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Front over: A visualization of the distribution of eletroni energy levels ofgold lusters as a funtion of number of atoms (6�150 atoms on the horizontalaxis) and energy (vertial axis). The line is the energy level suh that all stateswith lower energy are �lled. See also Figure 10.4. The 20-atom gold luster, atetrahedron, is displayed below.



AbstratNano-sale strutures are inreasingly applied in the design of atalysts andeletroni devies. A theoretial understanding of the basi properties of suhsystems is enabled through modern eletroni struture methods suh as densityfuntional theory. This thesis desribes the development of e�ient approahesto density funtional theory and the appliation of these methods to metalnanopartiles.We desribe the formalism and implementation of loalized atom-enteredbasis sets within the projetor augmented wave method. Basis sets allow for adramati inrease in performane ompared to plane-wave or real-spae meth-ods, but sari�e auray in doing so. This approah is implemented in theGPAW ode where it omplements the existing real-spae approah. For boththe real-spae and basis set methods we implement parallel ode to adapt GPAWfor large-sale alulations on the BlueGene/P arhiteture.Real-spae alulations are performed to investigate the onvergene of hem-ial properties of Au and Pt lusters toward the bulk limit. Spei�ally we studyhemisorption of O and CO on ubotahedral lusters up to 1415 atoms using upto 65536 CPU ores. Small lusters almost universally bind more strongly thanlarge ones. This an be understood mostly as a geometri e�et. Convergene ofhemisorption energies within 0.1 eV of bulk values happens at about 200 atomsfor Pt and 600 atoms for Au. Partiularly for O on Au, large variations due toeletroni e�ets are seen for smaller lusters.The basis set method is used to study the eletroni e�ets for the ontiguousrange of lusters up to several hundred atoms. The s-eletrons hybridize to formeletroni shells onsistent with the jellium model, leading to eletroni �maginumbers� for lusters with full shells. Large eletroni gaps and jumps in Fermilevel near magi numbers an lead to alkali-like or halogen-like behaviour whenmain-group atoms adsorb onto gold lusters.A non-self-onsistent Newns�Anderson model is used to more losely studythe hemisorption of main-group atoms on magi-number Au lusters. Thebehaviour at magi numbers an be understood from the loation of adsorbate-indued states relative to the Fermi level.The relationship between geometri and eletroni e�ets in Au is studiedby rough �rst-priniples simulated annealings with up to 150 atoms. Non-magilusters are found to deform onsiderably, reduing the total energy through thereation of gaps. Clusters larger than 100 atoms an elongate systematially byup to 15%. This demonstrates a omplex interdependene between eletroniand geometri struture in a size regime whih in most ases has been studiedsemiempirially. iii
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ResuméStrukturer i nanoskala �nder i stigende grad anvendelse inden for design afkatalysatorer og elektroniske enheder. En grundlæggende teoretisk forståelse afsådanne systemer muliggøres af moderne elektronstrukturmetoder såsom tætheds-funktionalteori. Denne afhandling omhandler udviklingen af e�ektive metoderinden for tæthedsfunktionalteori samt anvendelsen af disse metoder på metal-nanopartikler.Vi beskriver formalismen og implementationen af lokaliserede atomare ba-sissæt i PAW-metoden. Basissæt muliggør betydeligt hurtigere udregningerend planbølge- eller realrumsgittermetoder, dog på bekostning af beregningsnø-jagtighed. Metoden implementeres i programmet GPAW, hvor den supplererden eksisterende gittermetode. For både realrums- og basissætmetoden imple-menteres parallelle metoder med henblik på afvikling af store beregninger påBlueGene/P-arkitekturen.Ved hjælp af gitterbaserede beregninger undersøges konvergensen af kemiskeegenskaber for store Au- og Pt-klynger. Spei�kt udregnes kemisorptionsen-ergier for O og CO på kuboktahedrale klynger med op til 1415 atomer vedbrug af 65536 CPU-kerner. Små klynger binder næsten universelt stærkere endstore, hvilket kan forstås som en primært geometrisk e�ekt. Kemisorptionsen-ergien konvergerer inden for 0,1 eV af krystalgrænsen ved henholdsvis 200 og600 atomer for Pt og Au. Der ses særligt for O på Au store variationer for demindre klynger, som kan henføres til elektroniske e�ekter.Basissætmetoden bruges til at undersøge disse elektroniske e�ekter for ensammenhængende følge af klynger op til �ere hundrede atomer. s-elektronernehybridiserer i elektronskaller i overensstemmelse med jelliummodellen, og dissefører til elektroniske �magiske tal� for klynger med fyldte skaller. Store elek-troniske gab og hop i Fermienergi ved magiske tal kan medføre alkali- ellerhalogenagtig opførsel, når hovedgruppeatomer binder til guldklynger.Der formuleres en ikke-selvkonsistent Newns�Anderson-model, som brugestil nærmere at undersøge kemisorptionen af hovedgruppeatomer på magiskeguldklynger. Opførslen kan forstås ud fra plaeringen af adsorbatindueredetilstande i forhold til Ferminiveauet.Forholdet mellem geometriske og elektroniske e�ekter i guldklynger under-søges ved hjælp af simulerede afkølinger baseret på tæthedsfunktionalteori medgrove parametre op til 150 atomer. Energien af ikke-magiske klynger mindskesgennem en betydelig deformation hvorved der åbnes et elektronisk gab. Klyn-ger på mere end 100 atomer kan således systematisk deformere med op til15%. Dermed vises en kompleks gensidig afhængighed af elektronisk og ge-ometrisk struktur i et størrelsesregime som ellers primært har været behandletmed semiempiriske metoder. v
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Part IComputational methods inquantum mehanis
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Chapter 1IntrodutionThis thesis onerns the hemial properties of metal nanopartiles and the de-velopment of theoretial methods to desribe them. In this work, a nanopartileor luster refers to an assembly of a few to a few thousand atoms of a hemialelement whih would normally form a bulk rystalline phase. A typial size ofsuh a partile may be a few nanometres, small enough that quantum mehan-ial e�ets ause the partile to behave di�erently from the bulk material.With modern omputers and numerial methods it is possible to preditthe behaviour of quantum mehanial systems using ab initio methods suh asdensity funtional theory (DFT).1, 2 The term ab initio or �rst priniples sig-ni�es that a method is based on solving fundamental physial equations suhas the Shrödinger equation. For systems with more than a few partiles, theShrödinger equation itself is too omputationally demanding to solve diretly,and omputational methods must rely on a range of reformulations and ap-proximations to make omputations tratable. We desribe one suh approah,where an atomi orbital basis set is ombined with the projetor augmentedwave method.3, 4 This approah is implemented in GPAW, an eletroni stru-ture ode based on a more aurate but also more omputationally expensivereal-spae representation of wavefuntions.5�7 The loalized basis set is sim-ilar to the Siesta ode, with the di�erene that Siesta is based on simplernorm-onserving pseudopotentials.8, 9 The ombination in GPAW of the high-performane loalized basis set with the more aurate real-spae method pro-vides a number of advantages. In partiular, the basis set is useful for alulatingstrutures e�iently, while the real-spae ode an be used to evaluate bindingenergies whih are less aurate with the basis set. The basis set is also useful forappliations that mathematially emphasize a �nite or loalized basis set. Forexample the basis set is now used for Green's funtion based eletron transportalulations.10 Another development for the GPAW ode is the parallelizationof the real-spae ode for massively parallel alulations. The main advantageof real-spae methods is the ability to parallelize over many quantities at thesame time, whih allows the alulations to sale e�iently up to thousands ofproessors.The seond part of this thesis applies these methods with the main objetiveof understanding the hemial behaviour of nanopartiles, fousing on gold.Gold is normally thought of as inert, but this really applies to bulk gold. Thehemistry of gold is in fat extremely diverse.11�13 Due to the large nulear3



4 Chapter 1. Introdutionharges, ore eletrons of the late transition metals exhibit relativisti behaviour,whih alters the eletrostati sreening felt by the remaining eletrons. Therelativisti e�ets lead to a ontration of the s eletrons ompared to d eletrons,whih in the end is responsible for most of the unusual properties of gold.14�16These relativisti e�ets, along with the full d-shell whih plaes less energetiemphasis on atomi paking, ause gold lusters to form strutures that di�ernot only from those of other late transition metal lusters, but also those of theother noble metals.17 Small gold lusters of di�erent size have been predited toform a large variety of strutures inluding �akes and ages.18, 19 A signi�anteletroni e�et of gold lusters is the organization of the s-eletrons into globaleletroni shells that extend over the entire luster. Suh shell struture isfound in many free-eletron-like materials, partiularly the alkali metals, andgives rise to eletroni magi numbers where lusters have inreased stabilityand large eletroni gaps.20�23 Many properties of lusters depend sensitively onthe eletroni shell struture inluding their hemistry.24 However, limitationsin available omputational power has prevented thorough modelling of largerlusters.The e�ieny of the loalized basis set allows us to study, at modest ompu-tational ost, suh e�ets for ontiguous ranges of typially 20�200 atoms. We�nd that large size-dependent variations in binding energy are assoiated withthe shell struture of gold lusters. These alulations are performed for manydi�erent adsorbates, and omparisons are made between lusters of several dif-ferent metals. A reurring theme in these alulations is the study of overalltrends from large numbers of systems, although this happens at the sari�e ofauray of the individual alulations. This is probably the �rst omputationalstudy from �rst priniples of suh large ensembles of systems.The thesis is strutured as follows.
• Chapter 2 gives a brief introdution of omputational methods in quantumtheory, inluding density funtional theory whih pratially all results inthis work are based on.
• Chapter 3 desribes the projetor augmented wave method and the mathe-matial formalism of the atomi basis set expansion. An initial implemen-tation was written in ooperation with Maro Vanin and doumented inRefs. 25, 26, although many further developments have taken plae sine.
• The generation of basis funtions from atomi referene alulations isdesribed in Chapter 4 along with other issues of pratial interest tobasis sets.
• Chapter 5 disusses the e�ieny and parallelization of the basis set ode,and explains the implementation of some of the more important steps ina alulation. Performane benhmarks are inluded. Adaptation of thereal-spae ode for massively parallel alulations is further desribed.
• Chapter 6 ats as an introdution to Part II of this thesis, wherein theproperties of nanopartiles are investigated. Brief desriptions are givenof the geometri strutures of lusters and relevant theoretial methods.
• Large-sale DFT alulations of adsorption of O and CO on Au and Ptlusters with up to 1415 atoms are presented in Chapter 7, and the e�etof faet size is disussed.



5
• The e�et of eletroni shell struture on the hemistry of lusters, fousingon gold, is studied in detail in Chapter 8 by onsidering adsorption of arange of adsorbates.
• In Chapter 9 a non-selfonsistent Newns�Anderson model is used to an-alyze the bonding of several adsorbates using Hamiltonian matries ob-tained from DFT alulations.
• In Chapter 10, gold luster strutures are optimized using simulated an-nealing with simple EMT and DFT.
• Chapter 11 summarizes and onludes the work.
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Chapter 2Theoretial methodsThis hapter gives a brief review of quantum mehanis from the perspetive ofomputationally prediting the properties of an interating system of eletronsand nulei.2.1 Quantum mehanisThe properties of matter at small sales are desribed by the Shrödinger equa-tion. For a system with N partiles, the (time-independent) Shrödinger equa-tion is a di�erential equation for the many-body wavefuntion Ψ(r1, r2, . . . , rN )with a total of 3N spatial parameters, and this funtion entirely haraterizesthe system. The storage required to expliitly represent suh an objet in aomputer is therefore exponential in the number of partiles, making numer-ial alulations in this form impossible beyond a small number of partiles.This is ommonly referred to as the �exponential wall�.27 Computational ap-proahes to quantum mehanis are therefore generally based on methods thatreast the Shrödinger equation into more tratable forms by applying severalapproximations.Beause of the large ratio between eletroni and nulear masses, eletronsand nulei exhibit quantum mehanial behaviour on di�erent length and timesales. The Born�Oppenheimer approximation assumes that the wavefuntionof a ombined eletroni and nulear system an be expressed as a produt ofan eletroni and a nulear wavefuntion. Going one step further, the nuleian for most purposes be assumed to behave like lassial point partiles. Thisredues a quantum mehanial alulation to a purely eletroni problem, whihwill be the subjet of the next several setions.2.2 The Hartree�Fok methodEletrons are by the symmetrization postulate fermions, meaning that ele-troni wavefuntions are antisymmetri with respet to the interhange of anytwo position variables ri and rj . From any set of orthogonal single-partilestates, an appropriately antisymmetri many-body wavefuntion an be formedas a Slater determinant from the single-partile states. Any many-body wave-funtion an be written as a linear ombination of suh determinants. In the7



8 Chapter 2. Theoretial methodsHartree�Fok method it is assumed that the many-body wavefuntion an bewritten as a single suh determinant. This assumption leads to a set of equa-tions, the Hartree�Fok equations, for eah single-partile state minimizing thetotal energy. These equations an be solved numerially by iteratively adjustingwavefuntions and potential until obtaining self-onsistent single-partile statesand potential.In the Hartree�Fok method, the eletroni interation energy an be un-derstood as being omprised of two terms: the diret or Hartree term, and theexhange term. The Hartree term is the Coulomb energy of the full hargedensity, so it inorporates the Coulomb repulsion of every eletron with everyeletron. Clearly, eah eletron interats with every other eletron, but not withthe spei� part of the harge distribution that it itself ontributed. One termin the exhange ontribution an be understood as a orretion whih ompen-sates for this self-interation part in the Hartree energy. The exhange term asa whole is a manifestation of Pauli exlusion.While the Hartree�Fok approah is suited for numerial alulations, it isstill an approximate many-body method. As mentioned, a general many-bodywavefuntion must be desribed as a linear ombination of multiple Slater deter-minants. Any disrepany between exat Hartree�Fok theory as ompared to afull linear ombination of Slater determinants, whih yields the exat many-bodywavefuntion, is somewhat vaguely alled orrelation. Methods that improve onHartree�Fok theory through various ways to inlude orrelation are alled post-Hartree�Fok methods. Within these methods, auray generally omes at theprie that the omputational ost sales with high powers of the number ofeletrons, and so these aurate methods are limited to small systems.2.3 Density funtional theoryDensity funtional theory (DFT) is an approah to solving the many-body prob-lem using the eletron density instead of the many-body wavefuntions. DFTevolved from the Thomas�Fermi theory, a more intuitive approah; Hohenbergand Kohn later developed the onept as a formally orret many-body method.1The foundation of DFT is the insight that the ground-state eletron density
n(r) of an eletroni system is su�ient to entirely haraterize that system.Thus any property whih an be derived from the many-body wavefuntion anin fat be derived knowing only the ground-state density. The total energy of asystem of interating eletrons in a potential an be expressed as a funtional ofthe eletron density, and the ground-state density variationally minimizes thisfuntional. All one has to do is, in priniple, to perform suh a minimization.This turns out to be triky, sine it is not known how to evaluate quantitiessuh as the energy diretly from an eletron density without �rst using it toalulate the wavefuntions.Kohn and Sham suggested an approah to solve this problem by introdu-ing a �tional system of non-interating partiles represented by single-partilewavefuntions in a shared e�etive potential.2 In this piture the potential mustaount for all interations. Subjet to a few representability issues, suh aswhether the true ground-state eletron density an be expressed from single-partile wavefuntions, a universal form of the e�etive potential an be shownto exist whih makes the method formally exat. Expliit expressions for phys-



2.4. Exhange�orrelation funtionals 9ial quantities an then be written down in terms of the Kohn�Sham wavefun-tions and the eletron density, suh as the energy:
EKS =

∑

n

fn 〈ψn|T̂ |ψn〉+

∫∫
ρ(r)ρ(r′)

‖r− r′‖
drdr′ + Exc[n]. (2.1)Here the energy is split into three terms. The �rst term is the single-partilekineti energy of the Kohn�Sham states |ψn〉 weighted by their oupation num-bers fn. The seond term is the Coulomb energy of the total harge distribution

ρ(r) in the system, inluding the eletron density and the nulear point harges.The third term Exc[n] is a density funtional whih must desribe the e�et ofthe partile interations otherwise negleted in the single-partile piture, andshould therefore aount for exhange, as onsidered in Hartree�Fok theory,and orrelation. It is alled the exhange�orrelation (XC) funtional. No oneknows the true XC funtional, and so it is generally approximated. This is afundamental point of DFT as it is the only �unontrolled� approximation.From the energy expression one an, similarly to the Hartree�Fok method,derive a variational equation for the Kohn�Sham states. These Kohn�Shamequations an then be solved on a omputer using an iterative proedure. Roughlyspeaking this involves hoosing an initial eletron density and repeating threesteps:
• Calulate potential from density
• Calulate wavefuntions from potential by solving Kohn�Sham equations
• Calulate density by oupying the states with lowest energyThe proedure stops when density, potential and wavefuntions are self-onsistent,in the sense that things no longer hange on every iteration. At that point onehas obtained the true ground-state density and energy of the system, at least ifusing the exat XC funtional.2.4 Exhange�orrelation funtionalsAs previously mentioned, there exists a general XC density funtional whihmakes the Kohn�Sham approah exat. No one knows what the exat funtionallooks like, so it is instead approximated.A natural starting point for suh an approximation is the homogeneous ele-tron gas, whih is entirely haraterized by the onstant density. In this simplease the exhange and orrelation funtional an be obtained. This ase leadsto the loal density approximation (LDA): The assumption that eah point inspae ontributes an XC energy whih depends only on the density n(r) in thatpoint, and that this energy is the same as that of an eletron gas with the samedensity.A better approximation an be obtained by extending the LDA so thateah point ontributes an amount to the energy depending both on the valueand the gradient of the density in that point. These approximations are alledgeneralized gradient approximations (GGAs). The most widely used one isprobably the Perdew�Burke�Ernzerhof (PBE) funtional.28



10 Chapter 2. Theoretial methodsA modi�ation of the PBE funtional, RPBE, is spei�ally designed toprovide a better desription of metal surfaes and adsorption (at the expense of aslightly worse desription of bulk metals).29 Throughout this work, alulationsgenerally employ the RPBE funtional.2.5 PseudopotentialsFor all exept the smallest atoms, eletrons an be divided into tightly boundore states and loosely bound valene states. The strong Coulomb attrationfrom the nuleus loalizes the ore states so that they do not interat muh withstates on other atoms. Core states are therefore not essential to a numerialdesription of hemistry. However the valene states must be orthogonal tothe ore states, and therefore osillate rapidly within the ore region. Suhosillations are shown on Figure 2.1 for the 4s atomi orbital of iron (blakline). The aurate representation of ore states and osillatory valene statesin terms of real-spae grids or plane-waves is expensive, and unneessary in thesense that the hemial properties of an atom depend mostly on the behaviour ofeletrons far from the nuleus. Pseudopotential methods deal with this problemby replaing the steep potential of the nulei as well as the ore eletrons witha smooth e�etive potential felt by the valene eletrons. The exlusion of orestates from the alulation proedure is alled the frozen ore approximation.Within the smooth potential, the osillatory behaviour of valene states anbe eliminated, resulting in smooth, nodeless pseudowavefuntions whih areheap to represent numerially. This is shown for the HGH pseudopotentials30on Figure 2.1 (green). The pseudowavefuntions are idential to the real (�all-eletron� or AE) wavefuntions far from the nuleus, but are replaed by smoothfuntions lose to it.Clearly the pseudopotential approah makes sense only if it an be guaran-teed that the pseudopotentials aurately re�et the behaviour of real atoms. Aommon way to do this is to add Kleinman�Bylander projetors to the Hamil-tonian.31 These are �xed funtions whih, by their salar produts with thepseudowavefuntions, adjust the energy of di�erent states depending on theirangular momentum and radial struture. These an be hosen to ensure thatthe atomi states have the orret energies and response to perturbations. Thelatter ensures better transferability of the pseudopotential between di�erent sys-tems.32 While the pseudopotential approximation is oneptually simple, thegeneration of good pseudopotentials an be quite ompliated due to the largenumber of parameters involved.33There are two main kinds of pseudopotentials: norm-onserving and morereently �ultrasoft�. With norm-onserving pseudopotentials it is expensive torepresent highly loalized states, suh as the d-states of transition metals. Fromthe �gure, the 3d pseudowavefuntion is signi�antly less smooth than the 4sone beause the 3d state must be normalized to ontain one eletron. Ultrasoftpseudopotentials avoid the norm-onservation restrition through more ompli-ated mathematis.34 This allows smooth wavefuntions to be used also forloalized states. The projetor augmented wave method (red urves on Figure2.1) is similar to ultrasoft pseudopotentials, but uses a transformation to alsoretain the all-eletron information, thus eliminating pseudopotential transfer-ability errors.
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Figure 2.1: Pseudopotential approahes for the 4s and 3d valene states of iron.Atomi orbitals (blak) are replaed by smooth, norm-onserving pseudowave-funtions (green). Loalized states suh as the 3d state an be made more smoothby ultrasoft pseudopotentials or the projetor augmented wave method (red).2.6 Basis setsTo perform a DFT alulation one must hoose a representation of the Kohn�Sham states, and this hoie has signi�ant impliations on performane.One way is to expand the wavefuntions as linear ombinations of plane-waves, then variationally optimize the oe�ients. Plane-waves are eonomialin the sense that relatively few plane-waves an represent a typial wavefun-tion well. Plane-waves are also omplete, and a single parameter, namely theenergy uto�, an be used to ontrol the quality of the basis set without anyupper limit on preision. The number of plane-waves is generally large enoughthat iterative methods must be employed to solve the Kohn�Sham equations.35A disadvantage of plane-waves methods is that eah plane-wave overlaps withatoms no matter their distane. Fast Fourier transforms, an integral elementof plane-wave methods, are known to parallelize poorly, limiting the number ofproessors that an e�iently ontribute to the same alulation.More salable methods must rely on loalization to some extent. GPAWnormally uses real-spae grids to represent the wave-funtions. These requiresigni�antly more memory than a plane-wave basis of equivalent quality, but arewell suited for parallelization.5, 6 This allows e�ient division of the system intospatial domains, with limited ommuniation between adjaent domains. Thereal-spae representation is similar to plane-waves sine its quality an inreasedto any desired preision by reduing the grid spaing.A di�erent approah is to use atomi basis sets, where a limited set of �xedbasis funtions is assigned to eah atom. Eah funtion is hosen arefullyso only few basis funtions are required to represent the wavefuntions. Thisgreatly speeds up the solution of the Kohn�Sham equations, and several oper-ations whih sale quadratially in plane-wave or real-spae methods will salelinearly due to the loalization of the basis funtions. The main disadvantageof basis set approahes is that no single parameter an pratially ontrol the



12 Chapter 2. Theoretial methodsauray, and the preision an only approah that of plane-wave or real-spaemethods. Atomi basis sets an be based on numerial atomi orbitals (NAO),where the atual orbitals are sampled on a grid and used as basis funtions. Theyan also be based on simple analyti funtions suh as Gaussians or exponen-tials; ommonly referred to as Gaussian-type orbitals (GTO) and Slater-typeorbitals (STO). The advantage of suh methods is that matrix elements anbe alulated analytially, although more basis funtions are needed than withNAO-based approahes.The spei� subjet in the following is the implementation of a basis set ofnumerial atomi orbitals in GPAW, based on the projetor augmented wavemethod.



Chapter 3The projetor augmentedwave methodOne of the main developments disussed in this thesis is the use of loalizedatomi orbitals as a basis set to desribe eletroni wave funtions within theprojetor augmented wave method (PAW). In the light of the brief review in theprevious hapter, it should be lear how this ombination �ts among the existingmethods. A more omplete and tehnial derivation of this spei� method isgiven in this hapter.The PAW method by Blöhl3, 4 is an approah to solving the Kohn-Shamequations whih is based on a transformation T̂ between smooth, omputation-ally onvenient pseudowavefuntions |ψ̃n〉 and the rapidly osillating all-eletronwavefuntions |ψn〉:
|ψn〉 = T̂ |ψ̃n〉 . (3.1)Numerial alulations are performed using the pseudowavefuntions |ψ̃n〉, whilethe transformation T̂ ensures that the all-eletron information is retained. Thismakes PAW alulations in many ways similar to ultrasoft pseudopotentials,36while PAW is in fat an all-eletron method.3.1 Transformation operatorThe transformation operator T̂ is de�ned as the identity operator plus a loalontribution around eah atom a. It is de�ned to map a set of hosen smoothfuntions |φ̃ai 〉 for eah atomi valene state i to the all-eletron eigenstates |φai 〉:

T̂ = 1̂ +
∑

ai

(|φai 〉 − |φ̃
a
i 〉) 〈p̃

a
i | . (3.2)The funtions |φai 〉 and |φ̃ai 〉 are alled all-eletron partial waves and pseudopartial waves, respetively. They are hosen to be equal outside a ertain radiusof a, so that the PAW transformation as a whole has no e�et in regions farfrom atoms. The funtions 〈p̃ai | are Kleinman�Bylander projetors. They areloalized, and the region in whih they are nonzero is alled the augmentation13



14 Chapter 3. The projetor augmented wave methodregion. Together with the pseudo partial waves they should form a ompleteorthonormal basis within this region:
∑

i

〈r|φ̃ai 〉 〈p̃
a
i |r

′〉 = δ(r− r
′) where 〈p̃ai |φ̃

a
j 〉 = δij . (3.3)As an all-eletron method, the PAW method is exat if projetors and partialwaves form a omplete basis around eah atom, and the augmentation regionsof distint atoms do not overlap.∗3.2 Atomi orretions and expetation valuesThe expetation value of a loal operator Ô an be written in terms of the pseu-dowavefuntions by inserting the PAW transformation (3.2) and industriouslyapplying the ompleteness relation (3.3). Eventually

〈Ô〉 =
∑

n

fn 〈ψ̃n|T̂
†ÔT̂ |ψ̃n〉

=
∑

n

fn 〈ψ̃n|Ô|ψ̃n〉+
∑

aij

(
〈φai |Ô|φ

a
j 〉 − 〈φ̃

a
i |Ô|φ̃

a
j 〉
)
Da

ji +Ocore (3.4)where
Da

ji =
∑

n

〈p̃aj |ψ̃n〉 fn 〈ψ̃n|p̃
a
i 〉 (3.5)are alled atomi density matries. The �rst term in (3.4) involves only thepseudowavefuntions and an be alulated e�iently with real-spae grids orplane-waves. The seond term involves the �xed atomi quantities 〈φai |O|φaj 〉and 〈φ̃ai |O|φ̃aj 〉. These alulations involve the rapidly osillating all-eletronwavefuntions, but they an be performed in a spherial oordinate system andstored one and for all for eah type of atom. The only quantities in the seondand third terms whih depend on the system are Da

ij . The salar produts
〈p̃ai |ψ̃n〉 are heap to evaluate sine the projetors are loalized, and sine bothfuntions are smooth. The last term in (3.4) is an extra, �xed ontribution Ocoredue to the frozen ore states.The important impliation of expression (3.4) is that the alulations aredivided into an extended pseudo-part suitable for grid or plane-wave represen-tations, whih will aount for most omputational ost assoiated with themethod, oupled to a set of onstant, pre-evaluated atomi orretions onlythrough the atomi density matries Da

ij . Most importantly the eletron den-sity is deomposed as
n(r) = ñ(r) +

∑

a

na(r−R
a)−

∑

a

ña(r−R
a), (3.6)

∗Usually a ouple of projetors are used for eah atomi valene state. The neessaryadditional all-eletron partial waves an be generated by radially integrating the atomi Kohn�Sham equations using an energy whih is not an eigenvalue.



3.3. Compensation harges 15where
ñ(r) =

∑

n

fn 〈ψ̃n|r〉 〈r|ψ̃n〉+
∑

a

ña
c (r−R

a), (3.7)
na(r) =

∑

ij

〈φai |r〉 〈r|φ
a
j 〉D

a
ji + na

c (r), (3.8)
ña(r) =

∑

ij

〈φ̃ai |r〉 〈r|φ̃
a
j 〉D

a
ji + ña

c (r). (3.9)Here an arbitrary pseudo-ore density ña
c (r) has been inluded in (3.7) whih isanelled by the atomi orretion (3.9).3.3 Compensation hargesA reurring feature in the PAW method is the addition of something to a quan-tity, whih is anelled out by subtrating the atomi expansion of the samequantity. The reason for doing so is to make the wavefuntions, density andpotential as smooth and well-behaved as possible. In this way, ompensationharges Z̃(r) are added around eah atom to the harge distribution to eliminatethe diret eletrostati interation between atoms in favour of having a singlesmooth harge distribution whih an be treated on a grid. Considering againthe Kohn�Sham energy expression, the harge density is the sum

ρ(r) = n(r) + Z(r) (3.10)of the all-eletron density n(r) and the atomi point harges Z(r). The om-pensation harges are used to regroup the harge into two neutral distributions
ρ(r) = ρ̃(r) +

∑

a

ρa(r−R
a)−

∑

a

ρ̃a(r−R
a)

︸ ︷︷ ︸neutral , (3.11)suh that the eletrostati singularities near the nulei disappear in ρ̃(r). Theatomi harges are
ρa(r) = na(r) + Za(r), (3.12)
ρ̃a(r) = ña(r) + Z̃a(r). (3.13)Going one step further, the ompensation harges are de�ned as a linear om-bination
Z̃a(r) =

∑

L

Qa
Lg̃

a
L(r) (3.14)of smooth loalized funtions g̃aL(r) with real spherial harmonis YL(θ, φ) asangular parts. L is a omposite index for the usual angular indies (l,m).The oe�ients Qa

L are uniquely de�ned by requiring that the ompensationharges must anel out the multipole moments of the harges represented onradial grids. Thereby all eletrostati interations between atoms are ontainedin ρ̃(r) up to any hosen order. This makes the expansion oe�ients Qa
L afuntion of the atomi density matries Da

ij . A omplete derivation is given byRostgaard.37



16 Chapter 3. The projetor augmented wave method3.4 Total energyWith these modi�ations, the total Kohn�Sham energy (2.1) an be written asthree rather elaborate terms
E = Ẽ +

∑

a

Ea −
∑

a

Ẽa (3.15)with
Ẽ =

∑

n

fn 〈ψ̃n|T̂ |ψ̃n〉+
1

2

∫∫
ρ̃(r)ρ̃(r′)

‖r− r′‖
drdr′

+
∑

a

∫
ñ(r)v̄a(r−R

a) dr+ Exc[ñ], (3.16)
Ea =

∑

ij

〈φai |T̂ |φ
a
j 〉D

a
ji +

1

2

∫∫
ρa(r)ρa(r′)

‖r− r′‖
drdr′

+ Exc[n
a] + Ecore

kin , (3.17)
Ẽa =

∑

ij

〈φ̃ai |T̂ |φ̃
a
j 〉D

a
ji +

1

2

∫∫
ρ̃a(r)ρ̃a(r′)

‖r− r′‖
drdr′

+ Exc[ñ
a] +

∫
ña(r)v̄a(r) dr. (3.18)Here Ecore

kin is the �xed kineti energy of the frozen ore states, and v̄a(r) isan arbitrary loalized potential whih is �added and subtrated� similarly toompensation harges to make the total potential as smooth as possible. Notehow the XC energy an be divided in this way only if it is assumed to be loal,so that Eq. (3.4) applies. Non-loal XC funtionals an be inorporated but areonsiderably more ompliated.38A set of Kohn�Sham equations an be derived by requiring that the pseu-dowavefuntions should be simultaneously orthogonal and minimize the totalenergy, whih will be done in the ontext of loalized basis sets in the following.3.5 Basis set formalismThe pseudowavefuntions |ψ̃n〉 are expanded as linear ombinations
|ψ̃n〉 =

∑

µ

|Φµ〉 cµn (3.19)of atom-entered, loalized basis funtions |Φµ〉 with oe�ients cµn. The oef-�ients shall be variational parameters, while the basis funtions are �xed. Tohave a working ground-state alulation proedure, we must implement eahof the Kohn�Sham steps, i.e. we must be able to alulate density from thewavefuntions, alulate the potential from the density (this step is unrelatedto the basis), and be able to solve the Kohn�Sham equations. Most quantitiesare onveniently expressed in terms of the density matrix
ρµν =

∑

n

cµnfnc
∗
νn (3.20)



3.5. Basis set formalism 17The total energy, whih we want to minimize, depends on the wavefuntionsthrough the pseudodensity ñ(r), the atomi density matries Da
ij , and expliitlythrough the smooth part T̃ of the kineti energy in (3.16). These quantites arestraightforwardly rewritten in terms of the density matrix:

ñ(r) =
∑

µν

Φ∗
µ(r)Φν (r)ρνµ +

∑

a

ña
c (r−R

a), (3.21)
Da

ij =
∑

µν

P a
iµρµνP

a∗
jν , (3.22)

T̃ =
∑

n

fn 〈ψ̃n|T̂ |ψ̃n〉 =
∑

µν

Tµνρνµ, (3.23)where we have de�ned
Tµν = 〈Φµ|T̂ |Φν〉 , (3.24)
P a
iµ = 〈p̃ai |Φµ〉 . (3.25)These are two-enter integrals that an be evaluated before the start of a al-ulation one the atomi positions are known.The Kohn�Sham equations an be obtained by requiring that the total en-ergy (3.15) must be stationary with respet to the oe�ients, and that theall-eletron Kohn�Sham states must be orthogonal. The orthogonality ondi-tion is

δnm = 〈ψn|ψm〉 = 〈ψ̃n|T̂
†T̂ |ψ̃m〉 =

∑

µν

c∗µnSµνcνm, (3.26)where Sµν is the overlap matrix
Sµν = 〈Φµ|T̂

†T̂ |Φν〉 = Θµν +
∑

aij

P a∗
iµ ∆Sa

ijP
a
jν . (3.27)Here Θµν = 〈Φµ|Φν〉 are two-enter integrals, and the numbers ∆Sa

ij are atomionstants depending on the partial waves. The orthogonality riterion is in-orporated using the method of Lagrange multipliers. Di�erentiating the totalenergy plus Lagrange term by c∗µn leads to a generalized eigenvalue equationwhih an be solved for the oe�ients cνn and eigenvalues ǫn:
∑

ν

Hµνcνn =
∑

ν

Sµνcνnǫn. (3.28)Here we have de�ned the Hamiltonian matrix as the total derivative
Hµν =

dE

dρνµ
=

∂E

∂ρνµ
+

∫
δE

δñ(r)

∂ñ(r)

∂ρνµ
dr+

∑

aij

∂E

∂Da
ji

∂Da
ji

∂ρνµ
, (3.29)whih eventually leads to

Hµν = Tµν + Vµν +
∑

aij

P a∗
iµ ∆Ha

ijP
a
jν . (3.30)



18 Chapter 3. The projetor augmented wave methodThe �rst term is the onstant kineti matrix (3.24). The seond term is thematrix
Vµν =

∫
Φ∗

µ(r)ṽ(r)Φν (r) dr (3.31)of the total e�etive potential
ṽ(r) ≡

δE

δñ(r)
= ṽHa(r) + ṽxc(r) +

∑

a

v̄a(r−R
a). (3.32)The Hartree, XC and zero potential above emerge straightforwardly as deriva-tives of the orresponding energy terms in Eq. (3.16), with the Hartree potentialobeying the Poisson equation

∇2ṽHa(r) = −4πρ̃(r). (3.33)The last term in (3.30) involves the atomi Hamiltonian matries de�ned as
∆Ha

ij ≡
∂E

∂Da
ji

. (3.34)This derivative is horribly ompliated37 due amongst other things to atomiXC orretions. However it is basis set independent, and it su�es to note that
∆Ha

ij depend only on Da
ji plus a large number of purely atomi onstants. Itis a speial feature of PAW alulations ompared to ultrasoft pseudopotentialHamiltonians that the atomi orretions an vary dynamially through hangesin Da

ji.3.6 OverviewBy now we an aount for the entire self-onsisteny yle. All two-enterintegrals suh as Tµν and P a
iµ an be evaluated at the beginning, and a startingdensity (both ñ(r) andDa

ij) an be de�ned from the ontributions of the isolatedatoms. Then:
• The XC potential ṽxc(r) is alulated from the density ñ(r) depending onthe relevant XC approximation.
• The total pseudoharge density ρ̃(r) from (3.11) is alulated by adding theompensation harges Z̃a(r) using (3.14) hosen to anel atomi multipolemoments.
• The Hartree potential ṽHa(r) is alulated by solving the Poisson equation(3.33).
• The potential matrix Vµν (3.31) is alulated by integrating the e�etivepotential ṽ(r) (3.32) with the basis funtions.
• The Hamiltonian matrix Hµν (3.30) is alulated by adding kineti, po-tential and atomi terms.
• The generalized eigenvalue problem (3.28) is solved for the oe�ients
cµn and energies ǫn, and the lowest states are oupied using a Fermidistribution.
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• The density matrix ρµν (3.20) is alulated from the oe�ients and o-upations.
• The pseudodensity ñ(r) (3.21) and atomi density matries Da

ij (3.23) arerealulated.Pulay mixing is generally used to stabilize hanges in density, preventing �hargesloshing�.393.7 Atomi foresAside from the self-onsisteny loop, struture optimizations and moleular dy-namis simulations are formulated in terms of the fore on an atom. The foreon atom a is de�ned as the negative gradient
F

a = −
∂E

∂Ra
(3.35)of the total energy with respet to the position R

a of that atom. An expres-sion for this gradient an be derived analytially from the energy expression.The gradient must be taken self-onsistently in the sense that it should re�etthe atual hange in energy if two di�erent energy evaluations were made withslightly di�erent atomi positions, and it must di�erentially obey the orthogo-nality ondition. Using the Hellman�Feynman fore theorem and the hain rulearefully, the full fore expression is
F

a = 2Re
∑

µ∈a;ν

dTµν
dRµν

ρνµ − 2Re
∑

µ∈a;ν

[∫
dΦ∗

µ(r)

dRa
ṽ(r)Φν(r) dr

]
ρνµ

− 2Re
∑

µ∈a;ν

dΘµν

dRµν
Eνµ + 2Re

∑

µν

Za
µνEνµ − 2Re

∑

b;µ∈a;ν

Zb
µνEνµ

− 2Re
∑

µν

Aa
µνρνµ + 2Re

∑

b;µ∈a;ν

Ab
µνρνµ

−

∫
ṽ(r)

dña
c (r −R

a)

dRa
dr−

∫
ñ(r)

dv̄a(r−R
a)

dRa
dr

−

∫
ṽHa(r)

∑

L

Qa
L

dg̃aL(r−R
a)

dRa
dr (3.36)with

Za
µν =

∑

ij

dP a∗
iµ

dRaµ
∆Sa

ijP
a
jν , (3.37)

Aa
µν =

∑

ij

dP a∗
iµ

dRaµ
∆Ha

ijP
a
jν , (3.38)

Eµν =
∑

n

cµnfnǫnc
∗
νn. (3.39)The formula ontains several extra terms ompared to grid-based or plane-wave-based PAW fore expressions3, 5 beause an atomi displaement altersthe atomi basis; suh fores are alled Pulay fores. A omplete derivation ofthe formula an be found in the appendix of Paper I.7
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Chapter 4Atomi basis setsBy now we know how the self-onsisteny yle in PAW works with a loalizedbasis set. This hapter deals with the generation of basis sets and a few topisof more general utility.4.1 Generation of basis setsThis setion desribes how basis funtions are generated. Quite generally weuse the form of a radial funtion times an angular funtion whih is a spherialharmoni:
Φ(r) = ϕ(r)YL(r̂). (4.1)The spherial harmonis are the angular eigenfuntions of the laplaian oper-ator, and emerge as fators in the solutions for any purely radial system. Aperturbation of this potential hanges both the radial and angular parts of asolution. Extra radial and angular degrees of freedom are therefore required todesribe the perturbed atom well. Basis sets therefore onsist of the followingtypes of funtions:

• One atomi orbital for eah valene state. This is the minimal sensiblebasis set, alled single-ζ.
• For eah atomi orbital, extra funtions an be added with the same angu-lar part, but di�erent radial parts. These are alled �multiple-ζ� funtions;these names omes from the tradition of enumerating them by their uto�radius, alled ζ.
• Polarization funtions, whih are extra funtions with angular parts thatare not present among the valene states.The proedure by whih these funtions are hosen is explained below.4.2 Atomi orbitalsIn a radial oordinate system the Kohn�Sham equations are separable into aradial and an angular equation, with the angular equation having spherial har-moni solutions as mentioned. Due to the strong Coulomb attration for the21



22 Chapter 4. Atomi basis setsheavier elements, partiularly Au, the ore eletrons move at relativisti speeds,and must be desribed by the Dira equation. In the salar-relativisti ap-proximation, the spin�orbit-oupling is negleted, whih simpli�es the solutionproedure.40 This results in the following radial equation:
−
d2u(r)

dr2
−

1

2Mc2
dv(r)

dr

[
du(r)

dr
−
u(r)

r

]

+

[
l(l+ 1)

r2
+ 2M(v(r)− ǫ)

]
u(r) = 0 (4.2)with

M = 1−
1

2c2
(v(r) − ǫ), (4.3)where v(r) is the e�etive potential, and u(r) is related to the atual all-eletronwavefuntion X(r) by

u(r) = rX(r). (4.4)GPAW already ontains a radial atomi Kohn�Sham solver whih is used togenerate PAW setups. Eq. (4.2) is solved using non-equidistant grid representa-tion with very �ne grid spaing near 0. An initial guess for the energy is used toradially integrate the equation outward from 0 and inward from the outermostpoint. The two solutions must join smoothly in the middle; the energy guess isadjusted until they do. This way a solution is found for every atomi orbital
Xln(r), and a self-onsistent density and potential are obtained.The atomi orbitals in priniple extend to in�nity. Two things must be donebefore they an be used as basis funtions: The funtions must be loalized, andthey must look like pseudowavefuntions rather than all-eletron wavefuntions.The simplest way to loalize the solution is to solve the atomi problem with theouter boundary at the desired uto�. This will however make the basis fun-tion non-di�erentiable at the boundary, whih may ause the kineti energy todepend sensitively on the exat loation of grid points ompared to the bound-ary. This is avoided by adding a smooth radial potential to the self-onsistentpotential. We use the same funtional form as in Siesta:41

vconf(r) =





0, r ≤ rinner
A

rcut−r exp
(
− rcut−rinner

r−rinner

)
, rinner < r ≤ rcut

∞, rcut < r

(4.5)The radial equation is then non-self-onsistently reintegrated to obtain fun-tions that are loalized. Sine the di�erent atomi orbitals have quite di�erentrange, they should have di�erent uto�s rcut as well. Requiring a �xed inrease
∆ǫ of the on�ned orbital energy ompared to the free atom universally de�nesreasonable uto�s for all elements. In normal alulations we hoose the on-�nement energy ∆ǫ = 0.1 eV, whih results in typial basis funtion uto�s of6�10 Bohr radii.Next step is to onvert the loalized funtions to pseudowavefuntions. Theproedure is illustrated on Figure 4.1. It is done by solving

|X〉 = T̂ |Φ〉 = |Φ〉+
∑

i

(|φi〉 − |φ̃i〉) 〈p̃i|Φ〉 (4.6)
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Figure 4.1: Generation of atomi orbital basis funtion for S 2s-state. Theall-eletron partial wave is on�ned to a �nite range (∆ǫ = 0.3 eV), then trans-formed to a nodeless pseudowavefuntion.for the basis funtion |Φ〉 given the on�ned all-eletron solution |X〉, e�e-tively inverting the PAW transformation. Applying a projetor 〈p̃i| and usingthe ompleteness of the projetor�partial wave basis within the augmentationregion,
〈p̃i|X〉 =

∑

j

〈p̃i|φj〉 〈p̃j |Φ〉 . (4.7)This equation an be solved for the partial-wave expansion oe�ients 〈p̃j |Φ〉whih ompletely determine |Φ〉 within the augmentation region. Note thatif the oe�ients 〈p̃j |Φ〉 are plugged diretly into (4.6), the behaviour will beunstable near r = 0. This happens beause the partial-wave basis is in realityslightly inomplete and does not entirely �lter out the all-eletron osillationswhen inverted. It is more orret to use the partial-wave expansion of |Φ〉 withinthe augmentation region and join it smoothly with |X〉 at the boundary:
Φ(r) =

∑

i

φi(r) 〈p̃i|Φ〉 for small r. (4.8)The basis funtion generation proedure is illustrated on Figure 4.1.4.3 Multiple-ζ funtionsThe basis is improved by adding extra funtions for eah valene state. Funda-mentally the goal is to have a basis set whih is as omplete as possible and atthe same time heap, with the basis funtions being as loalized as possible. It isnatural to hoose the on�ned pseudoatomi orbital Φ0(r) as the longest-rangedbasis funtion, sine this funtion is physially justi�ed. We then make up some



24 Chapter 4. Atomi basis setsmore funtions Φζ(r) with smaller uto�s. De�ne the funtion
∆Φζ(r) =

{
rl(a+ br2) r < rζcut,

Φ0(r) rζcut ≤ r.
(4.9)The prefator rl ensures that ∆Φζ(r) has the orret radial behaviour of awavefuntion near r = 0 with angular momentum l. The parameters a and bare uniquely de�ned by requiring ∆Φζ(r) to be ontinuous and di�erentiable at

rζcut. The then de�ne the atual basis funtion as
Φζ(r) = Φ0(r) −∆Φζ(r), (4.10)whih is smooth and loalized within rζcut. More funtions an be added byseleting multiple uto�s rζcut. We have found that a sensible �rst uto� isobtained by de�ning rζcut suh that 16% of the norm of Φ0(r) lies outside.4.4 Polarization funtionsConsider the lowest angular momentum l whih does not orrespond to anyoupied valene state. This is typially a d-state for main-group elementsor a p-state for transition metals. A perturbation of the valene state withangular momentum l − 1 will generally have a signi�ant l-omponent (whileit might have an l − 1 omponent, there would already be basis funtions forthis angular momentum hannel). For this reason we add a polarization funtionwith angular momentum l whih, as we say, polarizes the preeding l−1 valenestate.The funtion is hosen to have the same uto� as the orbital it polarizes. Theapproah used in Siesta is to onstrut it as an atual perturbation.9 Previoustests have not revealed any overwhelmingly importane of the exat form, and sowe (still) use the rather primitive approah of de�ning a Gaussian-like funtion
Φpol

l (r) = Arl exp(−αr2). (4.11)The deay onstant α is hosen in terms of the norm of the tail of the polarizedfuntion. As the analyti form is not essential for our purposes, the funtion ismodi�ed slightly so it smoothly approahes zero at a �nite range given in termsof the α.Inreasing the basis set will variationally derease the energy of a system,with the lower limit being reahable by a grid-based GPAW alulation. To-tal energies tend to be muh higher, while energy di�erenes suh as bindingenergies onverge more quikly with the ompleteness of the basis set. Testsan be found in Paper I.7 In general, a good ompromise between e�ieny andauray is obtained by a double-ζ polarized (dzp) basis set. This onsists ofthe atomi orbitals plus one extra radial funtion eah, and a single polarizationfuntion. As an example, the standard dzp basis set of gold is shown on Figure4.2. Within a self-onsistent alulation eah radial funtion de�ned here on-tributes 2l+ 1 di�erent spherial harmonis. Most elements have 13 or 15 suhbasis funtions with a dzp basis set.
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Figure 4.2: Radial parts of basis funtions of gold. Colours indiate angularmomentum. Line styles indiate generation proedure. The total number of basisfuntions per gold atom is 15 if we ount the azimuthal quantum number m.4.5 Basis set superposition error orretionThe binding energy of some omposite system with respet to its onstituentsis alulated by subtrating the sum of the energies of the isolated onstituentsfrom the energy of the omposite system. In an atomi basis set, this introduesa basis set superposition error (BSSE): In the regions where basis funtionsoverlap, atoms in the omposite system e�etively borrow unused degrees offreedom from one another, whih arti�ially stabilizes the omposite system. Inother words, basis sets tend to produe too large binding energies.The BSSE an be orreted by ensuring that the basis set of the ompositesystem mathes that of the isolated onstituent systems. Therefore the alula-tion of the onstituent systems should inlude basis funtions on the sites whereextra atoms would have been in the omposite system. In GPAW this is imple-mented by adding an atom at that site equipped with the appropriate basis set,but without a pseudopotential. Suh atoms are frequently alled ghost atoms.The BSSE is partiularly large for isolated atoms. Sine the basis funtionsare loalized by trunation suh that eah orbital is 0.1 eV higher than on thefree atom, this may, for a typial main-group atom, ause a ombined inreaseof the total energy on the order of 0.5 eV, whih the BSSE an partially �regain�in a omposite system. The BSSE an therefore be several tenths of an eV forisolated atoms with the standard uto�, but an be improved by dereasing theorbital on�nement energy to e.g. ∆ǫ = 0.01 eV.4.6 Nonorthogonality and projeted density ofstatesWe will later alulate the projeted densities of states (PDOS) on various states.Within the PAW method the projeted density of states on an atomi orbital,



26 Chapter 4. Atomi basis setsgiven as an all-eletron partial wave φai , an be approximated by37
ρai (ǫ) =

∑

n

| 〈φai |ψn〉 |
2δ(ǫ− ǫn)

≈
∑

n

| 〈p̃ai |ψ̃n〉 |
2δ(ǫ− ǫn). (4.12)This is the standard de�nition used in GPAW. To the extent that the partialwave�projetor basis is omplete, and augmentation regions of distint atoms donot overlap, the projeted density of states integrated over all energies shouldyield 1. Thus it is in pratie only approximate, as neither requirement isexatly ful�lled in normal alulations. This limits the use of this de�nition foreletron-ounting purposes, partiularly when the objetive is to �lter out thetotal number oupation on a given atom or something similar. The atomiorbital basis set provides a natural de�nition of projeted densities of stateswhih is guaranteed to integrate to the right number of eletrons provided thatnonorthogonality is properly aounted for. Within the spae spanned by theatomi basis set, the identity operator is given by

Î =
∑

µν

|Φµ〉 [S
−1]µν 〈Φν | , (4.13)as an be veri�ed by applying the operator on an arbitrary linear ombinationof atomi orbitals. Suppose we are interested the projeted density of stateson an arbitrary subset M of orbitals, suh as all the orbitals on atom a, or alld-type orbitals on all Au atoms. A projetion operator onto that spae is givenby

P̂M =
∑

µ∈M,ν∈M

|Φµ〉 [P
−1
M ]µν 〈Φν | , (4.14)where [P−1

M ]µν is the inverse of the submatrix of Sµν orresponding to the sub-spae M (not to be onfused with a submatrix of the inverse). Then we de�nethe projeted density of states on M as
ρM (ǫ) =

∑

n

〈ψ̃n|P̂M |ψ̃n〉 δ(ǫ− ǫn). (4.15)In the ase where the subspae M orresponds to a single state, the normaliza-tion is simply a division by the squared norm 〈Φµ|Φµ〉 of the basis funtion.



Chapter 5Development andparallelizationThis hapter desribes aspets of the implementation and parallelization of lo-alized basis set alulations and to a lesser extent real-spae alulations.GPAW is implemented in a ombination of Python and C. Python is a high-level language whih allows ompliated tasks to be programmed quikly andwith high larity. C, as a low-level language, is well suited for number runhing.Most ode is therefore written in Python using the Numpy array library, whileonly expensive operations are delegated to C funtions or external libraries suhas BLAS.Input �les for DFT alulations are written as Python sripts using theAtomi Simulation Environment (ASE).42 This provides enough �exibility thatany alulated quantity, suh as Hamiltonians or overlap matries whih we willuse later, an be extrated diretly from an input �le without speial-purposeompilation or intermediate �le storage. MPI is used for parallelization. Thisis a distributed-memory framework where eah CPU ore runs a separate opyof the programme.5.1 Overview of parallelizationGPAW supports parallelization over several quantities. For real-spae grid al-ulations, the omputational ost will normally be dominated by real-spae op-erations on the wavefuntions ψ̃σk
n (r). Roughly in order from the most e�ientto the least e�ient, parallelization an be performed over k-points, spins σ,real-spae r and Kohn�Sham states n. Spin parallelization for many purposesresembles k-point parallelization, and we will only distinguish between thesewhen neessary. These parallelization modes an be used in any ombinationsimultaneously: to eah CPU is assigned a partiular set of k-points/spins, areal-spae domain and a set of states. The latter two parallelization modes arenormally alled domain deomposition and band parallelization. For medium-sized real-spae alulations one usually maximizes k-point parallelization andthen uses domain deomposition with the remaining CPUs. However the om-putational ost within a single domain inreases with the number of eletrons.27



28 Chapter 5. Development and parallelizationOperation Parallelization Complexity Eq.Poisson, multigrid r O(N) (3.33)Density ñ(r) r, σ O(N) (3.21)XC potential ṽxc(r) r, σ O(N) �Atomi XC / ∆Ha
ij r, σ O(N) �Potential matrix Vµν ν, r, σ, k O(N) (3.31)Diagonalization of Hµν µ, ν, σ, k O(N3) (3.28)Density matrix ρµν µ, ν, σ, k O(N3) (3.20)Table 5.1: Important operations in the self-onsisteny yle and how the rel-evant data strutures are distributed over domains r, spins σ, basis funtions µand ν and k-points k. Only operations with the most signi�ant omputationalost have been inluded.For su�iently large systems it therefore beomes inreasingly relevant to par-allelize over bands.With the introdution of the loalized basis set, or �LCAO mode�, the samedegrees of parallelization an be used (band parallelization in this ase thenorresponds to parallelization over orbitals). However most of the omputa-tional ost will be assoiated with very di�erent operations, partiularly forlarge systems where the ubially saling linear algebra operations, namely di-agonalization of the Hamiltonian and alulation of the density matrix, willeventually dominate.∗ Sine these are pure matrix operations, they not parallelover domains. Many other operations are only, or almost only, parallel over do-mains. An overview of the di�erent operations and how they an be parallelizedis shown in Table 5.1. Clearly, for su�iently large systems a sparse methodwould be faster sine the Hamiltonian and overlap matrix are in fat sparse.The implementation of the more important individual steps of the alulationproedure will be desribed in the following.5.2 Linear algebraWe parallelize matrix operations using Salable Linear Algebra PACKage, asoftware library for parallel dense linear algebra.44, 45 SaLAPACK relies onstandard standard BLAS libraries for loal operations and BLACS,46 BasiLinear Algebra Communiation Subroutines, for parallel ommuniation.Matries in SaLAPACK are distributed among CPU ores aording to a2D blok yli sheme: A matrix is divided into retangular bloks of equalsize. Eah ore holds a set of bloks from distint parts of the matrix, and theownership of onseutive bloks yles between the available CPUs. The CPUsare themselves divided into a 2D grid suh that rows and olumns are bloksare shared by rows and olumns of CPUs in the CPU grid. The distribution isillustrated on the left in Table 5.2. The algorithms in SaLAPACK are opti-mized to emphasize ommuniation between adjaent CPUs in the CPU grid.

∗The Hamiltonian and overlap matries are both sparse, and sparse methods will thereforebe favourable for the larger systems. The advantage of the sparsity of the Hamiltonian ishowever limited by the lak of sparsity of the oe�ients cµn, as the Kohn�Sham formulationis inherently global in nature. True O(N) methods must be formulated by alluding to loalityof e.g. the spatial density matrix ρ(r, r′), resulting in a quite di�erent formalism.43



5.3. Grids and loalized funtions 290 2 4 6 0 2 4 6 0 2 4 61 3 5 7 1 3 5 70 2 4 6 0 2 4 61 3 5 7 1 3 5 70 2 4 6 0 2 4 61 3 5 7 1 3 5 7Table 5.2: The two main matrix distributions used in alulations. Left: 2Dblok yli matrix distribution. A matrix is divided into 6×8 bloks, eah repre-sented by a ell. The ells are shared by a grid of 2×4 CPUs numbered 0�7. Thenumber in eah ell indiates whih CPU stores that blok. Eah CPU stores 6bloks in total. Adjaent CPUs in the grid should have fast interonnet. Right:1D olumn distribution, perhaps of the same matrix. Only four of the eightCPUs are used in this ase.Thus, operations on the matrix in the example will be fast if CPU 1 has a fastinteronnet to CPUs 0, 3 and 7, but it does not need a fast interonnet to theother CPUs. A simpler distribution using only half the CPUs is shown to theright in Table 5.2. Suh a olumn-based distribution is useful for alulationsthat are parallel over real-spae domains and orbitals at the same time. CPUs0, 2, 4 and 6 would in this ase be responsible for one domain while 1, 3, 5 and7 would have a opy of the same matrix, but apply it to a di�erent domain.Parallel operations an be invoked from Python through an objet orientedPython interfae with the following lasses, eah of whih relies on the under-lying parallel libraries:
• Communiator: An objet resembling the standard MPI ommuniatorinterfae for a set of CPUs.
• BLACS grid: Represents a 2D grid of CPUs. Eah BLACS grid is assoi-ated with a ommuniator.
• BLACS desriptor: A template for matries with a spei� 2D blok ylilayout (matrix size, blok size). Provides utility methods to build andperform operations on arrays. Eah BLACS desriptor is assoiated witha BLACS grid.
• Redistributor: Redistributes matries between di�erent BLACS grids ordesriptors. Is assoiated with two BLACS grids.Python interfae funtions for diagonalization and matrix multipliation areimplemented in terms of the above lasses.5.3 Grids and loalized funtionsThe alulation of the density ñ(r) and the potential matrix elements ṽ(r) in-volves basis funtions as well as extended real-spae funtions. Beause thebasis funtions are loalized, these operations are O(N). In terms of grid points

G, the potential matrix is alulated as
Vµν =

∑

G

Φ∗
GµṽGΦGν (5.1)



30 Chapter 5. Development and parallelizationusing an expliit outer loop over G and an inner loop over all pairs (µ, ν) ofloally nonzero basis funtions. The density, sampled on a grid, is alulatedwith a similar loop over grid points G, for eah of whih a similar inner loop
ñG =

∑

µν

Φ∗
GµΦGνρνµ (5.2)is arried out.The basis funtion values ΦµG in eah grid point are pre-tabulated duringinitialization by expliitly evaluating radial parts times spherial harmonis.Loops over pairs of nonzero basis funtions are possible by �rst registering, foreah basis funtion, the grid oordinates Gz1 to Gz2 along the z axis betweenwhih the basis funtion is nonzero, for all pairs of grid oordinates Gx, Gyalong the other axes. This metadata allows us to maintain a list of loallynonzero basis funtions when looping over grid points: Basis funtion indiesare dynamially added and removed from this list as the loop enters and leavestheir loalization areas. The entry/exit point metadata is stored in one bu�er,while the atual basis funtion values are stored in a di�erent (muh larger)bu�er, in an order onsistent with the list of urrently nonzero basis funtionsfor easy indexing.The operations (5.1) and (5.2) are naturally parallel over domains. They arefurther parallelized over orbitals ν in Vµν or ρνµ using the olumn layout fromTable 5.2. Eah CPU is responsible for one domain/olumn ombination. After

Vµν is alulated, it must be redistributed from olumn form to blok yliform, where it is used to onstrut the Hamiltonian. After the diagonalizationand alulation of ρµν from the oe�ients, whih happens in blok yli form,
ρµν is then distributed bak to olumn form to apply (5.2).In the fore expression (3.36), the derivative of the potential matrix Vµν withrespet to a rigid displaement of a basis funtion must be alulated. This anbe done with a similar loop, exept it is the derivatives

dΦ(r−R
a)

dRa
= −

dΦ(r−R
a)

dr
(5.3)whih are evaluated through

dΦ(r)

dr
=

dϕ(r)

dr
ȲL(r)r̂ + ϕ(r)

dȲL(r)

dr
. (5.4)Cirum�ex denotes a unit vetor. The notation ȲL(R) = RlYL(R̂) refers to thereal solid spherial harmonis, whih are polynomials in the artesian oordi-nates. Their derivatives are therefore straightforward to evaluate.5.4 Two-enter integrals and derivativesThe geometry-dependent but otherwise onstant overlap integrals Tµν , Sµν and

P a
iν are alulated through the proedure desribed by Sankey and Niklewsky47whih is also used by Siesta.9 The matries onsist of two-enter integralsbetween loalized funtions whih are in all ases represented as a radial parton a one-dimensional grid times a spherial harmoni whih is implied from anangular momentum quantum number.



5.5. Performane benhmarks 31Eah loalized funtion is Fourier transformed. The two-enter integralsan then an be evaluated heaply as onvolutions between a pair of Fouriertransformed funtions. This funtion is then transformed bak into real-spae.Due to the Fourier transform of the spherial harmonis it beomes a sum ofmany spherial harmonis times di�erent radial parts:
∫

Φ∗(r)X(r −R) dr ≡ Θ(R) =
∑

L

ΘL(R)ȲL(R). (5.5)See also the master thesis by Vanin.25 Overlap matries suh as Tµν or theirposition derivatives are onstruted by looping over all pairs of atoms whih arelose enough for the loalized funtions to overlap. This operation is parallelizedaording to where atoms reside: the overlap between atom a and atom b with
a ≤ b is alulated on the CPU responsible for the domain in whih a resides.
Tµν and Sµν are then immediately distributed on the blok yli grid.The fore expression (3.36) involves a number of derivatives of overlaps.These are evaluated as

dΘ(R)

dR
= R̂

∑

L

dΘL(R)

dR
ȲL(R) +

∑

L

ΘL(R)
dȲL(R)

dR
. (5.6)The atual overlap derivative matries in the fore formula (3.36) are evaluatedthis way, exept they must also be antisymmetri, re�eting that interhange oftwo basis funtions hanges the sign of R above.5.5 Performane benhmarksA few performane benhmarks are presented below. These are meant to providean idea about the performane on real systems, and are applied to some of thelusters studied in later hapters.Figure 5.1a shows a benhmark of loalized basis set alulations on Aulusters. The �gure is based on struture relaxations of Au lusters generated bysimulated annealing with EMT. The preise proedure is desribed in Chapter10. The tests run on one 8-ore xeon node on Ni�heim.48 Performane isreorded on the master ore. Parallelization is used with 2 × 2 × 2 domaindeomposition and a 4 × 2 ore BLACS grid. The diagonalization uses thedivide & onquer algorithm.A breakdown of the walltime for di�erent operations is shown on Figure 5.1b,aounting for the total relative time spent with eah operation. SaLAPACK isinvoked for lusters larger than N = 50 explaining the sudden shift. Some partsof the alulation, most importantly the fore alulations, have not yet beenoptimized well in ombination with SaLAPACK. Grid ops refers to the alu-lation of Vµν and ñ(r), whih take roughly the same time; network representsommuniation inluding waits due to load imbalane; atomi represents PAWorretions, whih is dominated by radial XC; matrix ops refers to alulationof ρµν plus smaller operations suh as two-enter integral evaluation.Figure 5.2 shows saling of omputational time of individual funtions mea-sured per self-onsisteny step (whereas the previous �gure refers to an entireself-onsisteny loop; the number of neessary self-onsisteny steps inreasesweakly with system size). Saling powers are alulated by logarithmi �tting
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Figure 5.1: Performane of basis set alulations on gold lusters. Top: Wall-lok time in minutes of one step in a strutural optimization as a funtion ofnumber of atoms. Note that the axis is quadrati. Below: Relative time spentin di�erent parts of the ode. The qualitative hange at 50 atoms is due to aswith to parallel diagonalization.
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Figure 5.2: Doubly logarithmi plot of time per SCF iteration for di�erent op-erations. The saling powers are indiated in the legend. Colours are onsistentwith Figure 5.1.for N > 50 exept for the serial diagonalization. �Grid ops� is nominally linear,but superlinear in this ase beause of a gradual inrease in the ratio of bulkto surfae atoms with N . The inreased density of orbitals around bulk atomsinreases the ost. XC and Poisson performane appears sublinear beause ofthe non-proportinal relationship between volume and number of atoms; for ex-ample, a system with one atom needs about as muh vauum as a system withtwo atoms.Overall, the main limitation on parallel performane is the matrix diago-nalization, as its non-loal harater implies signi�ant ommuniation. Whilealulations even for systems beyond 1000 atoms have been tested and are in-deed faster than the real-spae ode, the time-onsuming diagonalization is anobstale whih makes the approah pratial only for systems up to around400�600 atoms on the Ni�heim luster with the urrent interonnet.5.6 Real-spae alulations and parallelizationIn real-spae alulations, the number of variational degrees of freedom is toolarge to diretly diagonalize the Hamiltonian like in the loalized basis set. In-stead an iterative proedure is used. For eah self-onsisteny iteration, guessesfor the pseudowavefuntions are improved until they onverge alongside thedensity and potential.The Hamiltonian is applied to the pseudowavefuntions in the real-spaebasis using a �nite-di�erene stenil for the Laplaian:
〈r| ˆ̃H |ψ̃n〉 = −

1

2
∇2ψ̃n(r) + ṽ(r)ψ̃n(r) +

∑

aij

p̃ai (r)∆H
a
ij 〈p̃

a
j |ψ̃n〉 . (5.7)



34 Chapter 5. Development and parallelizationThe Hamiltonian in the basis of the urrent pseudowavefuntions, 〈ψ̃n|
ˆ̃H |ψ̃m〉,is then onstruted by real-spae integration. The operation involves all pairs ofbands n and m, and hene the entire pseudowavefuntion arrays must be passedaround between band-parallelizing ores; this is why band parallelization is usu-ally more expensive than domain deomposition, whih involves ommuniationat the domain boundaries. Following this step, the Hamiltonian matrix is diag-onalized using the SaLAPACK implementation desribed previously, involvingredistribution to blok yli form and bak. The oe�ients obtained from thisdiagonalization are then used to rotate the wavefuntions within their subspaeso that they have de�nite eigenvalues.The wavefuntions are improved by alulating the residual

Rn(r) =
ˆ̃Hψ̃n(r) − Ŝψ̃n(r)ǫn (5.8)and applying the residual minimization method desribed by Kresse and Furth-müller.35 The wavefuntions are expliitly orthogonalized by onstruting theoverlap matrix 〈ψ̃n|Ŝ|ψ̃m〉, and performing the rotation

ψ̃n(r)←
∑

m

ψ̃m(r)[L−1]mn, (5.9)where Lmn is the Cholesky deomposition of Smn. SaLAPACK is used againfor this inverse Cholesky deomposition of the overlap matrix. The remainingsteps of the self-onsisteny yle have for the most part been disussed in theprevious hapter.The omputational ost for large systems is dominated by the ubially sal-ing and ommuniation-intensive matrix element alulations, plus the subse-quent rotations. Provided that the diagonalization is parallelized, it is notamong the most expensive operations. Parallel diagonalization is also impor-tant for another reason: The double-preision �oating point representation ofa bands-by-bands matrix in a 10000-eletron system (e.g. 1000 Pt atoms) re-quires about 200MiB RAM. This is learly unaeptable on a BlueGene/P with512MiB RAM per ore.This is the alulation proedure for the large-sale DFT alulations pre-sented in later hapters. A saling benhmark an be found in Paper II.65.7 Parallelization on BlueGene/PIt is our intention to perform DFT alulations on very large gold lusters usingthe aurate but expensive real-spae grid methods in GPAW. For this pur-pose we use the IBM BlueGene/P superomputer loated at Argonne NationalLaboratory. In the limit of very large systems, some of the otherwise innou-ous operations beome quite expensive and must be taken into aount in theimplementation.Superomputers of small to medium size typially ontain a number of dis-tint nodes, eah ontaining a small number of CPU ores. The nodes mightbe onneted by means of network swithes, providing the usual star-shapednetwork topology where all CPUs an ommuniate with eah other diretly.For su�iently large omputers a network of this type will, however, su�erongestion beause all data must pass through the same swith. An inde�nitely



5.7. Parallelization on BlueGene/P 35salable omputer therefore annot have a star-shaped topology, but must makeuse of loalization. The parallel struture of a programme must then take intoaount the network topology of the superomputer on whih it runs, so thatommuniation takes plae if possible only between neighbouring nodes.In the BlueGene/P superomputer whih is our spei� target, the nodesare onneted in a three-dimensional grid. Eah ore is assigned a set of oordi-nates XYZT, where XYZ designate the position of the node in the grid, and Tenumerates the ores within a node (and ats as a very short fourth dimension).A ore is onneted diretly to its immediate neighbours along eah of thesefour grid diretions. The �rst and last CPUs in eah diretion are also diretlyonneted. The network topology is therefore a four-dimensional torus, whihhas a maximal of size 40 × 32 × 32 × 4 ores, or 163840 CPUs. Calulationsgenerally involve smaller sets (or partitions) of CPUs whih are also wired toform a torus. Sine solution of the Kohn�Sham equations is parallel over boththe three spatial diretions (x, y, z) and states n, the logial parallelization is tolet the XYZT network torus orrespond some permutation of x, y, z and n.
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Chapter 6Metal nanopartilesThis hapter provides a short introdution to metal nanopartiles. An overviewof the geometri strutures formed by nanopartiles is given, and di�erent simplemodels for their struture and properties are disussed.Nanopartiles have important appliations in atalysis, where size-dependenthanges in hemial properties an have a big impat on atalyti ativity. Forexample gold lusters beome e�etive atalysts under some onditions. Of par-tiular note is the ability of gold lusters, when deposited on surfaes of ertaintransition metal oxides, to oxidize CO at very low temperatures.49 This hasbeen observed for gold partiles of around 4 nm in size.50 The high atalytiativity has been attributed to a number of e�ets, suh as non-metalli be-haviour assoiated with �at �islands� of gold atoms.51 Others attribute theinrease in reativity mainly to the availability of low-oordinated atoms andsurfae roughness, although many e�ets are understood to be involved.52�56Understanding the atalyti ativity is part of the motivation for this work,although we fous on understanding the more fundamental properties of free-standing nanopartiles. These are muh simpler systems than the ompliatednanopartile/support-based systems used in atalysis.6.1 Paking and strutural motifs in lustersThe lowest-energy shapes of very large nanopartiles are haraterized by theombination of rystal planes whih yields the lowest total surfae energy, andan be obtained by the Wul� onstrution method. For smaller lusters, sizee�ets will allow several di�erent strutural motifs to ompete. A few suhstrutures of partiular relevane will be desribed below.A number of highly symmetri strutures an be onstruted by suessivelyadding shells of atoms. A simple suh struture is the ubotahedron. The�rst ubotahedron is formed by adding 12 neighbours around a entral atom,forming part of an f lattie. Further ubotahedral strutures an be formedby adding further suh shells, resulting in lusters with 13, 55, 147, 309, 561, 923,1415,. . . atoms. The �rst few ubotahedral lusters are shown on Figure 6.1.The ubotahedra are simple f-based lusters with (111) and (100) surfaes.By adjusting the number of (111) versus (100) surfae layers, one an also obtainubes, trunated ubes, ubotahedra, trunated otahedra and otahedra�see39



40 Chapter 6. Metal nanopartiles
Figure 6.1: The �rst three ubotahedral lusters, having 13, 55 and 147 atoms.
Figure 6.2: A family of f lusters: 63-atom ube, 147-atom ubotahedron,201 and 225-atom trunated otahedra and 231-atom otahedron.Figure 6.2. Trunated otahedra are frequently the most stable strutures forlarge lusters, inluding those of Au.57The lose-paked (111) surfaes of f strutures tend to have the lowest sur-fae energy. It is possible to form lusters with only (111)-like surfaes, althoughthis happens at the expense of internally straining the luster by breaking thef struture. This is the ase for the iosahedral series of lusters. Like theubotahedra, these are generated by adding suessive layers of atoms arounda single atom, resulting in the same geometri shell losings at 13, 55, 147,. . . atoms. The �rst few iosahedra are shown on Figure 6.3. The distanebetween atoms in neighbouring iosahedral shells di�ers from the distane be-tween atoms within the same shell. This auses an overall O(N) inrease inenergy, while the derease in energy from the hange in surfae struture mustbe proportional to the amount of surfae O(N2/3). The iosahedral motif istherefore likely for medium-sized lusters. Many other lattie-based struturesan be imagined, of whih the most important for gold are probably trunateddeahedra58, 59 whih are, like the iosahedra, internally strained. A thoroughlassi�ation of atomi shell strutures has been written by Martin.60 The free

Figure 6.3: Iosahedral lusters with 13, 55 and 147 atoms.



6.2. Jellium lusters 41energy of di�erent strutural motifs depends on size as well as temperature,leading to ompliated phase diagrams with temperature-dependent preferenefor di�erent strutures.61�63Due to the high omputational ost of ab-initio methods, the struturalproperties of large metal lusters are usually studied through simple models.Several suh models are based on pair potentials with energy terms that modelthe attrative and repulsive parts of atomi interations formulated e.g. as anenergy ontribution for eah pair of atoms. For example, the Sutton�Chen64 andGupta65 potentials both predit highly stable Ag lusters with 13 (iosahedral),38 (trunated otahedral), 55 (iosahedral) and 75 (deahedral) struture.66The low energy oinides with partiularly regular atomi paking. Suh many-body potentials an be well suited to desribe the spei� properties they weredesigned for, but make no referene to eletroni struture, whih limits theirability to desribe small lusters.6.2 Jellium lustersA simple model of materials an be obtained by entirely negleting atomi stru-ture, and instead assuming that eletrons are interating in a smeared-out bak-ground harge so that the whole system is neutral. This �titious material isalled jellium. Jellium models of lusters have been studied extensively sine thedisovery that alkali metal lusters with spei� �magi� numbers of eletronsare partiularly stable and an be understood through jellium models.20, 21, 67�73Below we desribe the simplest imaginable jellium model of lusters, namely thatof independent eletrons in an in�nite spherial well.Assume that a luster with N eletrons is desribed by an in�nite spherialwell potential with radius R = N1/3. By separation of variables one obtainsdistint equations for radial and angular parts of the eigenstates, quite like inthe atomi problem from Setion 4.1, exept for the shape of the radial poten-tial. The radial equation is the spherial Bessel equation with zero boundaryonditions, whose solutions are spherial Bessel funtions jl(r) of the �rst kind.∗The angular equation as always yields spherial harmonis Ylm(θ, φ). Thus
ψlnm(r, θ, φ) = αlnjl

(zlnr
R

)
Ylm(θ, φ), (6.1)where αln is a normalization fator and zln is the n'th zero of jl. The energiesof these solutions are
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. (6.2)Thus there exists a set of degenerate solutions for eah zero zln of eah spher-ial Bessel funtion jl(r), with degeneray 2(2l+ 1), ounting spin. The energylevels are ordered the same way as the zeros of the spherial Bessel funtions.This results in an Aufbau rule like in the periodi table, exept a higher angularmomentum tends to be relatively more favourable for jellium lusters than addi-tional radial nodes. Con�gurations with a full shell are partiularly stable, and
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42 Chapter 6. Metal nanopartiles2 8 18 20 34 4058 68 90 92 106 132138 168 186 196 198 232254 268 306 312 338 380398 428 438 440 486 508542 556 562 612 638 . . .Table 6.1: Magi numbers of spherial non-interating jellium lusters. Majormagi numbers, having partiularly large eletroni gaps at the Fermi level, arehighlighted.the luster is said to ontain a magi number of eletrons. In order of inreasingenergy, the eigenstates are 1s, 1p, 1d, 2s, 1f, 2p, 1g, . . . , whih results in maginumbers at the shell �llings N=2, 8, 18, 20, . . . ; see Figure 6.4 and Table 6.1.The spherial-well model above is the simplest possible jellium model. Manyother jellium-based models have been formulated to desribe alkali metal lus-ters. The inlusion of eletroni interations, typially through the solution ofthe Kohn-Sham equations using the loal density approximation, yields maginumbers similar to those we found in the previous non-interating model. Therelative importane of the di�erent magi numbers may shift depending on theexat model used, but the spherial shell losings are almost universally repro-dued as listed in Table 6.1. Further insight is gained by onsidering jelliumlusters of di�erent shapes. Commonly, the jellium lusters are allowed to de-form under some spei�ed set of rules.71, 74�77 An important result is that jelliumlusters with a non-magi number of eletrons will deform into prolate (elon-gated along one axis) or oblate (�attened) shapes depending on the number ofeletrons. This allows non-magi lusters to obtain lower energies, whih wewill also see in Chapter 10 using DFT alulations. Di�erent highly symmetrishapes suh as tetrahedra also lead to strong magi numbers.78The previously mentioned pair potentials are formulated only in terms ofatomi separations, while jellium models ompletely neglet atomi struture.Both eletroni and strutural e�ets an be ombined in tight-binding models,suh as the Hükel model.79�82 This model predits eletroni magi numbersin agreement with the jellium model.83, 846.3 Noble metal lusters, relativity and goldSine the noble metals have a fully oupied d-band and a half-�lled s-band,they are eletronially similar to alkali lusters. Jellium-like magi numbershave been observed in the mass spetra of noble metal lusters, indiating par-tiular stability of lusters with losed eletroni shells.22 While lusters of thethree noble metals show similar eletroni shell struture, gas-phase gold lus-ters form espeially remarkable geometri strutures. The smallest gold lustersare predited to be planar, with a transition between planar and 3-dimensionalstrutures usually put between 8�15 atoms depending on harge and other ir-umstanes.18, 85, 86 The exat transition between planar and 3-dimensionallusters of various harge states has been disussed extensively within DFTmethods and depends strongly on the XC approximation.19, 87�89 Larger gold



6.3. Noble metal lusters, relativity and gold 43

Figure 6.4: Below: Energy levels and Fermi level of spherial-well jellium lus-ters as a funtion of number of eletrons. Major magi numbers are indiated.Above: Seond-order energy di�erenes ∆2(N) = E(N−1)−2E(N)+E(N+1),a measure of the urvature of the total energy with respet to the number of ele-trons.



44 Chapter 6. Metal nanopartileslusters are predited using DFT to form many more exoti strutures, suh asages and tubes. This ours even beyond 30 atoms, with the 32-atom lusterbeing a age.19, 90, 91 The stability of planar strutures, along with pratiallyall the peuliarities of subsequent Au lusters as ompared to Ag or Cu, an beattributed to the relativisti behaviour of the Au ore eletrons. These e�etshange the sreening of the outer eletrons, leading to a ontration of s-statesand an expansion of the d-states, and an inrease in hybridization between the d-states.17 Gold in partiular has a tendeny to form low-symmetry strutures.92Even the 55-atom Au luster does so rather than forming an iosahedron as hasbeen found for Ag.93, 94 Determination of globally optimal strutures of mostlarger lusters must to some extent rely on simpler methods, although limitedstudies of large lusters with DFT have been made.95, 96



Chapter 7Chemial properties of largelustersIn this hapter we examine the onvergene of hemial properties of lusterswith respet to luster size. This is done by alulating binding energies of sim-ple adsorbates on ubotahedral lusters up to 1415 atoms. The ubotahedraare not lowest-energy strutures,57, 97 and partiularly the small lusters Au13and Au55 are known to form entirely di�erent strutures in the gas phase. How-ever the ubotahedra provide a simple geometry whih an be ompared atdi�erent sizes and with di�erent metals. Here we ompare Au and Pt lusters,where the main di�erene is that Au, unlike Pt, has a �lled d-band.7.1 Struture and alulation parametersWe alulate the binding energy of O and CO, eah on two di�erent adsorptionsites, and on Au as well as Pt ubotahedra. The motivation for spei�allyonsidering O and CO is the relevane of these adsorbates as intermediates inCO oxidation, although we make no attempt to model atual atalyti systemsat this time. Figure 7.1 shows the adsorption sites. They are:
• O on the f hollow site losest to the enter of an (111) faet

Figure 7.1: Adsorption sites, shown two at a time, of O and CO on the Au561ubotahedron. 45
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Figure 7.2: Binding energy of O and CO on ubotahedral Au and Pt lustersof di�erent size. For eah series of datapoints, the bulk limit is indiated.
• O on the bridge site losest to the enter of an edge
• CO on top of the atom losest to the enter of an (111) faet
• CO on top of the atom losest to the enter of an edge, with O pointingaway from the lusterThe distane between adsorbate and metal atoms is in eah ase based on arelaxation of the adsorbate on an in�nite metal surfae loally similar to theluster. Sine no relaxation of the luster is performed, we do not are to deeplyabout the exat geometry of the adsorbate either. In the limit of in�nitely largelusters, the environment around eah adsorbate approahes either that of alean surfae or a step on�guration. Suh on�gurations are used to obtainvalues for the bulk limits. The alulations are performed using the RPBE XC-funtional with the real-spae grid implementation in GPAW. A grid spaingof 0.175Å is used for Au lusters, and 0.140Å for Pt lusters. The lattie on-stants 4.218Å for Au or 3.999Å for Pt are used in the luster onstrution. Nostruture relaxation is performed in these alulations. The e�ets of strutureoptimization on the adsorption energies to Au ubotahedra has been found tobe small; see Paper III.98



7.2. Adsorption energies 47
(a) (b) ()Figure 7.3: O adsorption on adatom plateaus of sizes 3, 6 and 11 atoms. Theolouring only serves to distinguish adatoms from surfae atoms; adatoms andsurfae atoms are the same type.7.2 Adsorption energiesThe alulated adsorption energies as a funtion of luster size are shown onFigure 7.2. A ommon feature of both Pt and Au lusters is that small lusterstend to bind the adsorbates more strongly. A notable deviation from this trendis that the O on both (111) faet and bridge site of the Au55 binds extremelyweakly, weaker even than the bulk limit (upper left on Figure 7.2). The low rea-tivity towards O of Au55 is onsistent with existing observations,99, 100 althoughthe real free-standing Au55 is known to have a quite di�erent low-symmetrystruture.93, 95 CO on Au exhibits a muh more smooth onvergene towardsthe bulk limit.For Pt, the overall size-dependent hange in adsorption energies is moreuniform than for Au. Almost all variation stops after N = 147, exept a slight�utuating tendeny whih is slowly damped.Variation in the luster size will neessarily hange both the loal struturearound of the adsorbate, and the overall luster size. The hanges in loalstruture an be studied separately from alulations on extended surfaes. Thiswill be done in the next setion. In the next hapter we will study eletronie�ets more losely.Further analysis of the large-sale results for Pt are in progress (unpub-lished). A more thorough disussion of the results for Au an be found in PaperIII.987.3 Geometri e�ets on adsorptionPart of the size trend in the previous alulations must be attributable to thehange in size of the faets. To investigate this loal, geometri e�et we om-pare luster adsorption energies with adsorption energies alulated on in�nitesurfaes with plateaus of various size. We onentrate here on O adsorption onAu and Pt.We onsider an f (111) surfae slab with four layers of atoms and lattieonstants 4.218Å for Au or 3.999Å for Pt, as before. On top of the slab weonstrut plateaus with di�erent numbers of adatoms forming part of an extrasurfae layer. We start with an adatom trimer whose entral (111) f site isloally onsistent with the previously onsidered O adsorption site. The plateau
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Figure 7.4: Binding energy of O on entral f site of Au and Pt one-layeradatom plateaus as a funtion of the number of atoms in the plateau. The bulklimit is indiated by a dashed horizontal line. Tiks on x axis are plaed so theyorrespond to sizes of luster faets (the 55-atom ubotahedron or iosahedronhas 6 atoms in an (111) faet).is then expanded by adding one atom at a time on sites onsistent with thelattie. A few of the geometries are shown on Figure 7.3. Eah time, the atomis added as lose as possible to the adsorbate suh that the adsorbate will alwaysbe lose to the enter of the plateau. In order to �t a plateau with 50 atomsin the ell (the 1415-atom ubotahedral (111) faet ontains 36 atoms), it isneessary to inlude a total of 365 atoms in the alulation. We use the loalizedbasis set with the standard double-ζ polarized basis sets.For eah of these geometries we then alulate the adsorption energy withoutany struture relaxation. O is put at a �xed perpendiular distane of 1.37Å(Au) or 1.28Å (Pt) from the plateau atoms whih is onsistent with the �xedluster geometries.The adsorption energy of O as a funtion of the number of adatoms is shownon Figure 7.4. For Au the adsorption energy inreases swiftly and linearly be-tween plateau sizes of 3�6 atoms. One the triangular 6-atom plateau on Figure7.3 is ompleted, the energy remains largely onstant. The 6-atom plateau isidential to the (111) faet on the Au55 luster whih binds O very weakly, butthe geometri trend here is insu�ient to explain the spetaularly weak bind-ing on Au55. Medium-sized plateaus up to 28 atoms (like the 923-atom luster)bind slightly more weakly than bulk Au, after whih the di�erene from bulkis tiny. This geometri trend thus aounts (partially) for the strong bindingon the 13-atom luster ompared to subsequent lusters, but agrees with noneof the behaviour of other lusters until near the bulk limit at 561 atoms and



7.3. Geometri effets on adsorption 49larger.For Pt the smallest plateaus also bind strongly, but the trend di�ers fromthat of Au sine the binding energy varies muh more smoothly over the smallplateaus. The onvergene of the Pt binding energy with respet to plateau sizemathes roughly that of the Pt lusters: after a plateau size of 10 atoms (147-atom luster), most of the variation has stopped, and only weak osillationsremain.In the next hapter we will onsider the e�et of eletroni struture onadsorption energies.
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Chapter 8Eletroni struture andhemisorptionThe variation in adsorption energies for smaller lusters, and in partiular thevery weak adsorption of O on the Au55 luster, remains to be explained. Tostudy eletroni e�ets on adsorption in greater detail, we will in this hapteronstrut a ontiguous range of lusters up to several hundred atoms. Thisimplies a quite large number of alulations. Sine we are not interested inbinding energies with high auray, but rather the overall trend, the loalizedbasis set method is ideally suited for these alulations.8.1 Constrution of lustersConsider two onseutive ubotahedral lusters. We an get a ontiguous rangeof intermediate lusters by stripping o� the outermost shell of atoms in the largerluster one atom at a time, so that eventually only the smaller luster remains.The atoms an be removed in any order. To obtain reasonably realisti ge-ometries, we hoose to always remove at random one of the atoms with lowestoordination. Sine we want to alulate an adsorption energy for eah size ofluster, and sine we are interested in overall eletroni size e�ets rather thanthe e�ets of geometry, the loal geometry around the adsorption site shouldremain unhanged during this proedure. This an be managed by e�etively re-moving two shells from the side of the luster opposite the adsorption site. Thisproedure is shown on Figure 8.1. Sine atoms are removed at random, a pseu-dorandom number generator an be used to generate several series of lusters.This reveals how sensitive the proedure is to detailed strutural di�erenes, al-though the stritly ubotahedral lusters always have the exat same geometry.The proedure an be used to generate any struture based on geometri shells,and we will use this to ompare to iosahedral lusters. However beause of theinternal straining of iosahedra, the loal geometry around the adsorbate an-not be onserved for all sizes of lusters. For onveniene we therefore limit thisstudy to ubotahedra with the adsorbates loated at the entral (111) f siteas indiated on Figure 8.1. The same site was also onsidered in our previousstudies. The Au13 ubotahedron does not have an (111) f site (only an hpsite), so this luster annot be generated from the disussed proedure; instead51
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Figure 8.1: Constrution of lusters with arbitrary number of atoms. Atomsin the 55-atom ubotahedron are white, while removable atoms are olouredaording to their oordination. At eah step, one of the removable atoms withlowest oordination is removed. An O atom is shown at the (111) f site.we use a 19-atom luster whih is the result of removing most of the atoms fromthe Au55 ubotahedron without hanging the immediate environment aroundthe adsorbate.Over the next setions we perform alulations on lusters up to 200 or320 atoms in size. For lusters larger than 150 atoms we skip two thirds of thelusters to save CPU time. This may appear as pixelation in some of the �gures,but does not represent any physial e�et.8.2 Calulation parametersFor four di�erent series of randomly generated Au lusters we alulate theadsorption energy of O using the loalized basis sets in GPAW. The alulationsuse somewhat oarse parameters to improve e�ieny. The grid spaing is0.2Å, and 5.0Å vauum is added in all diretions. Eah atom has the standarddouble-zeta polarized basis set and the standard PAW setup pakage suppliedwith GPAW. The RPBE XC funtional is used as in the previous alulations.A Fermi temperature of 0.01 eV is used. We do not onsider spin-polarizationexept in atomi referene alulations.For eah luster a struture optimization is performed with O loated at theentral (111) f site. The implementation of the BFGS struture optimizationalgorithm from ASE is used.42 Struture optimizations terminate when thefores are no greater than 0.075 eV/Å.Sine we are not interested in high auray, but rather in a broad size-omparison of di�erent lusters, we alulate adsorption energies in a more roughway than normally. First a struture relaxation of the ombined system, lusterplus adsorbate, is performed, yielding a total energy. The binding energy is thenalulated by subtrating the total energy of the isolated atom and the totalenergy of the isolated luster. In the alulation for the isolated luster we do
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Figure 8.2: Binding energies of O on Au lusters as a funtion of luster size.Major jellium magi numbers are indiated.not perform a separate struture relaxation. Aside from saving time, the bene�tof this proedure is that we do not have to worry about the egg-box e�et : Ifwe relaxed both the ombined system and the isolated luster, the atoms wouldhave moved slightly relative to the grid points, whih auses a small di�erene inevaluated energies. For large systems suh an error will eventually be signi�antompared to a one-atom binding energy. The overall e�et of not relaxing theisolated luster is that all binding energies are overestimated. Furthermore, weshall not are to apply a basis set superposition error orretion (Setion 4.5).This error is similar for all the lusters sine the loal environment around theatom is similar, and therefore shifts all the energies by approximately the sameamount.8.3 Adsorption energy and magi numbersFigure 8.2 shows the adsorption energy of O on the entral f site on Auubotahedra as a funtion of number of atoms. Four di�erent series of randomlygenerated lusters are shown. The binding energy osillates with an amplitudeof 0.5�1.0 eV. Minima in binding ours at or lose to the jellium magi numbers
N = 34, 58, 92, 138, 186 and 254, in most ases followed by a sudden inreasebinding.Figure 8.3 shows the density of states (DOS) of the Au ubotahedra as afuntion of luster size and energy. The d-band lies between -10 and -6, eV andhanges relatively little. The s-states, however, split up into distint eletronishells separated by gaps. As luster size inreases, shells are �lled one eletronat a time. When a shell is full, eletrons must be �lled into the next highershell, resulting in an abrupt inrease in Fermi level at the magi numbers 34,58, 92 and 138 mathing the jellium model. The subsequent magi numbers arenot as learly resolved, but the shell struture is still evident. This eletronishell struture is not spei� to ubotahedra. Figure 8.4 shows a loser view ofthe DOS of ubotahedra ompared and iosahedra near the Fermi level. Theiosahedra are generated by the same proedure by stripping o� atomi shellsone atom at a time. The two types of struture have highly similar eletroni
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Figure 8.3: DOS of Au lusters based on the ubotahedral series as a funtionof luster size and energy. The Fermi level is indiated by a white line. Maginumbers are assoiated with abrupt jumps in the Fermi energy.

Figure 8.4: DOS of ubotahedral (top; a subset of the data in Figure 8.3) andiosahedral (bottom) Au lusters near Fermi level. The Fermi level is indiated.



8.3. Adsorption energy and magi numbers 55shell struture. It has previously been shown in models based on spherial,ubotahedral and iosahedral potential wells that the DOS remains highlysimilar up to several hundred atoms in size.101 In small jellium lusters themagi numbers are also known to be robust to geometri variations as long asthe gaps between shells are large ompared to the e�et of distortion.102The trend in adsorption energy is roughly onsistent with the notion that theloosely bound eletrons of a luster just after a magi number are more easilydonated to O, ausing an abrupt inrease in O binding energy at the maginumbers (this is most learly seen at N = 138). As luster size inreases further,the energeti distane between subsequent shells dereases, ausing the shellstruture to beome less well resolved. However we still see from Figure 8.2 howthe magi numbers 186 and 254 orrespond to partiularly weak binding, evenif no well-resolved magi number is immediately visible in the spetrum fromFigure 8.3. In general, the eletroni shell struture is very well resolved lose tothe geometri shell �llings (55 and 147 for both ubotahedra and iosahedra),and for smaller lusters where the energeti separations between eletroni shellsare large. Au55 is just below a magi number, while Au147 os slightly above one.This aounts for the observations in the previous alulations that Au55 bindsO muh more weakly ompared to Au147.Magi-number lusters far from geometri shell �llings, suh as the N = 92luster, may be deformed signi�antly due to the generation proedure. This isprobably why the magi number appears to be slightly smaller from the urrentresults (minimal binding is found lose to 88 atoms) than in the jellium model.We note that struture relaxations tend to enhane the shell struture, andthe magi number at N ≈ 92 is only visible for ubotahedra due to this relax-ation. Evidently the e�et of a lear shell struture is stabilizing. We will studystability more systematially in Chapter 10.The urrent results suggest that the Fermi level ats as a desriptor for thereativity with O. While variations in the oxygen binding energy do tend toorrelate with in the Fermi level, this orrelation is however far from perfet.Aside from geometri e�ets as we have seen, a large DOS near the Fermi levelmay also inrease adsorption strength (e.g. near N = 309). A more ompletepiture would be that the overall aessibility of loosely bound eletrons fromthe adsorption site plays an important role. Suh an e�et has previously beenpointed out for the adsorption of moleular oxygen on Au lusters.53On a side note, the lear relationship between the eletroni shell stru-ture lusters and the hemial properties of gold lusters raises the question ofwhether the previous onlusions, plaing the onvergene of adsorption energieswith Au luster size at about 600 atoms, might be wrong due to magi numbersin between the ubotahedral geometri shell losings. The spetra from iosa-hedral and spherial potential-well models have been found to be highly similaras high as 1000 atoms, while ubotahedral potential wells deviate muh morequikly beyond a few hundred atoms.101 Au lusters have been predited toform trunated otahedra from somewhere around 500 atoms and above, pre-eded by deahedral lusters.57, 59 The lower symmetries of trunated otahedraand deahedra (ompared to ubotahedra and iosahedra) will to some extentdisfavour the formation of large gaps.Another e�et whih works to disfavour highly magi numbers for lustersmuh larger than 500 atoms, at least to the extent that the lusters an stillbe onsidered vaguely spherial, is the supershell struture. The relationship
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LiFigure 8.5: Adsorption energy of H and Li on Au ubotahedra as a funtion ofluster size. Clusters are generated with several di�erent pseudorandom seeds.between eletroni shells of di�erent radial and angular dependenies resultsin a beat phenomenon suh that major shell e�ets are mostly extinguishedbetween 500-1000 atoms.103 The supershell e�et one again allows for well-resolved magi numbers for lusters larger than 1000 atoms, at whih point itseems less likely for trunated otahedral lusters to have gaps. Eletroni shellstruture has however been observed in alkali metal lusters up to 1500 atoms,after whih point geometri magi numbers orresponding to ubotahedral oriosahedral shell losings take over.104 This shift in harater of magi numberswas attributed to solidi�ation of the lusters. Another study has observedeletroni shell struture as high as 3000 alkali atoms.105 In onlusion it an beargued that large eletroni gaps are unlikely beyond 500 atoms, but we annotstate with omplete ertainty that eletroni e�ets are always insigni�ant.8.4 Main-group atoms on goldWe an investigate the eletroni shell e�ets more thoroughly by onsideringadsorption of several di�erent atomi speies. In this setion we alulate ad-sorption energies of many di�erent main-group atoms on gold ubotahedra.These alulations are straightforward and use the same parameters as previ-ously.The binding energies of H and Li on Au lusters are shown on Figure 8.5.Again, magi-number lusters are universally unreative. H and Li follow theopposite behaviour of O: past a magi number, a sharp derease in bindingtakes plae. This is not surprising for Li whih has a loosely bound eletron.However H would sooner be expeted to reeive partial harge, so this behaviouris somewhat perplexing. An existing study of H adsorption on very small Aulusters has found a similar behaviour whih was deemed �anomalous�.106 Wewill look further into this in Chapter 9.Figure 8.6 shows the adsorption energies of atoms of ten 2p and 3p ele-ments. The behaviour near magi numbers is onsistent with the piture ofeletron donation or eletron aeptane: For a luster slightly smaller thana magi number the Fermi level is low, and so the donation of an eletron toan eletronegative adsorbate is assoiated with weak adsorption energy, while
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Figure 8.6: Adsorption energy of main group elements on Au ubotahedra asa funtion of luster size. Two series of generated lusters are shown on eah�gure.



58 Chapter 8. Eletroni struture and hemisorptionthe aeptane of an eletron leads to strong adsorption. The opposite is thease after a magi number. The 2p elements generally have higher eletroneg-ativities than the 3p elements, and this is re�eted in their adsorption energieson lusters. In general, Au lusters near magi numbers an in light of theseobservations be viewed as alkali-like or halogen-like. For the halogens F andCl, the inrease in energy just past a magi number is quite abrupt. For lesseletronegative elements (O and S) the hange in energy is larger but moregradual, happening over the addition of several atoms to the luster. This anbe interpreted as a transfer of several eletrons gaining more energy. Suh aharge transfer interpretation should not be taken literally, however. The typeof bond more losely resembles ovaleny as has been found for Au�S.107 Aloser analysis follows in Chapter 9.In all ases, ompletion of the triangular 6-atom faet auses a sharp dereasein binding leading up to the N = 55 ubotahedron. As we saw for oxygenbefore, N = 92 is not learly distinguishable as an eletroni magi number, butweak binding is generally found around 80 < N < 90. The overall amplitudeof variation an be several eV and tends to be higher for the eletropositiveadsorbates.8.5 Oxygen on transition metal lustersTo expand our study in a slightly di�erent diretion, let us �nally onsider thetrends in O adsorption for lusters of di�erent metals. We ompare the noblemetals Au and Ag, plus several other transition metals with un�lled d-bands,using the same geometri series of lusters.Figure 8.7 shows the adsorption energy of O on ubotahedral lusters ofvarious f transition metals. Pt adsorption energies are shown separately sinesome of the Pt lusters frequently reonstrut onsiderably, whih auses a muhmore noisy trend. Struture optimizations of these Pt lusters require aroundthree times as many steps as the 4d metals due to these signi�ant reorganiza-tions.Au and Ag, having similar eletroni struture, behave almost identially,with Au binding more weakly as expeted. Evidently the relativisti e�etsof Au do not ause signi�ant hanges in the reativity trend towards O onubotahedra (however the relativisti e�ets are known to have profound im-pliations on luster struture, and so would therefore be indiretly important inany ase; relativisti e�ets ould also be related to the tendeny of Pt lustersto restruture muh more than other d-band metals, although this has not beeninvestigated).The transition metals Ru, Rh, Pd and Pt show muh simpler trend than thenoble metals. Three overall size regimes an be identi�ed.
• From around 160 atoms and above, the binding energy is mostly onstant,varying by about 0.1 eV. This agrees well with the previous real-spaealulations, where the hanges in adsorption energy on Pt onverged moresmoothly with luster size than for Au. In the d-band model, the bindingenergies of adsorbates is predited to vary among transition metals. Forthe largest lusters (150�200 atoms), the binding strength very loselyfollows the �lling of the d-band. The approximate frational d-band �llingsare 0.7, 0.8, 0.9 and 1.0 respetively for the series Ru�Rh�Pd/Pt�Ag/Au.
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Figure 8.8: DOS of Pt ubotahedra as a funtion of luster size and energy.The Fermi level is indiated.Higher �lling leads to weaker binding in agreement with the d-band model(see however the disussion below).
• Between 55�100 atoms the binding is generally weaker than for smaller orlarger lusters, but without any large variations (exept for Pt). In thisregion the O atom binds to a 6-atom (111) faet. This spei� site onthat faet is apparently partiularly unreative: The inrease in bindingenergy for larger lusters happens when the faet is further expanded, andthe very steep hange at N ≈ 50�55 happens when the 6-atom faet isompleted.
• Before the 6-atom faet is omplete, the binding energy is muh stronger,and generally binding energy inreases steeply with size in the limit ofsmall lusters. This an be a ombination of several e�ets. In this region,the Fermi level and absolute d�band enter both hange in a similar way.The exat ause for this hange may be attributable to some ombinationof movement of the d-band, loation of the Fermi level and geometrinearest-neighbour hanges. The variation of d-band loation, and heneFermi level whih is pinned to the upper part of the d-band, takes plaeover roughly this same size range. For some reason Pd has a muh weakersuh variation than Ru, Rh and Pt.The ruial hemial di�erene between the noble metal lusters and theremaining transition metals is learly the eletroni shell e�ets. Figure 8.8shows the DOS of Pt lusters as a funtion of luster size. The overall DOSis remarkably similar to that of Au, with the s-eletrons forming graduallybroadening subshells. However the Fermi level is loated within the d-bandwhere the DOS is very high, whih loks it in plae and this prevents the reationof any gaps. (Note that the atomi basis set is not expeted to be aurate for



8.5. Oxygen on transition metal lusters 61high-lying unoupied states, and so these results do not onlusively provepersistene of shell struture among the unbound states.)It is natural to ask to what extent the size-dependene of adsorption energieswithin a series of lusters of the same metal an be understood from the d-band model. The d-band model predits that binding energies of adsorbateson transition metal surfaes an be understood from the �lling of antibondingstates on the adsorbate, with a high �lling ausing low binding energies.108 Asimple desriptor for the tendeny of suh states to be �lled is usually taken to be
ǫd− ǫF , the di�erene in energy between the weighted enter of the d-projeteddensity of states on the atoms next to the adsorbate and the Fermi level. If theFermi level is high ompared to the loation of the d-band, antibonding statesresulting from the hybridization of adsorbate states with the d-band will tend tolie below the Fermi level, whih amongst other things explains the low reativityof noble metals.108 By itself this notion is learly not su�ient to explain thetrends for noble metal lusters Ag and Au, where the eletroni shell strutureand resulting size-dependent osillations of the Fermi level appear to be themost important fators in the determination of adsorption energies.For metals with un�lled d-bands, the smallest lusters have higher-lying d-bands as well as higher-lying Fermi level (this an be seen on Figure 8.8). Theadsorption energy orrelates to some extent with either of these quantities, butpreliminary results we have not revealed any sensible or lear orrelation fromthe ombined desriptor ǫd−ǫF . The simple desriptor ǫd−ǫF therefore does notexplain the size variation of binding energies even for the metals with partially�lled d-bands. The onlusion so far must be that a number of di�erent sizee�ets partiipate simultaneously to determine the adsorption energy, makingthe ommon ǫd − ǫF desriptor less useful for lusters than for bulk systems.
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Chapter 9Analysis of hemisorption ongold lustersWe have seen how magi numbers a�et the binding energy of various adsorbateson gold lusters, with lusters appearing alkali-like or halogen-like depending onthe number of atoms. However a few questions are not resolved by the simpleprevious analysis. In partiular the apparent donation of an eletron by H, whihwould be expeted to attrat harge, is perplexing. A Newns�Anderson modelwill be applied below to better understand the bonding of di�erent adsorbates.9.1 The Newns�Anderson modelThe Newns�Anderson model desribes the hemisorption of an atom on a metalsurfae.109 It is a tight-binding model whih desribes the hybridization ofa single state |a〉 on an atom with the ontinuum of states |k〉 of a surfaeharaterized by a Fermi energy ǫF . The model onsiders the Hamiltonian
Ĥ = Ĥ0 + V̂ , (9.1)where Ĥ0 is the Hamiltonian of the unoupled metal and adsorbate, and V̂desribes the oupling. In the basis of unoupled eigenstates |k〉 and |a〉, theHamiltonian takes the form

H =




. . . 0
...

ǫk vka

0
. . . ...

· · · vak · · · ǫa



, (9.2)where Ĥ0 and V̂ orrespond to the diagonal and o�-diagonal bloks, respetively.The parameters are the unoupled energy of the adsorbate ǫa, the energies ǫkof the metal states, and the adsorbate�metal ouplings vak.The strength of this model is, as we shall see in the following, that it an beused to attribute parts of the binding to di�erent energy ranges, providing qual-itative information whih is not easily obtained from a DFT alulation. WhileDFT alulations themselves an provide aurate results, the self-onsisteny63



64 Chapter 9. Analysis of hemisorption on gold lustersproedure eventually results in every quantity depending on every other quan-tity. What we would like is a simple, more qualitative understanding, whih ismore easily obtained through a non-self-onsistent model.In the following we will desribe a method to extrat a Hamiltonian matrixfrom a DFT alulation using the loalized basis set, whih an be used withinthe Newns�Anderson model.9.2 Newns�Anderson Hamiltonian from DFTThe Hamiltonian matrix alulated in the loalized basis set is far from theNewns�Anderson form (9.2). In order to apply the model, we must �nd a wayto transform the matrix.Suppose we have alulated a Hamiltonian using DFT and apply a �small�perturbation whih self-onsistently would hange both the Hamiltonian, den-sity and wavefuntions. By the fore theorem, sine both wavefuntions anddensity are at variational minima, the hange in energy due to this perturba-tion orresponds spei�ally to the hange in Hamiltonian. Thus, from a smallperturbation of a self-onsistent Hamiltonian we an obtain the hanges in ad-sorption energy knowing only the hange in the Hamiltonian.We will use this to perform a DFT alulation for a ombined system in-luding both luster and adsorbate, then modify this Hamiltonian to obtainexpressions for the unoupled ases.In the loalized basis, the Hamiltonian alulated by DFT will onsist ofbloks HM ,HA,HAM and H
MA pertaining to the basis funtions on the metalatoms, adsorbate and the interation:

HDFT =

[
H

M
H

AM

H
MA

H
A

]
. (9.3)The metalli and the atomi submatries an eah be brought on diagonalform by diagonalizing them independently. Sine the loalized basis set is non-orthogonal, we solve the generalized eigenvalue equations involving also theoverlap matrix Sµν :

∑

ν

HM
µνc

M
νk =

∑

ν

SM
µνc

M
νkǫk, (9.4)

∑

ν

HA
µνc

A
νa =

∑

ν

SA
µνc

A
νaǫa. (9.5)Sine the solutions cMνk and cAνa diagonalize eah of the submatries HM and

HA, they an be used to transform the interation bloks HAM
ak and SAM

ak :
vak =

∑

a′k′

cA∗
a′aH

AM
a′k′ cMk′k, (9.6)

sak =
∑

a′k′

cA∗
a′aH

AM
a′k′ cMk′k. (9.7)By now the DFT-based Hamiltonian has been brought on the form (9.2) exeptfor two issues: First of all there are several states on the atom, whereas Eq.(9.2) only allows one. We will assume that eah of the atomi states hybridizes



9.3. Binding energy from Newns�Anderson 65independently, resulting in a separate Hamiltonian for eah suh state. Thismethod has been used previously to desribe the interation of several moleularorbitals with metal surfaes. Seond, the basis funtions on the atom have anoverlap sak = 〈a|k〉 with the metal states. Grimley has solved this problem ina non-orthogonal basis, and that approah will be used in the following.1109.3 Binding energy from Newns�AndersonThe energy of the unoupled metal an be written in terms of the metallidensity of states ρ(ǫ), as an integral up to the Fermi level
E = 2

∫ ǫF

−∞

ρ(ǫ)ǫ dǫ, (9.8)where the fator 2 denotes spin-degeneray. Suppose now that a single atomistate ouples to the metal surfae, ausing a hange δρ(ǫ) in the density ofstates. The hange in energy an then be obtained by integrating δρ(ǫ)ǫ overthe oupied states, exept are must be taken to ensure that the right numberof eletrons is ounted in this integration. First of all the adsorbate ontributesa number na of eletrons (probably 1 or 2), whose initial energy naǫa must besubtrated. These eletrons are deposited at the Fermi level ǫF .Consider the integral of the indued density of states
∆N =

∫ ǫF

−∞

δρ(ǫ) dǫ. (9.9)This is the number of states that have, by the hemisorption event, been in-trodued below the Fermi level. If this is nonzero, a number of eletrons willhave moved from the Fermi level down into these newly available states. Thus,a number 2∆N (ounting spin) of eletrons has been removed from the Fermilevel. Taking these eletron ounting orretions into aount, the adsorptionenergy an be written as
Eads = 2

∫ ǫF

−∞

δρ(ǫ)ǫ dǫ− 2∆NǫF + na(ǫF − ǫa). (9.10)The indued density of states, and thus the energy, an be alulated usingGreen's funtions. The theory behind this will be brie�y skethed next.The Green's operator Ĝ(z) is de�ned for some Hamiltonian Ĥ by
(z − Ĥ)Ĝ(z) = Î , (9.11)where z = ǫ+ iλ is a omplex number. The retarded Green's funtion is de�nedby taking the limit λ→ 0+, whih will be impliit in all expressions from nowon. With this onvention, the matrix element Gα(ǫ) ≡ 〈α|Ĝ(ǫ)|α〉 orrespondingto some state |α〉 is related to the projeted density of states ρα(ǫ) through∗

Im 〈α|Ĝ(ǫ)|α〉 = −iπρα(ǫ). (9.12)
∗This uses the relation limλ→0

1

x+iλ
= P

x
− iπδ(x), where P is the Cauhy prinipal value,known from omplex analysis.



66 Chapter 9. Analysis of hemisorption on gold lustersTherefore the full density of states an likewise be obtained from the traeas ImTr Ĝ(ǫ), allowing us to atually alulate binding energies. We need toalulate the Green's funtion Ĝ(ǫ) of the ombined system in order to be ableto integrate the indued density of states and obtain a binding energy, a taskwhih is made more ompliated by the fat that the basis is non-orthogonal.By making use of the projetion operator for non-orthogonal basis sets,(4.13), the matrix elements of (9.11) are
∑

ξλ

〈Φµ|ǫ − Ĥ|Φξ〉S
−1
ξλ 〈Φλ|Ĝ(ǫ)|Φν〉 = 〈Φµ|Φν〉 = Sµν , (9.13)and hene in matrix notation

(ǫS−H)G̃(ǫ) = I, G̃(ǫ) = S
−1

G(ǫ)S−1, (9.14)where G̃(ǫ) is the usual non-orthogonal Green's funtion.111 This an be rewrit-ten as a perturbation series
G̃(ǫ) = G

0(ǫ) +G
0(ǫ)X(ǫ)G̃(ǫ), (9.15)with G

0(ǫ) being the known Green's funtion of the unoupled system, and
X(ǫ) = V − ǫs, S = I + s. (9.16)Then X(ǫ) ontains only elements that ouple between adsorbate and metal.Using the perturbation series, all matrix elements Ga, Gk, Gka, Gak are rela-tively straightforward to write down. With this hange, the remaining part ofthe alulation mostly resembles the non-orthogonal ase,109 where the bindingenergy (9.10) beomes an integral

Eads =
2

π

∫ ǫF

−∞

η(ǫ) dǫ + na(ǫF − ǫa) (9.17)over a phase shift η(ǫ) alulated from the real and imaginary parts Λ(ǫ) and
∆(ǫ) of the self-energy:

tan η(ǫ) =
∆(ǫ)

ǫ− ǫa − Λ(ǫ)
. (9.18)These funtions are given by

∆(ǫ, ǫ′) =
∑

k

|Xak(ǫ)|
2δ(ǫ′ − ǫk), (9.19)

Λ(ǫ) = P

∫ ∞

−∞

∆(ǫ, ǫ′)

ǫ− ǫ′
dǫ′, (9.20)with the short-hand ∆(ǫ) = ∆(ǫ, ǫ).110 The notation P∫ refers to the Cauhyprinipal value. The ǫ and ǫ′-dependent fators in ∆(ǫ, ǫ′) an be alulateddiretly from the ouplings of the transformed DFT Hamiltonian and overlapmatrix, and used to evaluate the rest of the quantities.The phase shift η(ǫ), whih determines the entire hemisorption energy ex-ept for the harge transfer terms, is related to the umulative indued DOS

N(ǫ) =

∫ ǫ

−∞

δρ(ǫ′) dǫ′ = −
η(ǫ)

π
(9.21)
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Figure 9.1: PDOS (arb. units) for O on Au lusters as a funtion of energyand luster size. The Fermi level is indiated. The most visible hanges, suhas the one at N ≈ 105, happen when the loal faet is modi�ed. However theimpat on binding energy is small ompared to that of shell struture.The projeted density of states on the adsorbate, whih will be used in thefollowing, an be alulated from
ρa(ǫ) =

∆(ǫ)

(ǫ− ǫa − Λ(ǫ))2 +∆2(ǫ)
. (9.22)9.4 In�uene of d-bandBefore using the full non-orthogonal model on DFT Hamiltonians, we an ob-tain a qualitative understanding of this model by playing around with a simplehemisorption funtion. The overall reativity of di�erent metals is well de-sribed by the d-band model, whih attributes the variations to the position or�lling of the d-band.To do this we must hoose the adsorbate level ǫa and the hemisorptionfuntion ∆(ǫ). We will hoose these values suh that the projeted densityof states (PDOS) on the adsorbates math those alulated with DFT. Figure9.1 shows the PDOS on the atomi basis funtions of O using (4.15). The Ostates split into states on either side of the d-band, whih an be understoodas bonding and antibonding. The PDOS does not qualitatively hange withluster size, although some variations are seen near the magi numbers. In allases, the antibonding states are largely oupied.Assume �rst that the adsorbate ouples to an idealized metalli s-band andd-band, where the oupling to eah band an be approximated as semielliptiontributions V 2

s ρs(ǫ) and V 2
d ρd(ǫ) to ∆(ǫ), where ρs(ǫ) and ρd(ǫ) integrate to1. Thus

∆(ǫ) = πV 2
s ρs(ǫ) + πV 2

d ρd(ǫ). (9.23)
Vs and Vd determine the oupling strength. s and d bandwidths are hosen toroughly math those of real Au. On Figure 9.2a,∆(ǫ) (full lines) and orrespond-ing Λ(ǫ) (broken lines) are shown for two di�erent hoies of semiellipti d-band.



68 Chapter 9. Analysis of hemisorption on gold lusters

Figure 9.2: (a) Two hoies of semiellipti ∆(ǫ) (full lines) and resulting Λ(ǫ)(broken lines). Bonding and antibonding states appear at intersetions between
Λ(ǫ) and the shown line ǫ − ǫa. (b) The projeted density of states on theadsorbate showing bonding and antibonding states. () The umulative induedDOS N(ǫ). (d) The adsorption energy as a funtion of the loation of the Fermilevel. If the Fermi level is loated above the antibonding PDOS peak, d-bandloation no longer a�ets adsorption energy.
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Figure 9.3: Binding energy as a funtion of Fermi level for two di�erent d-bandloations. The adsorbate ontributes a single eletron in this example.One represents an ordinary Au surfae while the other is shifted higher in energyand made more narrow, representing e.g. an underoordinated site suh as maybe found on a luster. The adsorbate energy level is set to ǫa = −7 eV.The oupling results in two states with the PDOS shown on Figure 9.2b.They orrespond to lear bonding and antibonding states broadened into reso-nanes by the s-band. Also shown is the indued DOS δρ(ǫ). The bonding andantibonding states are, together and ounting spins, apable of aepting foureletrons. However a single state is eliminated from within the d-band, so thata total of only two extra eletrons is indued. The umulative indued DOS isshown on Figure 9.2.We an now alulate the binding energy, shown on Figure 9.3 as a funtionof the Fermi level. Clusters lose to a magi-number luster will presumablyhave almost the same hemisorption funtion, and vary only by having di�erentFermi levels. Considering the variation of the energy as a funtion of Fermilevel therefore orresponds to the transition past a magi number. Sine theFermi level is loated at approximately −4.5 eV for Au, the binding energyvaries with the Fermi level but is loally independent of the loation and widthof the d-band. In fat, in this simple ase, the loation of the d-band a�etsthe adsorption energy only if the Fermi level lies between the bonding and theantibonding states.This variation of binding energy with Fermi level agrees with the behaviourof O on Au lusters lose to magi numbers. The adsorption of an O atom withtwo empty p-states reates states below the Fermi level that an aept twoeletrons in total. These two eletrons are removed from the Fermi level, andtherefore an inrease of the Fermi level orresponds to an inrease in adsorptionenergy by twie as muh. An analysis of the oupation of the O p-states (usingthe DOS expression in terms of the basis funtions, (4.15)) reveals that the e�etof inreasing the Fermi level on the luster is not to transfer signi�antly moreharge to the atom. Instead the inrease in binding due to a higher Fermi levelhappens beause the eletrons whih would anyway be going from the Fermilevel into the indued states, an now do so from a higher-lying Fermi level.9.5 Main-group elementsWe now use the full non-orthogonal model with DFT Hamiltonians. ConsiderO as a �rst example. A DFT alulation is performed on one of the previously
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Figure 9.4: Newns�Anderson model applied to O on Au58. (a) ∆(ǫ) and Λ(ǫ)for the three p states, with x and y being almost idential. The grey line is
ǫ− ǫa (ǫa of the three states lie lose) whose intersetions with Λ(ǫ) orrespondto energies of reated states. The Fermi level is indiated. (b) PDOS. ()Cumulative indued DOS for eah state. Total umulative indued DOS N(ǫ) =
Nx(ǫ) +Ny(ǫ) +Nz(ǫ).relaxed Au58 lusters with O adsorbed on it. The DFT alulation uses theusual parameters, exept we use only a single-ζ basis set for the atoms suh thatwe only have funtions for the atual atomi orbitals. From this alulation weexport the overlap matrix and Hamiltonian and alulate hemisorption funtionand other quantities. We onsider only the 2p states.

∆(ǫ) and Λ(ǫ) are shown on Figure 9.4a for the pz state (blue) and the pxand py states (red), whih are degenerate and have the same oupling. Thepz state ouples strongly in the region ǫ ≈ −11 eV while the two other statesouple to higher energies, inluding the two peaks above the Fermi level thatorrespond to eletroni shells. The resulting PDOS (Figure 9.4b) shows a learstate just below the Fermi level, like previously in Figure 9.1. Note that theexat behaviour of the PDOS above the Fermi level may not be realisti, asthe atomi basis set is not well suited for higher-lying unbound states, andbeause the PDOS plotted here is based on (9.22) whih does not aount fornon-orthogonality. The PDOS therefore does not annot represent numbers ofeletrons, but does show in a sense the presene of states. Higher-lying peaksare generally exaggerated due to this e�et.The umulative indued DOS N(ǫ) for eah of the states is shown on Figure9.4. They behave in a manner onsistent with the simple model onsidered
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Figure 9.5: (a) PDOS alulated as a sum over px, py and pz for elements B�F. Splitting of the adsorbate state generally dereases with 2p �lling. (b) Total
N(ǫ) of the three 2p states for eah of the elements B�F.previously: The additional states introdued into the spetrum with the bondingpeaks are anelled out by the elimination of metalli states, so that the N(ǫ)remains low e.g. at ǫ = −7.5 eV. The antibonding states, however, all lie belowthe Fermi energy whih means a total of three extra states have been introduedin the spetrum below the Fermi level. The four eletrons from O �ll only twoof these, and thus two eletrons an be moved from the Fermi level down to theindued states. Inreasing the Fermi level would thereby inrease binding bytwie that amount. The hybridization of eah state with the un�lled eletronishells above the Fermi level an be understood as a slight movement of thestates within the eletroni shells. If the Fermi level had been loated withinthese, the relationship between Fermi level and adsorption energy would havebeen more ompliated. Thus, the simple relationship exists only beause of thegap at the Fermi level. Figure 9.4d shows the sum of the umulative induedDOS for eah state, whih therefore reahes 3.Figure 9.5 shows the behaviour for the 2p elements B�F. The PDOS (Figure9.5a) very high splitting between bonding and antibonding states for B, dereas-ing towards F whih has only a fully oupied resonane peak. The �lling ofantibonding states is normally taken as the primary reason why Au binds adsor-bates weakly. It is seen here that it is really N(ǫ) whih ontains all quantitativeinformation, and from whih onlusions an be drawn.Finally the PDOS and N(ǫ) for H and Li are shown on Figure 9.6. Liindues a state above the Fermi level from whih one eletron is ontributed,onsistently with expetations. The H oupling is so strong that a low-lyingbonding state appears at−12 eV, the bottom of the s-band (a similar e�et hasbeen desribed in Ref. 112, while the antibonding state is above the Fermi level.Sine one state is eliminated from the metalli DOS (at approximately −10 eV),the total indued DOS up to the Fermi level integrates to approximately zero.The eletron introdued by H therefore e�etively goes on top of the Fermi level,explaining why it behaves like Li.In onlusion, we understand from this model that the shift in adsorptionenergy aross a magi number an be positive or negative depending on whetherstates are indued above or below the Fermi level. If exess states are intro-
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Figure 9.6: (a) PDOS and (b) umulative indued DOS of H and Li on Au58.dued below the Fermi level, the inrease in Fermi level assoiated with a maginumber will allow eletrons to transfer from the higher Fermi level, leading tostronger adsorption. If states are introdued above the Fermi level, the ele-trons ontrobuted by the atom must be deposited onto the Fermi level, insteadleading to weaker adsorption. The ase of hydrogen is explained by a strongsplitting with the introdution of a low-lying bonding state far below the Fermilevel, but the elimination of e�etively one state from the metal below the Fermilevel. Therefore hydrogen behaves like Li, though a more appropriate piture isthat of a ovalent bond.



Chapter 10Eletroni struture andgeometryUntil now we have onsidered Au lusters whih are based on regular strutures.While these strutures make it easy to ompare adsorption energies sine theloal geometry around the adsorbate an be retained aross di�erent lustersizes, it is not ertain how well our onlusions apply to lusters with realististrutures. As previously mentioned, small Au lusters in partiular form quitevaried strutures that are far from the regular strutures onsidered previously.Optimizations of luster strutures based on ab-initio methods with the obje-tive of �nding the globally optimal strutures are prohibitively expensive in therange of luster sizes we are onsidering. However if our objetive is to obtaina qualitative idea about the behaviour of real lusters (or even a realisti idea,given that �nite-temperature ensembles will naturally onsist of mixtures), thenthe exat determination of strit lowest-energy strutures is not essential. Inthe following we perform simulated annealings on Au lusters using the simpleEMT potential113, 114 implemented in ASAP,115 and then with DFT using theloalized basis sets.10.1 Moleular dynamisWe will in the following use simulated annealing within moleular dynamis(MD) as a means to globally optimize strutures. This method simulates thata olletion of atoms is ooled down from above its melting point until it om-pletely freezes, allowing the atoms to gradually arrange themselves the sameway they would in nature. There exist muh more e�ient global optimizationalgorithms than simulated annealing, but sine this method simulates a physialproess, it will be guaranteed to produe strutures whih are at least in somesense physial. We aknowledge that due to the limited annealing employedhere, there is a possibility that the determined shapes of lusters may be morelike those found at higher temperatures. In partiular the reation of regularlatties is disfavoured by this proedure.MD simulations solve Newton's equations of motion for the atomi positionsas a funtion of time. This requires subsequent alulations of the fores on eahatom to update momenta and positions, and will preserve the total energy of73
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Figure 10.1: Energy per atom of Au lusters based on simulated annealing withEMT, ompared to regular ubotahedra and iosahedra. The referene energyis bulk Au.the system, but not neessarily the temperature whih it is more desirable for usto ontrol. The temperature an be regulated or �xed by applying an arti�ialadjustment of atomi veloities on eah iteration. Suh a orretion is alled athermostat. Here we use Langevin dynamis, adding a �rst-order damping termto Newton's equations, whih for eah iteration slightly adjusts the temperaturetowards the desired value.10.2 Simulated annealing with EMTFor lusters of 6�200 atoms we perform a simulated annealing using the em-pirial potential in the ASAP ode.115 Sine this is a lassial potential, wewould expet it to emphasize e�ient atomi paking. The potential makes noreferene to the onept of eletrons, so the eletroni struture for this series oflusters will stritly be a funtion of the geometri struture. The simulated an-nealing is performed from a starting temperature above the bulk melting point,and stops at 200K. The temperature is lowered by 1K for eah 200 MD steps.After the annealing we perform a struture optimization using DFT with theloalized basis and the usual alulation parameters. Thus we an obtain ele-troni spetra and total energies that an be ompared to the those of previoushapters.Figure 10.1 ompares the energies of strutures obtained with EMT to thoseof the regular ubotahedra and iosahedra generated by the proedure fromChapter 8. Four independent annealings have been performed, and four dif-ferent series of randomly generated iosahedral and ubotahedral lusters areshown. The EMT strutures generally have the lowest energies, with iosahedrabeing favourable to ubotahedra within this size range. The eletroni magi
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Figure 10.2: DOS of Au lusters as a funtion of number of atoms and energyobtained by simulated annealing using EMT. The white line indiates the Fermilevel.numbers 34, 58 and 92 are learly visible as kinks with partiularly low energiesfor all types of lusters. However, no inrease in stability is seen near the geo-metri shell losings 55 and 147 of iosahedra and ubotahedra. This suggeststhat the eletroni struture is muh more energetially important than e�ientatomi paking, up to at least 100 atoms. Even beyond this point, the roughlyoptimized EMT-based lusters tend to have lower energies than the entirelyregular iosahedra and ubotahedra.Figure 10.2 shows the spetrum as a funtion of luster size, with shellstrutures in agreement with those of ubotahedra and iosahedra from e.g.Figure 8.4. Large eletroni gaps persists until around 90 atoms. Beyond thispoint the eletroni shells start to overlap due to the lower symmetry omparedto the iosahedra and ubotahedra, although shell struture as a whole persistslonger.10.3 First-priniples global optimizationEMT-based strutures may in priniple be orret to the extent that eletronistruture an be somehow regarded as a strit funtion of geometri struture.But the results so far indiate that eletroni struture is a more importantfator in the total energy, and thus eletroni e�ets are quite likely to a�etthe geometry even for the larger lusters. This prompts us to expliitly inludeeletroni e�ets by using DFT to perform the annealing.Due to the prodigious amount of alulations neessary, we have to makeertain sari�es of numerial preision. Several parameters lend themselvesfor suh ompromise. The annealing proess itself an be shortened, the timestep inreased, and the temperature range narrowed. Also the DFT parameters



76 Chapter 10. Eletroni struture and geometryan be sari�ed: most importantly the grid spaing and basis set quality. Theamount of vauum surrounding the luster must however be kept high to preventsystematially biasing ompat strutures. The hoies desribed below arebased on test runs for lusters about 30 atoms in size with the spei� objetiveof determining the oarsest parameters that still yield a sane behaviour.An MD simulation aiming for realism might use a time step of only a few fs.Higher time steps make it di�ult to ensure energy onservation beause of thelarge atomi movements with every step. We hoose here to inrease the timestep and leave it to the thermostat to damp any energy instabilities by using ahigh frition oe�ient of 0.06 with the Langevin implementation of ASE. Testswith the EMT potential have revealed that with a time step larger than about30 fs, atoms will be randomly ejeted from the luster at high speed due to thepoor detailed desription of ollisions. We have therefore hosen a time step of24 fs, whih does not exhibit suh behaviour even during long simulations.We hoose the EMT-optimized lusters as starting points for the DFT an-nealing. The temperature must be high enough, and the number of MD stepslarge enough, for the end result to be independent of the initial struture. Aulusters melt at onsiderably lower temperatures than bulk Au. The thermody-namis of lusters have been investigated in many works, mostly based on MDsimulations with empirial potentials.61, 116 The largest luster we optimize has150 atoms and melts at around 625K,63 so we start the annealing at 750K andend it at 300K. The temperature is high enough to entirely remodel the surfaestruture in all ases.Two series of MD annealings are performed:
• A �high-quality� series for N=6�60 with grid spaing 0.24Å and the stan-dard dzp basis set. The temperature is lowered by 1K every 5+N/2 MDsteps.
• A �low-quality� series for N=6�150 with grid spaing 0.25Å, and the samebasis set exept the seond of the d-type orbitals is exluded. The tem-perature is lowered by 1K every 20 MD steps.Tests with further redued basis set or grid quality tend to yield some highlypituresque strutures, albeit of little sienti� value. At the end of the an-nealing proedure, a struture relaxation is performed with the standard DFTparameters suh that energies an be diretly ompared with previous alula-tions.Many of the lusters exhibit reognizable strutural motifs. The lusterswith 6�9, 12 and 13 atoms are found to be planar. The lusters from 19�23atoms onsist of the extraordinarily stable Au20 tetrahedron78, 117, 118 plus orminus a few atoms. Several of the larger lusters involve strutures suggestiveof tetrahedra in spite of many strutural irregularities. The energy per atom asa funtion of the number of atoms is shown on Figure 10.3, omparing the twoseries of annealed lusters with the four previous series obtained from EMT.The small DFT-based lusters are, as an be expeted, far lower in energy thanthose of EMT. The di�erene is smaller for larger lusters, where the short DFTannealing times tend to produe many imperfetions∗.

∗An extremely long EMT annealing yields energies that are better than the DFT-basedlusters from about 80 atoms, although the DFT lusters still prevail lose to the maginumbers 92 and 138. However this proedure yields worse energies than those of the EMT



10.3. First-priniples global optimization 77

Figure 10.3: Energy per atom for lusters obtained with simulated annealingwith DFT and EMT. Inset: Magni�ed view for smaller lusters.Figure 10.4 shows the DOS as a funtion of luster size and energy for the 6�60-atom series (top) and the 6�150 series (bottom). The optimization proeduretends to yield eletroni gaps at the Fermi level not only at the magi-numberlusters, but for almost every luster. For uneven-numbered lusters, the half-�lled state at the Fermi level is loated in the middle of a gap between fullyoupied and fully empty states. The same phenomenon has been found forother monovalent lusters.82, 119�121 The reation of suh a gap is onsistent withthe priniple of maximum hardness .122, 123 The energy is lowered by pushingall oupied states down, while unoupied states are pushed up at no ost.The priniple behind Jahn�Teller deformations is in many ways similar. Ofpartiular note is the qualitative feature of the DOS that the eletroni shellsstay at onstant energy levels for all sizes, rather than move ontinuously downin energy as seen for the EMT strutures and regular geometries. The shellstruture is greatly enhaned lose to the magi numbers, resolving here intothe same bands as in EMT-based or regular strutures.Figure 10.5 shows the gaps of the lusters alulated as a di�erene betweenstates of harge +1 and −1. This reveals that the real magi numbers of thesestrutures are, surprisingly, 90 and 132 rather than the expeted 92 and 138.Both 90 and 132 are minor spherial shell losings of the simple jellium modelpresented in Chapter 6, di�ering respetively by an s-orbital and a p-orbital fromthe subsequent major shell losings. There are strong odd�even alternationsdue to the half-�lled state for uneven lusters. These are well-known from amultitude of theoretial models.124, 125 The alternations an exist as long as thereation of a gap is possible, implying that they may be found in larger lustersas well. Alternations have been also shown in moleular adsorption energies forannealings presented here for most of the smaller lusters. The EMT strutures obtained inthis range from long annealing times are mostly deahedral, with iosahedra lose to N = 147
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Figure 10.4: DOS of Au lusters obtained by simulated annealing with DFT asa funtion of luster size and energy. The white line indiates the Fermi level.
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Figure 10.5: Gaps, alulated as hemial hardness, for the two series of DFTstrutures. This is the di�erene (I −A)/2, where I is the ionization potential,and A is the eletron a�nity. Top: The 6�60-atom series. Bottom: The 6�150-atom series. For larity, separate graphs for even and uneven lusters areshown. The dotted lines indiate the magi numbers 20, 34, 58, 90 and 132.The last two magi numbers di�er from the usual major spherial jellium shelllosings.
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Figure 10.6: Ratios of moments of inertia for the 6�60 (top) and 6�150 series(bottom) of DFT-annealed Au lusters. The area between the larger and thesmaller moments is shaded for larity.small lusters.126�128 This would also be expeted from our previous attributionof the Fermi level as a desriptor for reativity.Strutural trends of the optimized lusters are revealed by onsidering theirmoments of inertia. For eah luster we alulate the three prinipal momentsof inertia, I1 ≤ I2 ≤ I3. Figure 10.6 shows the quantities √I1/I3 and √
I2/I3as a funtion of luster size for the two series of lusters. Large deformationsare haraterized by large deviations of either ratio from 1. Small deformationsindiate spherial or otherwise symmetri strutures suh as the Au20 tetrahe-dron. These deformations are similar to the well-known distortions of jelliumlusters,74 and an also emerge from tight-binding models.119 The deformationdue to shell struture is however a fundamentally non-loal phenomenon whihannot be aounted for using simple atomi potentials. Reall from Figure 10.3how the EMT potential generates strutures of about the same energy as DFTnear magi numbers, while the intermediate EMT-strutures, partiularly be-tween 34 and 58 atoms, are systematially higher in energy than those obtainedfrom DFT. The e�ets of eletroni shell struture are essential to the determi-nation of orret geometries of lusters well above hundred atoms in size, withdeformations as large as 10�15% even at N = 150 whih is the largest lusteronsidered.



Chapter 11ConlusionA loalized basis set implementation in GPAW has been presented whih pro-vides a very e�ient alternative to the real-spae ode, as demonstrated by mostof the results presented later in this work. More systemati testing of furtherof basis sets beyond dzp is desirable in the future. O(N) or other low-salingmethods would also be a logial next step to improve performane on systemsbeyond 200�300 atoms.Using the real-spae representation of GPAW, we have performed large-saleDFT alulations on Au and Pt lusters with up to 1415 atoms using 65536 oreson the BlueGene/P superomputer at Argonne National Laboratory. From thesealulations it appears that the size-dependent hemial properties of lusters,as measured by adsorption of O and CO, roughly onverge with size at 600atoms for Au and 200 atoms for Pt, although small variations within 0.1 eV ofthe bulk limit exist. The tendeny of small lusters to bind more strongly an tosome extent be understood as a geometri e�et attributable to small faet sizes,although variations of adsorption energy on Au do not orrelate with geometrybeause of profound eletroni e�ets.Using the basis set ode, we have studied the trends in adsorption energy ofatomi adsorbates on full ranges of Au ubotahedron-based lusters, usuallyup to 200 atoms. It is revealed that eletroni size e�ets relating to the jellium-like eletroni struture entirely dominate the hemial properties of noble-metallusters in this size range, with osillations in adsorption energy on the order of1 eV depending on adsorbate. While the DOS of the d-states varies little beyond50 atoms, the s-states split into eletroni subshells that �ll one by one as lustersize inreases. From alulations with several di�erent atomi adsorbates, Aulusters an be ategorized as alkali-like, noble or halogen-like depending ontheir number of atoms relative to magi numbers. At a magi number, theFermi level jumps aross the eletroni gap into the next eletroni shell, fromwhih it is more easily donated to an adsorbate.Transition metal lusters of Ru, Rh, Pd and Pt exhibit similar shell strutureof the s-eletrons, but the Fermi level is lodged within the d-band preventingany signi�ant variation. Adsorption energies on suh lusters therefore showno trae of shell struture. The main variation in binding energy on theselusters stops around 50�60 atoms when faets are su�iently large that theloal geometry around the adsorbate does not hange onsiderably with lustersize anymore. 81



82 Chapter 11. ConlusionUsing a Newns�Anderson model, we have found that the abrupt variationsof adsorption energy at magi numbers an be understood from the loationof adsorbate-indued states within the luster relative to the Fermi level. Foradsorbates that indue states only below the Fermi level, eletrons will be trans-ferred from the Fermi level down into the indued states, suh that variationsof the Fermi level diretly orrespond to variations of the adsorption energy.Adsorbates that only indue states above the Fermi level have the oppositebehaviour. H displays a more omplex behaviour, where a bonding state wellbelow the Fermi level is anelled by the elimination of one state from the lus-ter, whih implies that H e�etively adds an eletron to the luster.We have performed simulated annealings of Au lusters with DFT using veryoarse parameters. The shell struture is similar to the previously onsideredstrutures near the magi numbers, but di�ers markedly away from magi num-bers. Eletroni gaps at the Fermi level are reated for all lusters up to 150atoms, whih is the maximum size studied. The opening of gaps is failitatedby large geometri deformations of the lusters, with magi-number lusters be-ing spherial and other lusters being mostly oblate. The omplex relationshipbetween eletroni and geometri e�ets persists with deformations of 10�15%well beyond 100 atoms.
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