# Magic numbers in nature: Quantum shell structure in large metal clusters

Ask Hjorth Larsen

Center for Atomic-scale Materials Design

March 10, 2009

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Contents

#### Magic numbers in nature

Electronic shells in atoms Shell structure in atomic nuclei

#### Metal clusters

Atomic shells and packing Experimental observations

#### Theoretical description

Modelling metal clusters Balian Bloch trajectories

# Emergence of quantum numbers

An example using a simple atomic model

## Solving the Schrödinger Equation

- Assume each electron feels a spherical potential V(r) (rather crude: ignores electron interactions, ...)
- We want to solve

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r}) - E\right]\psi(\mathbf{r}) = 0$$

- Guess wave function of the product form  $\psi(r, \theta, \phi) = R(r)\Theta(\theta)\Phi(\phi)$
- Plug into differential equation and use separation of variables to solve it.

伺 ト く ヨ ト く ヨ ト

# Emergence of quantum numbers

An example using a simple atomic model

## Counting solutions

Separated solutions:

$$\begin{array}{rcl} R_n(r) &=& \langle \text{depends on } V(r) \rangle, \\ \Theta_l(\theta) \Phi_m(\phi) &=& Y_{lm}(\theta, \phi), \end{array} \begin{array}{ll} n &=& 1, 2, 3, \dots \\ l &=& 0, 1, \dots, n-1 \\ m &=& -l, \dots, +l \end{array}$$

- ▶ Each value of *n* yields one shell, occupations being determined by (*l*, *m*) combination count (and spin multiplicity)
- ▶ *n*'th shell :  $N_n = 2 \sum_{l=0}^{n-1} (2l+1) \rightarrow 2, 8, 18...$
- Closed-shell configurations correspond to noble gases. This determines the periodic table! (almost)

向 ト イヨ ト イヨ ト

| Magic numbers in nature<br>○○●   |  |
|----------------------------------|--|
| Shell structure in atomic nuclei |  |

## Nuclear shells

- Assume each nucleon feels a spherical potential
- Turns out that energies split due to "spin-orbit interactions", resulting in different energies and occupations
- Magic numbers 2, 8, 20, 28, 50, 82, 126
- Numbers apply to proton and neutron counts separately, making "doubly magic numbers" possible.



Center for Atomic-scale Materials Design

Theoretical description 000000

# Examples of clusters



Figure: Different truncated octahedral gold clusters. Atom counts 38, 79, 116, 140, 201.

Shells structure in metal clusters

Center for Atomic-scale Materials Design

# Cluster structures

#### Packing of atoms

- Clearly, clusters can be constructed by adding layers of atoms
- A complete layer, or atomic shell, generally means a low energy. This is readily observed for large clusters
- As we shall see later, rather more interesting things happen in metals, related to electronic shells

#### Mass spectroscopy technique

- Clusters condensate from vapours of constituent atoms
- Hit clusters with ionizing radiation
- Accelerate clusters in electric fields, measure time of flight to determine charge per mass
- Stable structures are difficult to ionize, so these will appear as dips in the resulting mass spectrum

#### Mass spectrum for Na clusters

- Minima correspond precisely to closed atomic shells of specific lattice structures.
- Source: T. P. Martin et al.
  Z. Phys. D Atoms, Molecules and Clusters 19, 25-29 (1991)



#### Two types of shell structure



Figure: New set of magic numbers appearing for smaller clusters. T. P. Martin et al. Z. Phys. D - Atoms, Molecules and Clusters 19, 25-29 (1991), Springer

Shells structure in metal clusters

Center for Atomic-scale Materials Design

| Magic numbers in nature   | Metal clusters |  |
|---------------------------|----------------|--|
|                           | 000000         |  |
| Experimental observations |                |  |

## Measurement of magic numbers and beat mode



# Pseudopotential principles

#### Valence and core electrons

- The core electrons of an atom do not participate in chemical bonding, while valence electrons are chemically active.
- Physical and chemical properties can generally be described by considering just the valence electrons.
- The nuclear and core electron charges form a hazy background charge, giving rise to a smooth "effective potential" felt by the valence electrons

#### Metal cluster, potential and wavefunction



- Constant effective potential (metallic cluster)
- Fast wave function oscillation compared to cluster scale
- Like an isolated atom, but quantum numbers are larger

| Magic numbers in nature<br>000 | Theoretical description |
|--------------------------------|-------------------------|
| Balian Bloch trajectories      |                         |

#### Mathematical description

- Balian and Bloch have described spherical systems under cluster-like assumptions (large domain, low-wavelength oscillations) in terms of a "multiple reflection expansion".
- Effectively, electronic states are ascribed periodic paths of length L, reflecting at the points r<sub>0</sub>, r<sub>1</sub>,... on the boundary, and states are described by a complex wave number k such that

$$e^{\mathrm{i}kL} = e^{\mathrm{i}k_r L} e^{-k_i L}, \quad k_r \gg k_i$$

- The parameter k<sub>i</sub> acts as a damping, so short paths are favoured.
- See R. Balian, C. Bloch: Ann. Phys 69, 76-160 (1972).



Figure: Polygonal solutions and quantum numbers  $\left(p,t\right)$  being the number of sides and revolutions around the center

| Magic numbers in nature<br>000 | Theoretical description |
|--------------------------------|-------------------------|
| Balian Bloch trajectories      |                         |

#### Explanation of beat mode

 J. Pedersen et al. suggest the observed beat mode is described by

$$\cos k_{\triangle} n + \cos k_{\square} n = 2 \cos \left( \frac{k_{\triangle} + k_{\square}}{2} b \right) \cos \left( \frac{k_{\triangle} - k_{\square}}{2} n \right)$$

 This agrees with the theoretical description, which predicts that dominating triangular and square modes produce beat modes

# Concluding remarks

## What has been said so far

- Quantum numbers and magic numbers emerge from simple models
- Cluster stability depends on completeness of atomic shells
- Also, electronic shell structures are observed for metal clusters up to a several thousand atoms
- Electrons are predicted to follow triangular and square orbits, explaining properties of measured mass distributions

## Ongoing work

- Chemical, notably catalytic, properties of clusters have considerable interest
- ► DFT calculations on gold and platinum clusters in progress