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Electronic shells in atoms

Emergence of quantum numbers
An example using a simple atomic model

Solving the Schrödinger Equation

I Assume each electron feels a spherical potential V (r)
(rather crude: ignores electron interactions, ...)

I We want to solve[
− ~2

2m
∇2 + V (r)− E

]
ψ(r) = 0

I Guess wave function of the product form
ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ)

I Plug into differential equation and use separation of variables
to solve it.

Shells structure in metal clusters Center for Atomic-scale Materials Design



Magic numbers in nature Metal clusters Theoretical description

Electronic shells in atoms

Emergence of quantum numbers
An example using a simple atomic model

Counting solutions

I Separated solutions:

Rn(r) = 〈depends on V (r)〉,
Θl(θ)Φm(φ) = Ylm(θ, φ),


n = 1, 2, 3, . . .
l = 0, 1, . . . , n− 1
m = −l, . . . ,+l

I Each value of n yields one shell, occupations being determined
by (l,m) combination count (and spin multiplicity)

I n’th shell : Nn = 2
∑n−1

l=0 (2l + 1)→ 2, 8, 18 . . .
I Closed-shell configurations correspond to noble gases. This

determines the periodic table! (almost)
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Shell structure in atomic nuclei

Nuclear shells

I Assume each nucleon feels a
spherical potential

I Turns out that energies split due
to “spin-orbit interactions”,
resulting in different energies and
occupations

I Magic numbers 2, 8, 20, 28, 50,
82, 126

I Numbers apply to proton and
neutron counts separately, making
“doubly magic numbers” possible.
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Atomic shells and packing

Examples of clusters

Figure: Different truncated octahedral gold clusters. Atom counts 38, 79,
116, 140, 201.
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Atomic shells and packing

Cluster structures

Packing of atoms

I Clearly, clusters can be constructed by adding layers of atoms

I A complete layer, or atomic shell, generally means a low
energy. This is readily observed for large clusters

I As we shall see later, rather more interesting things happen in
metals, related to electronic shells
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Experimental observations

Mass spectroscopy technique

I Clusters condensate from vapours of constituent atoms

I Hit clusters with ionizing radiation

I Accelerate clusters in electric fields, measure time of flight to
determine charge per mass

I Stable structures are difficult to ionize, so these will appear as
dips in the resulting mass spectrum
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Experimental observations

Mass spectrum for Na clusters

I Minima correspond precisely
to closed atomic shells of
specific lattice structures.

I Source: T. P. Martin et al.
Z. Phys. D - Atoms,
Molecules and Clusters 19,
25-29 (1991)
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Experimental observations

Two types of shell structure

Figure: New set of magic numbers appearing for smaller clusters. T. P.
Martin et al. Z. Phys. D - Atoms, Molecules and Clusters 19, 25-29
(1991), Springer
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Experimental observations

Measurement of magic numbers and beat mode

Figure: blah. J. Pedersen et al. Nature vol. 353 733-735, 1991Shells structure in metal clusters Center for Atomic-scale Materials Design
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Modelling metal clusters

Pseudopotential principles

Valence and core electrons

I The core electrons of an atom do not participate in chemical
bonding, while valence electrons are chemically active.

I Physical and chemical properties can generally be described by
considering just the valence electrons.

I The nuclear and core electron charges form a hazy
background charge, giving rise to a smooth “effective
potential” felt by the valence electrons
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Modelling metal clusters

Metal cluster, potential and wavefunction

I Constant effective potential (metallic cluster)

I Fast wave function oscillation compared to cluster scale

I Like an isolated atom, but quantum numbers are larger
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Balian Bloch trajectories

Mathematical description

I Balian and Bloch have described spherical systems under
cluster-like assumptions (large domain, low-wavelength
oscillations) in terms of a “multiple reflection expansion”.

I Effectively, electronic states are ascribed periodic paths of
length L, reflecting at the points r0, r1, . . . on the boundary,
and states are described by a complex wave number k such
that

eikL = eikrLe−kiL, kr � ki

I The parameter ki acts as a damping, so short paths are
favoured.

I See R. Balian, C. Bloch: Ann. Phys 69, 76-160 (1972).
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Balian Bloch trajectories

Figure: Polygonal solutions and quantum numbers (p, t) being the
number of sides and revolutions around the center

Shells structure in metal clusters Center for Atomic-scale Materials Design



Magic numbers in nature Metal clusters Theoretical description

Balian Bloch trajectories

Explanation of beat mode

I J. Pedersen et al. suggest the observed beat mode is described
by

cos k4n+ cos k�n = 2 cos
(

k4+k�
2 b

)
cos
(

k4−k�
2 n

)
I This agrees with the theoretical description, which predicts

that dominating triangular and square modes produce beat
modes

Shells structure in metal clusters Center for Atomic-scale Materials Design



Magic numbers in nature Metal clusters Theoretical description

Balian Bloch trajectories

Concluding remarks

What has been said so far

I Quantum numbers and magic numbers emerge from simple
models

I Cluster stability depends on completeness of atomic shells

I Also, electronic shell structures are observed for metal clusters
up to a several thousand atoms

I Electrons are predicted to follow triangular and square orbits,
explaining properties of measured mass distributions

Ongoing work

I Chemical, notably catalytic, properties of clusters have
considerable interest

I DFT calculations on gold and platinum clusters in progress
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