is done by calculating binding energies of sim-
ple adsorbates on cuboctahedral clusters up to 1415 atoms. The cuboctahedra
are not lowest-energy structures,”” %7 and particularly the small clusters Auis
and Auss are known to form entirely different structures in the gas phase. How-
ever the cuboctahedra provide a simple geometry which can be compared at
different sizes and with different metals. Here we compare Au and Pt clusters,
where the main difference is that Au, unlike Pt, has a filled d-band.

7.1 Structure and calculation parameters

We calculate the binding energy of O and CO, each on two different adsorption
sites, and on Au as well as Pt cuboctahedra. The motivation for specifically
considering O and CO is the relevance of these adsorbates as intermediates in
CO oxidation, although we make no attempt to model actual catalytic systems
at this time. Figure 7.1 shows the adsorption sites. They are:

e O on the fce hollow site closest to the center of an (111) facet

Figure 7.1: Adsorption sites, shown two at a time, of O and CO on the Ausg1
cuboctahedron.
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Figure 7.2: Binding energy of O and CO on cuboctahedral Au and Pt clusters
of different size. For each series of datapoints, the bulk limit is indicated.

e O on the bridge site closest to the center of an edge

e CO on top of the atom closest to the center of an (111) facet

e CO on top of the atom closest to the center of an edge, with O pointing
away from the cluster

The distance between adsorbate and metal atoms is in each case based on a
relaxation of the adsorbate on an infinite metal surface locally similar to the
cluster. Since no relaxation of the cluster is performed, we do not care to deeply
about the exact geometry of the adsorbate either. In the limit of infinitely large
clusters, the environment around each adsorbate approaches either that of a
clean surface or a step configuration. Such configurations are used to obtain
values for the bulk limits. The calculations are performed using the RPBE XC-
functional with the real-space grid implementation in GPAW. A grid spacing
of 0.175A is used for Au clusters, and 0.140A for Pt clusters. The lattice con-
stants 4.218 A for Au or 3.999 A for Pt are used in the cluster construction. No
structure relaxation is performed in these calculations. The effects of structure
optimization on the adsorption energies to Au cuboctahedra has been found to
be small; see Paper II1.78
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Figure 7.3: O adsorption on adatom plateaus of sizes 8, 6 and 11 atoms. The
colouring only serves to distinguish adatoms from surface atoms; adatoms and
surface atoms are the same type.

7.2 Adsorption energies

The calculated adsorption energies as a function of cluster size are shown on
Figure 7.2. A common feature of both Pt and Au clusters is that small clusters
tend to bind the adsorbates more strongly. A notable deviation from this trend
is that the O on both (111) facet and bridge site of the Auss binds extremely
weakly, weaker even than the bulk limit (upper left on Figure 7.2). The low reac-
tivity towards O of Auss is consistent with existing observations,® 190 although
the real free-standing Auss is known to have a quite different low-symmetry
structure.”® CO on Au exhibits a much more smooth convergence towards
the bulk limit.

For Pt, the overall size-dependent change in adsorption energies is more
uniform than for Au. Almost all variation stops after N = 147, except a slight
fluctuating tendency which is slowly damped.

Variation in the cluster size will necessarily change both the local structure
around of the adsorbate, and the overall cluster size. The changes in local
structure can be studied separately from calculations on extended surfaces. This
will be done in the next section. In the next chapter we will study electronic
effects more closely.

Further analysis of the large-scale results for Pt are in progress (unpub-
lished). A more thorough discussion of the results for Au can be found in Paper
II1.%8

7.3 Geometric effects on adsorption

Part of the size trend in the previous calculations must be attributable to the
change in size of the facets. To investigate this local, geometric effect we com-
pare cluster adsorption energies with adsorption energies calculated on infinite
surfaces with plateaus of various size. We concentrate here on O adsorption on
Au and Pt.

We consider an fcc (111) surface slab with four layers of atoms and lattice
constants 4.218 A for Au or 3.999 A for Pt, as before. On top of the slab we
construct plateaus with different numbers of adatoms forming part of an extra
surface layer. We start with an adatom trimer whose central (111) fcc site is
locally consistent with the previously considered O adsorption site. The plateau
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Figure 7.4: Binding energy of O on central fec site of Au and Pt one-layer
adatom plateaus as a function of the number of atoms in the plateau. The bulk
limit is indicated by a dashed horizontal line. Ticks on x axis are placed so they
correspond to sizes of cluster facets (the 55-atom cuboctahedron or icosahedron
has 6 atoms in an (111) facet).

is then expanded by adding one atom at a time on sites consistent with the
lattice. A few of the geometries are shown on Figure 7.3. Each time, the atom
is added as close as possible to the adsorbate such that the adsorbate will always
be close to the center of the plateau. In order to fit a plateau with 50 atoms
in the cell (the 1415-atom cuboctahedral (111) facet contains 36 atoms), it is
necessary to include a total of 365 atoms in the calculation. We use the localized
basis set with the standard double-C polarized basis sets.

For each of these geometries we then calculate the adsorption energy without
any structure relaxation. O is put at a fixed perpendicular distance of 1.37 A
(Au) or 1.28 A (Pt) from the plateau atoms which is consistent with the fixed
cluster geometries.

The adsorption energy of O as a function of the number of adatoms is shown
on Figure 7.4. For Au the adsorption energy increases swiftly and linearly be-
tween plateau sizes of 3—6 atoms. Once the triangular 6-atom plateau on Figure
7.3 is completed, the energy remains largely constant. The 6-atom plateau is
identical to the (111) facet on the Auss cluster which binds O very weakly, but
the geometric trend here is insufficient to explain the spectacularly weak bind-
ing on Augss. Medium-sized plateaus up to 28 atoms (like the 923-atom cluster)
bind slightly more weakly than bulk Au, after which the difference from bulk
is tiny. This geometric trend thus accounts (partially) for the strong binding
on the 13-atom cluster compared to subsequent clusters, but agrees with none
of the behaviour of other clusters until near the bulk limit at 561 atoms and
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larger.

For Pt the smallest plateaus also bind strongly, but the trend differs from
that of Au since the binding energy varies much more smoothly over the small
plateaus. The convergence of the Pt binding energy with respect to plateau size
matches roughly that of the Pt clusters: after a plateau size of 10 atoms (147-
atom cluster), most of the variation has stopped, and only weak oscillations
remain.

In the next chapter we will consider the effect of electronic structure on
adsorption energies.
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Chapter 8

Electronic structure and
chemisorption

The variation in adsorption energies for smaller clusters, and in particular the
very weak adsorption of O on the Auss cluster, remains to be explained. To
study electronic effects on adsorption in greater detail, we will in this chapter
construct a contiguous range of clusters up to several hundred atoms. This
implies a quite large number of calculations. Since we are not interested in
binding energies with high accuracy, but rather the overall trend, the localized
basis set method is ideally suited for these calculations.

8.1 Construction of clusters

Consider two consecutive cuboctahedral clusters. We can get a contiguous range
of intermediate clusters by stripping off the outermost shell of atoms in the larger
cluster one atom at a time, so that eventually only the smaller cluster remains.
The atoms can be removed in any order. To obtain reasonably realistic ge-
ometries, we choose to always remove at random one of the atoms with lowest
coordination. Since we want to calculate an adsorption energy for each size of
cluster, and since we are interested in overall electronic size effects rather than
the effects of geometry, the local geometry around the adsorption site should
remain unchanged during this procedure. This can be managed by effectively re-
moving two shells from the side of the cluster opposite the adsorption site. This
procedure is shown on Figure 8.1. Since atoms are removed at random, a pseu-
dorandom number generator can be used to generate several series of clusters.
This reveals how sensitive the procedure is to detailed structural differences, al-
though the strictly cuboctahedral clusters always have the exact same geometry.
The procedure can be used to generate any structure based on geometric shells,
and we will use this to compare to icosahedral clusters. However because of the
internal straining of icosahedra, the local geometry around the adsorbate can-
not be conserved for all sizes of clusters. For convenience we therefore limit this
study to cuboctahedra with the adsorbates located at the central (111) fcc site
as indicated on Figure 8.1. The same site was also considered in our previous
studies. The Auy3 cuboctahedron does not have an (111) fec site (only an hep
site), so this cluster cannot be generated from the discussed procedure; instead
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Figure 8.1: Construction of clusters with arbitrary number of atoms. Atoms
in the 55-atom cuboctahedron are white, while removable atoms are coloured
according to their coordination. At each step, one of the removable atoms with
lowest coordination is removed. An O atom is shown at the (111) fec site.

we use a 19-atom cluster which is the result of removing most of the atoms from
the Auss cuboctahedron without changing the immediate environment around
the adsorbate.

Over the next sections we perform calculations on clusters up to 200 or
320 atoms in size. For clusters larger than 150 atoms we skip two thirds of the
clusters to save CPU time. This may appear as pixelation in some of the figures,
but does not represent any physical effect.

8.2 Calculation parameters

For four different series of randomly generated Au clusters we calculate the
adsorption energy of O using the localized basis sets in GPAW. The calculations
use somewhat coarse parameters to improve efficiency. The grid spacing is
0.2A, and 5.0A vacuum is added in all directions. Each atom has the standard
double-zeta polarized basis set and the standard PAW setup package supplied
with GPAW. The RPBE XC functional is used as in the previous calculations.
A Fermi temperature of 0.01eV is used. We do not consider spin-polarization
except in atomic reference calculations.

For each cluster a structure optimization is performed with O located at the
central (111) fcc site. The implementation of the BFGS structure optimization
algorithm from ASE is used.*? Structure optimizations terminate when the
forces are no greater than 0.075eV/A.

Since we are not interested in high accuracy, but rather in a broad size-
comparison of different clusters, we calculate adsorption energies in a more rough
way than normally. First a structure relaxation of the combined system, cluster
plus adsorbate, is performed, yielding a total energy. The binding energy is then
calculated by subtracting the total energy of the isolated atom and the total
energy of the isolated cluster. In the calculation for the isolated cluster we do
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Figure 8.2: Binding energies of O on Au clusters as a function of cluster size.
Magjor jellium magic numbers are indicated.

not perform a separate structure relaxation. Aside from saving time, the benefit
of this procedure is that we do not have to worry about the egg-box effect: If
we relaxed both the combined system and the isolated cluster, the atoms would
have moved slightly relative to the grid points, which causes a small difference in
evaluated energies. For large systems such an error will eventually be significant
compared to a one-atom binding energy. The overall effect of not relaxing the
isolated cluster is that all binding energies are overestimated. Furthermore, we
shall not care to apply a basis set superposition error correction (Section 4.5).
This error is similar for all the clusters since the local environment around the
atom is similar, and therefore shifts all the energies by approximately the same
amount.

8.3 Adsorption energy and magic numbers

Figure 8.2 shows the adsorption energy of O on the central fcc site on Au
cuboctahedra as a function of number of atoms. Four different series of randomly
generated clusters are shown. The binding energy oscillates with an amplitude
of 0.5-1.0eV. Minima in binding occurs at or close to the jellium magic numbers
N = 34,58,92,138, 186 and 254, in most cases followed by a sudden increase
binding.

Figure 8.3 shows the density of states (DOS) of the Au cuboctahedra as a
function of cluster size and energy. The d-band lies between -10 and -6, eV and
changes relatively little. The s-states, however, split up into distinct electronic
shells separated by gaps. As cluster size increases, shells are filled one electron
at a time. When a shell is full, electrons must be filled into the next higher
shell, resulting in an abrupt increase in Fermi level at the magic numbers 34,
58, 92 and 138 matching the jellium model. The subsequent magic numbers are
not, as clearly resolved, but the shell structure is still evident. This electronic
shell structure is not specific to cuboctahedra. Figure 8.4 shows a closer view of
the DOS of cuboctahedra compared and icosahedra near the Fermi level. The
icosahedra are generated by the same procedure by stripping off atomic shells
one atom at a time. The two types of structure have highly similar electronic
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Figure 8.3: DOS of Au clusters based on the cuboctahedral series as a function
of cluster size and energy. The Fermi level is indicated by a white line. Magic
numbers are associated with abrupt jumps in the Fermi energy.
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Figure 8.4: DOS of cuboctahedral (top; a subset of the data in Figure 8.3) and
icosahedral (bottom) Au clusters near Fermi level. The Fermi level is indicated.
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shell structure. It has previously been shown in models based on spherical,
cuboctahedral and icosahedral potential wells that the DOS remains highly
similar up to several hundred atoms in size.'°" In small jellium clusters the
magic numbers are also known to be robust to geometric variations as long as
the gaps between shells are large compared to the effect of distortion.!0?

The trend in adsorption energy is roughly consistent with the notion that the
loosely bound electrons of a cluster just after a magic number are more easily
donated to O, causing an abrupt increase in O binding energy at the magic
numbers (this is most clearly seen at N = 138). As cluster size increases further,
the energetic distance between subsequent shells decreases, causing the shell
structure to become less well resolved. However we still see from Figure 8.2 how
the magic numbers 186 and 254 correspond to particularly weak binding, even
if no well-resolved magic number is immediately visible in the spectrum from
Figure 8.3. In general, the electronic shell structure is very well resolved close to
the geometric shell fillings (55 and 147 for both cuboctahedra and icosahedra),
and for smaller clusters where the energetic separations between electronic shells
are large. Auss is just below a magic number, while Auy47 0s slightly above one.
This accounts for the observations in the previous calculations that Auss binds
O much more weakly compared to Auyyz.

Magic-number clusters far from geometric shell fillings, such as the N = 92
cluster, may be deformed significantly due to the generation procedure. This is
probably why the magic number appears to be slightly smaller from the current
results (minimal binding is found close to 88 atoms) than in the jellium model.

We note that structure relaxations tend to enhance the shell structure, and
the magic number at N = 92 is only visible for cuboctahedra due to this relax-
ation. Evidently the effect of a clear shell structure is stabilizing. We will study
stability more systematically in Chapter 10.

The current results suggest that the Fermi level acts as a descriptor for the
reactivity with O. While variations in the oxygen binding energy do tend to
correlate with in the Fermi level, this correlation is however far from perfect.
Aside from geometric effects as we have seen, a large DOS near the Fermi level
may also increase adsorption strength (e.g. near N = 309). A more complete
picture would be that the overall accessibility of loosely bound electrons from
the adsorption site plays an important role. Such an effect has previously been
pointed out for the adsorption of molecular oxygen on Au clusters.??

On a side note, the clear relationship between the electronic shell struc-
ture clusters and the chemical properties of gold clusters raises the question of
whether the previous conclusions, placing the convergence of adsorption energies
with Au cluster size at about 600 atoms, might be wrong due to magic numbers
in between the cuboctahedral geometric shell closings. The spectra from icosa-
hedral and spherical potential-well models have been found to be highly similar
as high as 1000 atoms, while cuboctahedral potential wells deviate much more
quickly beyond a few hundred atoms.'®' Au clusters have been predicted to
form truncated octahedra from somewhere around 500 atoms and above, pre-
ceded by decahedral clusters.’” %" The lower symmetries of truncated octahedra
and decahedra (compared to cuboctahedra and icosahedra) will to some extent
disfavour the formation of large gaps.

Another effect which works to disfavour highly magic numbers for clusters
much larger than 500 atoms, at least to the extent that the clusters can still
be considered vaguely spherical, is the supershell structure. The relationship
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Figure 8.5: Adsorption energy of H and Li on Au cuboctahedra as a function of
cluster size. Clusters are generated with several different pseudorandom seeds.

between electronic shells of different radial and angular dependencies results
in a beat phenomenon such that major shell effects are mostly extinguished
between 500-1000 atoms.!?® The supershell effect once again allows for well-
resolved magic numbers for clusters larger than 1000 atoms, at which point it
seems less likely for truncated octahedral clusters to have gaps. Electronic shell
structure has however been observed in alkali metal clusters up to 1500 atoms,
after which point geometric magic numbers corresponding to cuboctahedral or
icosahedral shell closings take over.'%* This shift in character of magic numbers
was attributed to solidification of the clusters. Another study has observed
electronic shell structure as high as 3000 alkali atoms.'% In conclusion it can be
argued that large electronic gaps are unlikely beyond 500 atoms, but we cannot
state with complete certainty that electronic effects are always insignificant.

8.4 Main-group atoms on gold

We can investigate the electronic shell effects more thoroughly by considering
adsorption of several different atomic species. In this section we calculate ad-
sorption energies of many different main-group atoms on gold cuboctahedra.
These calculations are straightforward and use the same parameters as previ-
ously.

The binding energies of H and Li on Au clusters are shown on Figure 8.5.
Again, magic-number clusters are universally unreactive. H and Li follow the
opposite behaviour of O: past a magic number, a sharp decrease in binding
takes place. This is not surprising for Li which has a loosely bound electron.
However H would sooner be expected to receive partial charge, so this behaviour
is somewhat perplexing. An existing study of H adsorption on very small Au
clusters has found a similar behaviour which was deemed “anomalous”.'°® We
will look further into this in Chapter 9.

Figure 8.6 shows the adsorption energies of atoms of ten 2p and 3p ele-
ments. The behaviour near magic numbers is consistent with the picture of
electron donation or electron acceptance: For a cluster slightly smaller than
a magic number the Fermi level is low, and so the donation of an electron to
an electronegative adsorbate is associated with weak adsorption energy, while
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Figure 8.6: Adsorption energy of main group elements on Au cuboctahedra as
a function of cluster size. Two series of generated clusters are shown on each

figure.



58 CHAPTER 8. ELECTRONIC STRUCTURE AND CHEMISORPTION

the acceptance of an electron leads to strong adsorption. The opposite is the
case after a magic number. The 2p elements generally have higher electroneg-
ativities than the 3p elements, and this is reflected in their adsorption energies
on clusters. In general, Au clusters near magic numbers can in light of these
observations be viewed as alkali-like or halogen-like. For the halogens F and
Cl, the increase in energy just past a magic number is quite abrupt. For less
electronegative elements (O and S) the change in energy is larger but more
gradual, happening over the addition of several atoms to the cluster. This can
be interpreted as a transfer of several electrons gaining more energy. Such a
charge transfer interpretation should not be taken literally, however. The type
of bond more closely resembles covalency as has been found for Au-S.'97 A
closer analysis follows in Chapter 9.

In all cases, completion of the triangular 6-atom facet causes a sharp decrease
in binding leading up to the N = 55 cuboctahedron. As we saw for oxygen
before, N = 92 is not clearly distinguishable as an electronic magic number, but
weak binding is generally found around 80 < N < 90. The overall amplitude
of variation can be several eV and tends to be higher for the electropositive
adsorbates.

8.5 Oxygen on transition metal clusters

To expand our study in a slightly different direction, let us finally consider the
trends in O adsorption for clusters of different metals. We compare the noble
metals Au and Ag, plus several other transition metals with unfilled d-bands,
using the same geometric series of clusters.

Figure 8.7 shows the adsorption energy of O on cuboctahedral clusters of
various fcc transition metals. Pt adsorption energies are shown separately since
some of the Pt clusters frequently reconstruct considerably, which causes a much
more noisy trend. Structure optimizations of these Pt clusters require around
three times as many steps as the 4d metals due to these significant reorganiza-
tions.

Au and Ag, having similar electronic structure, behave almost identically,
with Au binding more weakly as expected. Evidently the relativistic effects
of Au do not cause significant changes in the reactivity trend towards O on
cuboctahedra (however the relativistic effects are known to have profound im-
plications on cluster structure, and so would therefore be indirectly important in
any case; relativistic effects could also be related to the tendency of Pt clusters
to restructure much more than other d-band metals, although this has not been
investigated).

The transition metals Ru, Rh, Pd and Pt show much simpler trend than the
noble metals. Three overall size regimes can be identified.

e From around 160 atoms and above, the binding energy is mostly constant,
varying by about 0.1eV. This agrees well with the previous real-space
calculations, where the changes in adsorption energy on Pt converged more
smoothly with cluster size than for Au. In the d-band model, the binding
energies of adsorbates is predicted to vary among transition metals. For
the largest clusters (150-200 atoms), the binding strength very closely
follows the filling of the d-band. The approximate fractional d-band fillings
are 0.7, 0.8, 0.9 and 1.0 respectively for the series Ru-Rh—Pd/Pt—Ag/Au.
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Figure 8.7: Binding energy of O on cuboctahedral clusters of different metals

as a function of cluster size.
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Figure 8.8: DOS of Pt cuboctahedra as a function of cluster size and energy.
The Fermi level is indicated.

Higher filling leads to weaker binding in agreement with the d-band model
(see however the discussion below).

Between 55-100 atoms the binding is generally weaker than for smaller or
larger clusters, but without any large variations (except for Pt). In this
region the O atom binds to a 6-atom (111) facet. This specific site on
that facet is apparently particularly unreactive: The increase in binding
energy for larger clusters happens when the facet is further expanded, and
the very steep change at N = 50-55 happens when the 6-atom facet is
completed.

Before the 6-atom facet is complete, the binding energy is much stronger,
and generally binding energy increases steeply with size in the limit of
small clusters. This can be a combination of several effects. In this region,
the Fermi level and absolute d—band center both change in a similar way.
The exact cause for this change may be attributable to some combination
of movement of the d-band, location of the Fermi level and geometric
nearest-neighbour changes. The variation of d-band location, and hence
Fermi level which is pinned to the upper part of the d-band, takes place
over roughly this same size range. For some reason Pd has a much weaker
such variation than Ru, Rh and Pt.

The crucial chemical difference between the noble metal clusters and the
remaining transition metals is clearly the electronic shell effects. Figure 8.8
shows the DOS of Pt clusters as a function of cluster size. The overall DOS
is remarkably similar to that of Au, with the s-electrons forming gradually
broadening subshells. However the Fermi level is located within the d-band
where the DOS is very high, which locks it in place and this prevents the creation
of any gaps. (Note that the atomic basis set is not expected to be accurate for
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high-lying unoccupied states, and so these results do not conclusively prove
persistence of shell structure among the unbound states.)

It is natural to ask to what extent the size-dependence of adsorption energies
within a series of clusters of the same metal can be understood from the d-
band model. The d-band model predicts that binding energies of adsorbates
on transition metal surfaces can be understood from the filling of antibonding
states on the adsorbate, with a high filling causing low binding energies.!?® A
simple descriptor for the tendency of such states to be filled is usually taken to be
€4 — €, the difference in energy between the weighted center of the d-projected
density of states on the atoms next to the adsorbate and the Fermi level. If the
Fermi level is high compared to the location of the d-band, antibonding states
resulting from the hybridization of adsorbate states with the d-band will tend to
lie below the Fermi level, which amongst other things explains the low reactivity
of noble metals.'%® By itself this notion is clearly not sufficient to explain the
trends for noble metal clusters Ag and Au, where the electronic shell structure
and resulting size-dependent oscillations of the Fermi level appear to be the
most important factors in the determination of adsorption energies.

For metals with unfilled d-bands, the smallest clusters have higher-lying d-
bands as well as higher-lying Fermi level (this can be seen on Figure 8.8). The
adsorption energy correlates to some extent with either of these quantities, but
preliminary results we have not revealed any sensible or clear correlation from
the combined descriptor €;—epr. The simple descriptor €;— € therefore does not
explain the size variation of binding energies even for the metals with partially
filled d-bands. The conclusion so far must be that a number of different size
effects participate simultaneously to determine the adsorption energy, making
the common €; — ep descriptor less useful for clusters than for bulk systems.
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Chapter 9

Analysis of chemisorption on
gold clusters

We have seen how magic numbers affect the binding energy of various adsorbates
on gold clusters, with clusters appearing alkali-like or halogen-like depending on
the number of atoms. However a few questions are not resolved by the simple
previous analysis. In particular the apparent donation of an electron by H, which
would be expected to attract charge, is perplexing. A Newns—Anderson model
will be applied below to better understand the bonding of different adsorbates.

9.1 The Newns—Anderson model

The Newns—Anderson model describes the chemisorption of an atom on a metal
surface.'?? Tt is a tight-binding model which describes the hybridization of
a single state |a) on an atom with the continuum of states |k) of a surface
characterized by a Fermi energy ex. The model considers the Hamiltonian

H=Hy+V, (9.1)

where H, is the Hamiltonian of the uncoupled metal and adsorbate, and 1%
describes the coupling. In the basis of uncoupled eigenstates |k) and |a), the
Hamiltonian takes the form

H = ok ha (9.2)

Vak | €q

where Hy and V correspond to the diagonal and off-diagonal blocks, respectively.
The parameters are the uncoupled energy of the adsorbate €,, the energies e
of the metal states, and the adsorbate—metal couplings v .

The strength of this model is, as we shall see in the following, that it can be
used to attribute parts of the binding to different energy ranges, providing qual-
itative information which is not easily obtained from a DFT calculation. While
DFT calculations themselves can provide accurate results, the self-consistency
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procedure eventually results in every quantity depending on every other quan-
tity. What we would like is a simple, more qualitative understanding, which is
more easily obtained through a non-self-consistent model.

In the following we will describe a method to extract a Hamiltonian matrix
from a DFT calculation using the localized basis set, which can be used within
the Newns—Anderson model.

9.2 Newns—Anderson Hamiltonian from DFT

The Hamiltonian matrix calculated in the localized basis set is far from the
Newns—Anderson form (9.2). In order to apply the model, we must find a way
to transform the matrix.

Suppose we have calculated a Hamiltonian using DFT and apply a “small”
perturbation which self-consistently would change both the Hamiltonian, den-
sity and wavefunctions. By the force theorem, since both wavefunctions and
density are at variational minima, the change in energy due to this perturba-
tion corresponds specifically to the change in Hamiltonian. Thus, from a small
perturbation of a self-consistent Hamiltonian we can obtain the changes in ad-
sorption energy knowing only the change in the Hamiltonian.

We will use this to perform a DFT calculation for a combined system in-
cluding both cluster and adsorbate, then modify this Hamiltonian to obtain
expressions for the uncoupled cases.

In the localized basis, the Hamiltonian calculated by DFT will consist of
blocks HM , HA, HAM and HM4 pertaining to the basis functions on the metal
atoms, adsorbate and the interaction:

HM HAM:|

Hprr = [HMA HA (9.3)

The metallic and the atomic submatrices can each be brought on diagonal
form by diagonalizing them independently. Since the localized basis set is non-
orthogonal, we solve the generalized eigenvalue equations involving also the
overlap matrix S,

Z v Vk - Z S,uucukelﬁ (94)
ZH,:“V o = Z SiivCrata: (9-5)
M

Since the solutions c¢; and ¢/t diagonalize each of the submatrices H™ and

HA, they can be used to transform the interaction blocks HfM and S(’;‘M.
Ax prAM M
Vak — Z Ca’a a'k’ Ck/ k> (96)
/k—/
HAM M
Sak — Z Ca/a ak' Ck'k - (97)
/k/

By now the DFT-based Hamiltonian has been brought on the form (9.2) except
for two issues: First of all there are several states on the atom, whereas Eq.
(9.2) only allows one. We will assume that each of the atomic states hybridizes
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independently, resulting in a separate Hamiltonian for each such state. This
method has been used previously to describe the interaction of several molecular
orbitals with metal surfaces. Second, the basis functions on the atom have an
overlap sq; = (alk) with the metal states. Grimley has solved this problem in
a non-orthogonal basis, and that approach will be used in the following.''°

9.3 Binding energy from Newns—Anderson

The energy of the uncoupled metal can be written in terms of the metallic
density of states p(e), as an integral up to the Fermi level

E = 2/6F ple)ede, (9.8)

— 00

where the factor 2 denotes spin-degeneracy. Suppose now that a single atomic
state couples to the metal surface, causing a change dp(€) in the density of
states. The change in energy can then be obtained by integrating dp(e)e over
the occupied states, except care must be taken to ensure that the right number
of electrons is counted in this integration. First of all the adsorbate contributes
a number n,, of electrons (probably 1 or 2), whose initial energy n,¢, must be
subtracted. These electrons are deposited at the Fermi level ep.
Consider the integral of the induced density of states

AN = /_eF op(e) de. (9.9)

This is the number of states that have, by the chemisorption event, been in-
troduced below the Fermi level. If this is nonzero, a number of electrons will
have moved from the Fermi level down into these newly available states. Thus,
a number 2AN (counting spin) of electrons has been removed from the Fermi
level. Taking these electron counting corrections into account, the adsorption
energy can be written as

€FR
Eags = 2/ op(e)ede — 2ANep + ng(ep — €4). (9.10)

The induced density of states, and thus the energy, can be calculated using
Green’s functions. The theory behind this will be briefly sketched next.
The Green’s operator G(z) is defined for some Hamiltonian H by

(z— H)G(z) =1, (9.11)

where z = e+ i\ is a complex number. The retarded Green’s function is defined
by taking the limit A — 0+, which will be implicit in all expressions from now
on. With this convention, the matrix element, G, (¢) = (@|G(€)|) corresponding
to some state |«) is related to the projected density of states p®(e) through*

Im (| G(e)]er) = —imp® (e). (9.12)

*This uses the relation limy_,o
known from complex analysis.

“_;M = % —imd(x), where P is the Cauchy principal value,
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Therefore the full density of states can likewise be obtained from the trace
as ImTr G(e), allowing us to actually calculate binding energies. We need to
calculate the Green’s function G(e) of the combined system in order to be able
to integrate the induced density of states and obtain a binding energy, a task
which is made more complicated by the fact that the basis is non-orthogonal.

By making use of the projection operator for non-orthogonal basis sets,
(4.13), the matrix elements of (9.11) are

> (@ule — H|®e) S5 (DA|G(6)|@)) = (@] Py) = Sy, (9.13)
3\
and hence in matrix notation

(S—H)G(e) =1, G(e) =S7!G(e)S7L, (9.14)

where G (e) is the usual non-orthogonal Green’s function.'!* This can be rewrit-
ten as a perturbation series

G(e) = G%e) + G ()X (€)G(e), (9.15)
with G%(€) being the known Green’s function of the uncoupled system, and
X(e)=V —es, S=1I+s. (9.16)

Then X(€) contains only elements that couple between adsorbate and metal.
Using the perturbation series, all matrix elements G, G, Gkq, Gar are rela-
tively straightforward to write down. With this change, the remaining part of
the calculation mostly resembles the non-orthogonal case,'®® where the binding
energy (9.10) becomes an integral

2 [eF
Eaqs = = / n(e) de + nq(erp — €4) (9.17)

over a phase shift n(e) calculated from the real and imaginary parts A(e) and
A(e) of the self-energy:

_ A9
tann(e) = p— Y (9.18)
These functions are given by
Ale, €)= Z | Xar(€)[26(¢" — er), (9.19)
k
o0 A !
Ale) = 7)/ % de’, (9.20)

with the short-hand A(e) = A(e, €).' The notation P[ refers to the Cauchy
principal value. The e and €'-dependent factors in A(e,€’) can be calculated
directly from the couplings of the transformed DFT Hamiltonian and overlap
matrix, and used to evaluate the rest of the quantities.

The phase shift 7(e), which determines the entire chemisorption energy ex-
cept for the charge transfer terms, is related to the cumulative induced DOS

N(e) = /€ Sp(e')de’ = _ne) (9.21)

oo T
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Figure 9.1: PDOS (arb. units) for O on Au clusters as a function of energy
and cluster size. The Fermi level is indicated. The most visible changes, such
as the one at N = 105, happen when the local facet is modified. However the
impact on binding enerqgy is small compared to that of shell structure.

The projected density of states on the adsorbate, which will be used in the
following, can be calculated from

Ale)

Pale) = e Th O T A0 (922)

9.4 Influence of d-band

Before using the full non-orthogonal model on DFT Hamiltonians, we can ob-
tain a qualitative understanding of this model by playing around with a simple
chemisorption function. The overall reactivity of different metals is well de-
scribed by the d-band model, which attributes the variations to the position or
filling of the d-band.

To do this we must choose the adsorbate level ¢, and the chemisorption
function A(e). We will choose these values such that the projected density
of states (PDOS) on the adsorbates match those calculated with DFT. Figure
9.1 shows the PDOS on the atomic basis functions of O using (4.15). The O
states split into states on either side of the d-band, which can be understood
as bonding and antibonding. The PDOS does not qualitatively change with
cluster size, although some variations are seen near the magic numbers. In all
cases, the antibonding states are largely occupied.

Assume first that the adsorbate couples to an idealized metallic s-band and
d-band, where the coupling to each band can be approximated as semielliptic
contributions VZp,(e) and VZpa(e) to A(e), where ps(e) and pq(e) integrate to
1. Thus

A(e) = 7V2p,(€) + 7V 2pale). (9.23)

Vs and V; determine the coupling strength. s and d bandwidths are chosen to
roughly match those of real Au. On Figure 9.2a, A(e) (full lines) and correspond-
ing A(e) (broken lines) are shown for two different choices of semielliptic d-band.
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Figure 9.2: (a) Two choices of semielliptic A(e) (full lines) and resulting A(e)
(broken lines). Bonding and antibonding states appear at intersections between
A(e) and the shown line ¢ — ¢,. (b) The projected density of states on the
adsorbate showing bonding and antibonding states. (¢) The cumulative induced
DOS N(e). (d) The adsorption energy as a function of the location of the Fermi
level. If the Fermi level is located above the antibonding PDOS peak, d-band
location no longer affects adsorption energy.
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Figure 9.3: Binding enerqgy as a function of Fermi level for two different d-band
locations. The adsorbate contributes a single electron in this example.

One represents an ordinary Au surface while the other is shifted higher in energy
and made more narrow, representing e.g. an undercoordinated site such as may
be found on a cluster. The adsorbate energy level is set to €, = —7eV.

The coupling results in two states with the PDOS shown on Figure 9.2b.
They correspond to clear bonding and antibonding states broadened into reso-
nances by the s-band. Also shown is the induced DOS dp(e). The bonding and
antibonding states are, together and counting spins, capable of accepting four
electrons. However a single state is eliminated from within the d-band, so that
a total of only two extra electrons is induced. The cumulative induced DOS is
shown on Figure 9.2c.

We can now calculate the binding energy, shown on Figure 9.3 as a function
of the Fermi level. Clusters close to a magic-number cluster will presumably
have almost the same chemisorption function, and vary only by having different
Fermi levels. Considering the variation of the energy as a function of Fermi
level therefore corresponds to the transition past a magic number. Since the
Fermi level is located at approximately —4.5eV for Au, the binding energy
varies with the Fermi level but is locally independent of the location and width
of the d-band. In fact, in this simple case, the location of the d-band affects
the adsorption energy only if the Fermi level lies between the bonding and the
antibonding states.

This variation of binding energy with Fermi level agrees with the behaviour
of O on Au clusters close to magic numbers. The adsorption of an O atom with
two empty p-states creates states below the Fermi level that can accept two
electrons in total. These two electrons are removed from the Fermi level, and
therefore an increase of the Fermi level corresponds to an increase in adsorption
energy by twice as much. An analysis of the occupation of the O p-states (using
the DOS expression in terms of the basis functions, (4.15)) reveals that the effect
of increasing the Fermi level on the cluster is not to transfer significantly more
charge to the atom. Instead the increase in binding due to a higher Fermi level
happens because the electrons which would anyway be going from the Fermi
level into the induced states, can now do so from a higher-lying Fermi level.

9.5 Main-group elements

We now use the full non-orthogonal model with DFT Hamiltonians. Consider
O as a first example. A DFT calculation is performed on one of the previously
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Figure 9.4: Newns-Anderson model applied to O on Auss. (a) A(e) and A(e)
for the three p states, with x and y being almost identical. The grey line is
€ — €4 (€q of the three states lie close) whose intersections with A(e) correspond
to energies of created states. The Fermi level is indicated. (b) PDOS. (¢)
Cumulative induced DOS for each state. Total cumulative induced DOS N (€) =
Na(€) + Ny(e) + Na(e).

relaxed Ausg clusters with O adsorbed on it. The DFT calculation uses the
usual parameters, except we use only a single-( basis set for the atoms such that
we only have functions for the actual atomic orbitals. From this calculation we
export the overlap matrix and Hamiltonian and calculate chemisorption function
and other quantities. We consider only the 2p states.

A(e) and A(e) are shown on Figure 9.4a for the p, state (blue) and the p,
and p, states (red), which are degenerate and have the same coupling. The
p. state couples strongly in the region ¢ ~ —11eV while the two other states
couple to higher energies, including the two peaks above the Fermi level that
correspond to electronic shells. The resulting PDOS (Figure 9.4b) shows a clear
state just below the Fermi level, like previously in Figure 9.1. Note that the
exact behaviour of the PDOS above the Fermi level may not be realistic, as
the atomic basis set is not well suited for higher-lying unbound states, and
because the PDOS plotted here is based on (9.22) which does not account for
non-orthogonality. The PDOS therefore does not cannot represent numbers of
electrons, but does show in a sense the presence of states. Higher-lying peaks
are generally exaggerated due to this effect.

The cumulative induced DOS N (¢) for each of the states is shown on Figure
9.4c. They behave in a manner consistent with the simple model considered
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Figure 9.5: (a) PDOS calculated as a sum over py, p, and p. for elements B—
F. Splitting of the adsorbate state generally decreases with 2p filling. (b) Total
N(e) of the three 2p states for each of the elements B-F.

previously: The additional states introduced into the spectrum with the bonding
peaks are cancelled out by the elimination of metallic states, so that the N(e)
remains low e.g. at ¢ = —7.5eV. The antibonding states, however, all lie below
the Fermi energy which means a total of three extra states have been introduced
in the spectrum below the Fermi level. The four electrons from O fill only two
of these, and thus two electrons can be moved from the Fermi level down to the
induced states. Increasing the Fermi level would thereby increase binding by
twice that amount. The hybridization of each state with the unfilled electronic
shells above the Fermi level can be understood as a slight movement of the
states within the electronic shells. If the Fermi level had been located within
these, the relationship between Fermi level and adsorption energy would have
been more complicated. Thus, the simple relationship exists only because of the
gap at the Fermi level. Figure 9.4d shows the sum of the cumulative induced
DOS for each state, which therefore reaches 3.

Figure 9.5 shows the behaviour for the 2p elements B-F. The PDOS (Figure
9.5a) very high splitting between bonding and antibonding states for B, decreas-
ing towards F which has only a fully occupied resonance peak. The filling of
antibonding states is normally taken as the primary reason why Au binds adsor-
bates weakly. It is seen here that it is really N (e) which contains all quantitative
information, and from which conclusions can be drawn.

Finally the PDOS and N(e¢) for H and Li are shown on Figure 9.6. Li
induces a state above the Fermi level from which one electron is contributed,
consistently with expectations. The H coupling is so strong that a low-lying
bonding state appears at—12¢eV, the bottom of the s-band (a similar effect has
been described in Ref. 112, while the antibonding state is above the Fermi level.
Since one state is eliminated from the metallic DOS (at approximately —10¢eV),
the total induced DOS up to the Fermi level integrates to approximately zero.
The electron introduced by H therefore effectively goes on top of the Fermi level,
explaining why it behaves like Li.

In conclusion, we understand from this model that the shift in adsorption
energy across a magic number can be positive or negative depending on whether
states are induced above or below the Fermi level. If excess states are intro-
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Figure 9.6: (o) PDOS and (b) cumulative induced DOS of H and Li on Auss.

duced below the Fermi level, the increase in Fermi level associated with a magic
number will allow electrons to transfer from the higher Fermi level, leading to
stronger adsorption. If states are introduced above the Fermi level, the elec-
trons controbuted by the atom must be deposited onto the Fermi level, instead
leading to weaker adsorption. The case of hydrogen is explained by a strong
splitting with the introduction of a low-lying bonding state far below the Fermi
level, but the elimination of effectively one state from the metal below the Fermi
level. Therefore hydrogen behaves like Li, though a more appropriate picture is
that of a covalent bond.



Chapter 10

Electronic structure and
geometry

Until now we have considered Au clusters which are based on regular structures.
While these structures make it easy to compare adsorption energies since the
local geometry around the adsorbate can be retained across different cluster
sizes, it is not certain how well our conclusions apply to clusters with realistic
structures. As previously mentioned, small Au clusters in particular form quite
varied structures that are far from the regular structures considered previously.
Optimizations of cluster structures based on ab-initio methods with the objec-
tive of finding the globally optimal structures are prohibitively expensive in the
range of cluster sizes we are considering. However if our objective is to obtain
a qualitative idea about the behaviour of real clusters (or even a realistic idea,
given that finite-temperature ensembles will naturally consist of mixtures), then
the exact determination of strict lowest-energy structures is not essential. In
the following we perform simulated annealings on Au clusters using the simple
EMT potential''®"'* implemented in ASAP,''> and then with DFT using the
localized basis sets.

10.1 Molecular dynamics

We will in the following use simulated annealing within molecular dynamics
(MD) as a means to globally optimize structures. This method simulates that
a collection of atoms is cooled down from above its melting point until it com-
pletely freezes, allowing the atoms to gradually arrange themselves the same
way they would in nature. There exist much more efficient global optimization
algorithms than simulated annealing, but since this method simulates a physical
process, it will be guaranteed to produce structures which are at least in some
sense physical. We acknowledge that due to the limited annealing employed
here, there is a possibility that the determined shapes of clusters may be more
like those found at higher temperatures. In particular the creation of regular
lattices is disfavoured by this procedure.

MD simulations solve Newton’s equations of motion for the atomic positions
as a function of time. This requires subsequent calculations of the forces on each
atom to update momenta and positions, and will preserve the total energy of
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Figure 10.1: Energy per atom of Au clusters based on simulated annealing with

EMT, compared to reqular cuboctahedra and icosahedra. The reference energy
is bulk Awu.

the system, but not necessarily the temperature which it is more desirable for us
to control. The temperature can be regulated or fixed by applying an artificial
adjustment of atomic velocities on each iteration. Such a correction is called a
thermostat. Here we use Langevin dynamics, adding a first-order damping term
to Newton’s equations, which for each iteration slightly adjusts the temperature
towards the desired value.

10.2 Simulated annealing with EMT

For clusters of 6-200 atoms we perform a simulated annealing using the em-
pirical potential in the ASAP code.''® Since this is a classical potential, we
would expect it to emphasize efficient atomic packing. The potential makes no
reference to the concept of electrons, so the electronic structure for this series of
clusters will strictly be a function of the geometric structure. The simulated an-
nealing is performed from a starting temperature above the bulk melting point,
and stops at 200 K. The temperature is lowered by 1K for each 200 MD steps.
After the annealing we perform a structure optimization using DFT with the
localized basis and the usual calculation parameters. Thus we can obtain elec-
tronic spectra and total energies that can be compared to the those of previous
chapters.

Figure 10.1 compares the energies of structures obtained with EMT to those
of the regular cuboctahedra and icosahedra generated by the procedure from
Chapter 8. Four independent annealings have been performed, and four dif-
ferent series of randomly generated icosahedral and cuboctahedral clusters are
shown. The EMT structures generally have the lowest energies, with icosahedra
being favourable to cuboctahedra within this size range. The electronic magic
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Figure 10.2: DOS of Au clusters as a function of number of atoms and energy
obtained by simulated annealing using EMT. The white line indicates the Fermi
level.

numbers 34, 58 and 92 are clearly visible as kinks with particularly low energies
for all types of clusters. However, no increase in stability is seen near the geo-
metric shell closings 55 and 147 of icosahedra and cuboctahedra. This suggests
that the electronic structure is much more energetically important than efficient
atomic packing, up to at least 100 atoms. Even beyond this point, the roughly
optimized EMT-based clusters tend to have lower energies than the entirely
regular icosahedra and cuboctahedra.

Figure 10.2 shows the spectrum as a function of cluster size, with shell
structures in agreement with those of cuboctahedra and icosahedra from e.g.
Figure 8.4. Large electronic gaps persists until around 90 atoms. Beyond this
point the electronic shells start to overlap due to the lower symmetry compared
to the icosahedra and cuboctahedra, although shell structure as a whole persists
longer.

10.3 First-principles global optimization

EMT-based structures may in principle be correct to the extent that electronic
structure can be somehow regarded as a strict function of geometric structure.
But the results so far indicate that electronic structure is a more important
factor in the total energy, and thus electronic effects are quite likely to affect
the geometry even for the larger clusters. This prompts us to explicitly include
electronic effects by using DFT to perform the annealing.

Due to the prodigious amount of calculations necessary, we have to make
certain sacrifices of numerical precision. Several parameters lend themselves
for such compromise. The annealing process itself can be shortened, the time
step increased, and the temperature range narrowed. Also the DFT parameters
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can be sacrificed: most importantly the grid spacing and basis set quality. The
amount of vacuum surrounding the cluster must however be kept high to prevent
systematically biasing compact structures. The choices described below are
based on test runs for clusters about 30 atoms in size with the specific objective
of determining the coarsest parameters that still yield a sane behaviour.

An MD simulation aiming for realism might use a time step of only a few fs.
Higher time steps make it difficult to ensure energy conservation because of the
large atomic movements with every step. We choose here to increase the time
step and leave it to the thermostat to damp any energy instabilities by using a
high friction coefficient of 0.06 with the Langevin implementation of ASE. Tests
with the EMT potential have revealed that with a time step larger than about
30fs, atoms will be randomly ejected from the cluster at high speed due to the
poor detailed description of collisions. We have therefore chosen a time step of
24 fs, which does not exhibit such behaviour even during long simulations.

We choose the EMT-optimized clusters as starting points for the DFT an-
nealing. The temperature must be high enough, and the number of MD steps
large enough, for the end result to be independent of the initial structure. Au
clusters melt at considerably lower temperatures than bulk Au. The thermody-
namics of clusters have been investigated in many works, mostly based on MD
simulations with empirical potentials.®!:116 The largest cluster we optimize has
150 atoms and melts at around 625 K,%3 so we start the annealing at 750 K and
end it at 300 K. The temperature is high enough to entirely remodel the surface
structure in all cases.

Two series of MD annealings are performed:

o A “high-quality” series for N—6-60 with grid spacing 0.24 A and the stan-
dard dzp basis set. The temperature is lowered by 1K every 5+ N/2 MD
steps.

o A “low-quality” series for N=6-150 with grid spacing 0.25 A, and the same
basis set except the second of the d-type orbitals is excluded. The tem-
perature is lowered by 1K every 20 MD steps.

Tests with further reduced basis set or grid quality tend to yield some highly
picturesque structures, albeit of little scientific value. At the end of the an-
nealing procedure, a structure relaxation is performed with the standard DFT
parameters such that energies can be directly compared with previous calcula-
tions.

Many of the clusters exhibit recognizable structural motifs. The clusters
with 6-9, 12 and 13 atoms are found to be planar. The clusters from 19-23
atoms consist of the extraordinarily stable Augy tetrahedron” 17118 plus or
minus a few atoms. Several of the larger clusters involve structures suggestive
of tetrahedra in spite of many structural irregularities. The energy per atom as
a function of the number of atoms is shown on Figure 10.3, comparing the two
series of annealed clusters with the four previous series obtained from EMT.
The small DFT-based clusters are, as can be expected, far lower in energy than
those of EMT. The difference is smaller for larger clusters, where the short DFT
annealing times tend to produce many imperfections*.

*An extremely long EMT annealing yields energies that are better than the DFT-based

clusters from about 80 atoms, although the DFT clusters still prevail close to the magic
numbers 92 and 138. However this procedure yields worse energies than those of the EMT
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Figure 10.3: Energy per atom for clusters obtained with simulated annealing
with DFT and EMT. Inset: Magnified view for smaller clusters.

Figure 10.4 shows the DOS as a function of cluster size and energy for the 6
60-atom series (top) and the 6-150 series (bottom). The optimization procedure
tends to yield electronic gaps at the Fermi level not only at the magic-number
clusters, but for almost every cluster. For uneven-numbered clusters, the half-
filled state at the Fermi level is located in the middle of a gap between fully
occupied and fully empty states. The same phenomenon has been found for
other monovalent clusters.??: 1197121 The creation of such a gap is consistent with
the principle of mazimum hardness.'>>'?> The energy is lowered by pushing
all occupied states down, while unoccupied states are pushed up at no cost.
The principle behind Jahn—Teller deformations is in many ways similar. Of
particular note is the qualitative feature of the DOS that the electronic shells
stay at constant energy levels for all sizes, rather than move continuously down
in energy as seen for the EMT structures and regular geometries. The shell
structure is greatly enhanced close to the magic numbers, resolving here into
the same bands as in EMT-based or regular structures.

Figure 10.5 shows the gaps of the clusters calculated as a difference between
states of charge +1 and —1. This reveals that the real magic numbers of these
structures are, surprisingly, 90 and 132 rather than the expected 92 and 138.
Both 90 and 132 are minor spherical shell closings of the simple jellium model
presented in Chapter 6, differing respectively by an s-orbital and a p-orbital from
the subsequent major shell closings. There are strong odd—even alternations
due to the half-filled state for uneven clusters. These are well-known from a
multitude of theoretical models.'?4 12> The alternations can exist as long as the
creation of a gap is possible, implying that they may be found in larger clusters
as well. Alternations have been also shown in molecular adsorption energies for

annealings presented here for most of the smaller clusters. The EMT structures obtained in
this range from long annealing times are mostly decahedral, with icosahedra close to N = 147
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Figure 10.4: DOS of Au clusters obtained by simulated annealing with DFT as
a function of cluster size and energy. The white line indicates the Fermi level.
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Figure 10.5: Gaps, calculated as chemical hardness, for the two series of DFT
structures. This is the difference (I — A)/2, where I is the ionization potential,
and A is the electron affinity. Top: The 6-60-atom series. Bottom: The 6—
150-atom series. For clarity, separate graphs for even and uneven clusters are
shown. The dotted lines indicate the magic numbers 20, 34, 58, 90 and 132.
The last two magic numbers differ from the usual major spherical jellium shell
closings.
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Figure 10.6: Ratios of moments of inertia for the 6-60 (top) and 6-150 series
(bottom) of DFT-annealed Auw clusters. The area between the larger and the
smaller moments is shaded for clarity.

small clusters."?6=128 This would also be expected from our previous attribution
of the Fermi level as a descriptor for reactivity.

Structural trends of the optimized clusters are revealed by considering their
moments of inertia. For each cluster we calculate the three principal moments
of inertia, I; < Iy < I3. Figure 10.6 shows the quantities \/I1 /I3 and \/I2/I;5
as a function of cluster size for the two series of clusters. Large deformations
are characterized by large deviations of either ratio from 1. Small deformations
indicate spherical or otherwise symmetric structures such as the Ausg tetrahe-
dron. These deformations are similar to the well-known distortions of jellium
clusters,” and can also emerge from tight-binding models.''® The deformation
due to shell structure is however a fundamentally non-local phenomenon which
cannot be accounted for using simple atomic potentials. Recall from Figure 10.3
how the EMT potential generates structures of about the same energy as DFT
near magic numbers, while the intermediate EMT-structures, particularly be-
tween 34 and 58 atoms, are systematically higher in energy than those obtained
from DFT. The effects of electronic shell structure are essential to the determi-
nation of correct geometries of clusters well above hundred atoms in size, with
deformations as large as 10-15% even at N = 150 which is the largest cluster
considered.
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Conclusion

A localized basis set implementation in GPAW has been presented which pro-
vides a very efficient alternative to the real-space code, as demonstrated by most
of the results presented later in this work. More systematic testing of further
of basis sets beyond dzp is desirable in the future. O(N) or other low-scaling
methods would also be a logical next step to improve performance on systems
beyond 200-300 atoms.

Using the real-space representation of GPAW, we have performed large-scale
DFT calculations on Au and Pt clusters with up to 1415 atoms using 65536 cores
on the BlueGene /P supercomputer at Argonne National Laboratory. From these
calculations it appears that the size-dependent chemical properties of clusters,
as measured by adsorption of O and CO, roughly converge with size at 600
atoms for Au and 200 atoms for Pt, although small variations within 0.1eV of
the bulk limit exist. The tendency of small clusters to bind more strongly can to
some extent be understood as a geometric effect attributable to small facet sizes,
although variations of adsorption energy on Au do not correlate with geometry
because of profound electronic effects.

Using the basis set code, we have studied the trends in adsorption energy of
atomic adsorbates on full ranges of Au cuboctahedron-based clusters, usually
up to 200 atoms. It is revealed that electronic size effects relating to the jellium-
like electronic structure entirely dominate the chemical properties of noble-metal
clusters in this size range, with oscillations in adsorption energy on the order of
1eV depending on adsorbate. While the DOS of the d-states varies little beyond
50 atoms, the s-states split into electronic subshells that fill one by one as cluster
size increases. From calculations with several different atomic adsorbates, Au
clusters can be categorized as alkali-like, noble or halogen-like depending on
their number of atoms relative to magic numbers. At a magic number, the
Fermi level jumps across the electronic gap into the next electronic shell, from
which it is more easily donated to an adsorbate.

Transition metal clusters of Ru, Rh, Pd and Pt exhibit similar shell structure
of the s-electrons, but the Fermi level is lodged within the d-band preventing
any significant variation. Adsorption energies on such clusters therefore show
no trace of shell structure. The main variation in binding energy on these
clusters stops around 50-60 atoms when facets are sufficiently large that the
local geometry around the adsorbate does not change considerably with cluster
size anymore.

81
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Using a Newns—Anderson model, we have found that the abrupt variations
of adsorption energy at magic numbers can be understood from the location
of adsorbate-induced states within the cluster relative to the Fermi level. For
adsorbates that induce states only below the Fermi level, electrons will be trans-
ferred from the Fermi level down into the induced states, such that variations
of the Fermi level directly correspond to variations of the adsorption energy.
Adsorbates that only induce states above the Fermi level have the opposite
behaviour. H displays a more complex behaviour, where a bonding state well
below the Fermi level is cancelled by the elimination of one state from the clus-
ter, which implies that H effectively adds an electron to the cluster.

We have performed simulated annealings of Au clusters with DFT using very
coarse parameters. The shell structure is similar to the previously considered
structures near the magic numbers, but differs markedly away from magic num-
bers. Electronic gaps at the Fermi level are created for all clusters up to 150
atoms, which is the maximum size studied. The opening of gaps is facilitated
by large geometric deformations of the clusters, with magic-number clusters be-
ing spherical and other clusters being mostly oblate. The complex relationship
between electronic and geometric effects persists with deformations of 10-15 %
well beyond 100 atoms.
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