Magic numbers in nature: Quantum shell structure in large metal clusters

Ask Hjorth Larsen

Center for Atomic-scale Materials Design

March 10, 2009

Contents

[Magic numbers in nature](#page-2-0)

[Electronic shells in atoms](#page-2-0) [Shell structure in atomic nuclei](#page-4-0)

[Metal clusters](#page-5-0)

[Atomic shells and packing](#page-5-0) [Experimental observations](#page-7-0)

[Theoretical description](#page-11-0)

[Modelling metal clusters](#page-11-0) [Balian Bloch trajectories](#page-13-0)

 209

 \leftarrow

Emergence of quantum numbers

An example using a simple atomic model

Solving the Schrödinger Equation

- Assume each electron feels a spherical potential $V(r)$ (rather crude: ignores electron interactions, ...)
- \blacktriangleright We want to solve

$$
\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) - E\right]\psi(\mathbf{r}) = 0
$$

- \blacktriangleright Guess wave function of the product form $\psi(r, \theta, \phi) = R(r) \Theta(\theta) \Phi(\phi)$
- \triangleright Plug into differential equation and use separation of variables to solve it.

 Ω

イ伊 トマ ヨ トマ ヨ ト

Emergence of quantum numbers

An example using a simple atomic model

Counting solutions

 \blacktriangleright Separated solutions:

$$
R_n(r) = \langle \text{depends on } V(r) \rangle, \quad\n\begin{cases}\n n = 1, 2, 3, \dots \\
l = 0, 1, \dots, n-1 \\
m = -l, \dots, +l\n\end{cases}
$$

- \blacktriangleright Each value of n yields one shell, occupations being determined by (l, m) combination count (and spin multiplicity)
- ► *n*'th shell : $N_n = 2\sum_{l=0}^{n-1}(2l + 1) \rightarrow 2,8,18...$
- \triangleright Closed-shell configurations correspond to noble gases. This determines the periodic table! (almost)

 209

メ 何 メ メ ヨ メ ス ヨ メー

Nuclear shells

- \triangleright Assume each nucleon feels a spherical potential
- \blacktriangleright Turns out that energies split due to "spin-orbit interactions", resulting in different energies and occupations
- \blacktriangleright Magic numbers 2, 8, 20, 28, 50, 82, 126
- \blacktriangleright Numbers apply to proton and neutron counts separately, making "doubly magic numbers" possible.

Examples of clusters

Figure: Different truncated octahedral gold clusters. Atom counts 38, 79, 116, 140, 201. 4 0 8 - ∢ 母 ▶ ∢ 君 ▶ .∢ 君 ▶ э

[Shells structure in metal clusters](#page-0-0) Center for Atomic-scale Materials Design

Cluster structures

Packing of atoms

- \triangleright Clearly, clusters can be constructed by adding layers of atoms
- \triangleright A complete layer, or atomic shell, generally means a low energy. This is readily observed for large clusters
- \triangleright As we shall see later, rather more interesting things happen in metals, related to electronic shells

Mass spectroscopy technique

- \triangleright Clusters condensate from vapours of constituent atoms
- \blacktriangleright Hit clusters with ionizing radiation
- \triangleright Accelerate clusters in electric fields, measure time of flight to determine charge per mass
- \triangleright Stable structures are difficult to ionize, so these will appear as dips in the resulting mass spectrum

 209

 $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$ \rightarrow $\langle \bigcap \mathbb{P} \rangle$

Mass spectrum for Na clusters

- \blacktriangleright Minima correspond precisely to closed atomic shells of specific lattice structures.
- ▶ Source: T. P. Martin et al. Z. Phys. D - Atoms, Molecules and Clusters 19, 25-29 (1991)

つくい

Two types of shell structure

Figure: New set of magic numbers appearing for smaller clusters. T. P. Martin et al. Z. Phys. D - Atoms, Molecules and Clusters 19, 25-29 (1991), Springer ∍

[Shells structure in metal clusters](#page-0-0) Center for Atomic-scale Materials Design

Measurement of magic numbers and beat mode

Figure: blah. J. Pedersen et al. 253-735, 1991 [Shells structure in metal clusters](#page-0-0) Center for Atomic-scale Materials Design

Pseudopotential principles

Valence and core electrons

- \triangleright The core electrons of an atom do not participate in chemical bonding, while valence electrons are chemically active.
- \triangleright Physical and chemical properties can generally be described by considering just the valence electrons.
- \triangleright The nuclear and core electron charges form a hazy background charge, giving rise to a smooth "effective potential" felt by the valence electrons

- \triangleright Constant effective potential (metallic cluster)
- \blacktriangleright Fast wave function oscillation compared to cluster scale
- \blacktriangleright Like an isolated atom, but quantum numbers are larger

Mathematical description

- \triangleright Balian and Bloch have described spherical systems under cluster-like assumptions (large domain, low-wavelength oscillations) in terms of a "multiple reflection expansion".
- \triangleright Effectively, electronic states are ascribed periodic paths of length L, reflecting at the points r_0, r_1, \ldots on the boundary, and states are described by a complex wave number k such that

$$
e^{\mathrm{i}kL} = e^{\mathrm{i}k_rL}e^{-k_iL}, \quad k_r \gg k_i
$$

- \blacktriangleright The parameter k_i acts as a damping, so short paths are favoured.
- \triangleright See R. Balian, C. Bloch: Ann. Phys 69, 76-160 (1972).

Figure: Polygonal solutions and quantum numbers (p, t) being the numb[er](#page-13-0) of sides and revolutions around the center

つくへ

Explanation of beat mode

I J. Pedersen et al. suggest the observed beat mode is described by

$$
\cos k_{\triangle}n+\cos k_{\square}n=2\cos\left(\tfrac{k_{\triangle}+k_{\square}}{2}b\right)\cos\left(\tfrac{k_{\triangle}-k_{\square}}{2}n\right)
$$

 \triangleright This agrees with the theoretical description, which predicts that dominating triangular and square modes produce beat modes

Concluding remarks

What has been said so far

- \triangleright Quantum numbers and magic numbers emerge from simple models
- \triangleright Cluster stability depends on completeness of atomic shells
- \triangleright Also, electronic shell structures are observed for metal clusters up to a several thousand atoms
- \triangleright Electrons are predicted to follow triangular and square orbits, explaining properties of measured mass distributions

Ongoing work

- \triangleright Chemical, notably catalytic, properties of clusters have considerable interest
- \triangleright \triangleright \triangleright \triangleright \triangleright DFT calculations on gold and platinum [cl](#page-15-0)[ust](#page-16-0)e[rs i](#page-16-0)[n](#page-12-0)[pro](#page-16-0)g[r](#page-11-0)[ess](#page-16-0)