from math import sqrt import numpy as np __all__ = ['FixCartesian', 'FixBondLength', 'FixedMode', 'FixConstraintSingle', 'FixAtoms', 'UnitCellFilter', 'FixScaled', 'StrainFilter', 'FixedPlane', 'Filter', 'FixConstraint', 'FixedLine', 'FixBondLengths'] def slice2enlist(s): """Convert a slice object into a list of (new, old) tuples.""" if isinstance(s, (list, tuple)): return enumerate(s) if s.step == None: step = 1 else: step = s.step if s.start == None: start = 0 else: start = s.start return enumerate(range(start, s.stop, step)) class FixConstraint: """Base class for classes that fix one or more atoms in some way.""" def index_shuffle(self, ind): """Change the indices. When the ordering of the atoms in the Atoms object changes, this method can be called to shuffle the indices of the constraints. ind -- List or tuple of indices. """ raise NotImplementedError def repeat(self, m, n): """ basic method to multiply by m, needs to know the length of the underlying atoms object for the assignment of multiplied constraints to work. """ raise NotImplementedError class FixConstraintSingle(FixConstraint): "Base class for classes that fix a single atom." def index_shuffle(self, ind): "The atom index must be stored as self.a." newa = -1 # Signal error for new, old in slice2enlist(ind): if old == self.a: newa = new break if newa == -1: raise IndexError('Constraint not part of slice') self.a = newa class FixAtoms(FixConstraint): """Constraint object for fixing some chosen atoms.""" def __init__(self, indices=None, mask=None): """Constrain chosen atoms. Parameters ---------- indices : list of int Indices for those atoms that should be constrained. mask : list of bool One boolean per atom indicating if the atom should be constrained or not. Examples -------- Fix all Copper atoms: >>> c = FixAtoms(mask=[s == 'Cu' for s in atoms.get_chemical_symbols()]) >>> atoms.set_constraint(c) Fix all atoms with z-coordinate less than 1.0 Angstrom: >>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0) >>> atoms.set_constraint(c) """ if indices is None and mask is None: raise ValueError('Use "indices" or "mask".') if indices is not None and mask is not None: raise ValueError('Use only one of "indices" and "mask".') if mask is not None: self.index = np.asarray(mask, bool) else: # Check for duplicates srt = np.sort(indices) for i in range(len(indices)-1): if srt[i] == srt[i+1]: raise ValueError("FixAtoms: The indices array contained duplicates. Perhaps you wanted to specify a mask instead, but forgot the mask= keyword.") self.index = np.asarray(indices, int) if self.index.ndim != 1: raise ValueError('Wrong argument to FixAtoms class!') def adjust_positions(self, old, new): new[self.index] = old[self.index] def adjust_forces(self, positions, forces): forces[self.index] = 0.0 def index_shuffle(self, ind): # See docstring of superclass if self.index.dtype == bool: self.index = self.index[ind] else: index = [] for new, old in slice2enlist(ind): if old in self.index: index.append(new) if len(index) == 0: raise IndexError('All indices in FixAtoms not part of slice') self.index = np.asarray(index, int) def copy(self): if self.index.dtype == bool: return FixAtoms(mask=self.index.copy()) else: return FixAtoms(indices=self.index.copy()) def __repr__(self): if self.index.dtype == bool: return 'FixAtoms(mask=%s)' % ints2string(self.index.astype(int)) return 'FixAtoms(indices=%s)' % ints2string(self.index) def repeat(self, m, n): i0 = 0 l = len(self.index) natoms = 0 if isinstance(m, int): m = (m, m, m) index_new = [] for m2 in range(m[2]): for m1 in range(m[1]): for m0 in range(m[0]): i1 = i0 + n if self.index.dtype == bool: index_new.extend(self.index) else: index_new += [i+natoms for i in self.index] i0 = i1 natoms += n if self.index.dtype == bool: self.index = np.asarray(index_new, bool) else: self.index = np.asarray(index_new, int) return self def delete_atom(self,ind): """ Removes atom number ind from the index array, if present. Required for removing atoms with existing FixAtoms constraints. """ if self.index.dtype == bool: self.index = np.delete(self.index,ind) else: if ind in self.index: i = list(self.index).index(ind) self.index = np.delete(self.index,i) for i in range(len(self.index)): if self.index[i] >= ind: self.index[i] -= 1 def ints2string(x, threshold=10): """Convert ndarray of ints to string.""" if len(x) <= threshold: return str(x.tolist()) return str(x[:threshold].tolist())[:-1] + ', ...]' class FixBondLengths(FixConstraint): def __init__(self, pairs, iterations=10): self.constraints = [FixBondLength(a1, a2) for a1, a2 in pairs] self.iterations = iterations def adjust_positions(self, old, new): for i in range(self.iterations): for constraint in self.constraints: constraint.adjust_positions(old, new) def adjust_forces(self, positions, forces): for i in range(self.iterations): for constraint in self.constraints: constraint.adjust_forces(positions, forces) def copy(self): return FixBondLengths([constraint.indices for constraint in self.constraints]) class FixBondLength(FixConstraint): """Constraint object for fixing a bond length.""" def __init__(self, a1, a2): """Fix distance between atoms with indices a1 and a2.""" self.indices = [a1, a2] def adjust_positions(self, old, new): p1, p2 = old[self.indices] d = p2 - p1 p = sqrt(np.dot(d, d)) q1, q2 = new[self.indices] d = q2 - q1 q = sqrt(np.dot(d, d)) d *= 0.5 * (p - q) / q new[self.indices] = (q1 - d, q2 + d) def adjust_forces(self, positions, forces): d = np.subtract.reduce(positions[self.indices]) d2 = np.dot(d, d) d *= 0.5 * np.dot(np.subtract.reduce(forces[self.indices]), d) / d2 forces[self.indices] += (-d, d) def index_shuffle(self, ind): 'Shuffle the indices of the two atoms in this constraint' newa = [-1, -1] # Signal error for new, old in slice2enlist(ind): for i, a in enumerate(self.indices): if old == a: newa[i] = new if newa[0] == -1 or newa[1] == -1: raise IndexError('Constraint not part of slice') self.indices = newa def copy(self): return FixBondLength(*self.indices) def __repr__(self): return 'FixBondLength(%d, %d)' % tuple(self.indices) class FixedMode(FixConstraint): """Constrain atoms to move along directions orthogonal to a given mode only.""" def __init__(self,indices,mode): if indices is None: raise ValueError('Use "indices".') if indices is not None: self.index = np.asarray(indices, int) self.mode = (np.asarray(mode) / np.sqrt((mode **2).sum())).reshape(-1) def adjust_positions(self, oldpositions, newpositions): newpositions = newpositions.ravel() oldpositions = oldpositions.ravel() step = newpositions - oldpositions newpositions -= self.mode * np.dot(step, self.mode) newpositions = newpositions.reshape(-1,3) oldpositions = oldpositions.reshape(-1,3) def adjust_forces(self, positions, forces): forces = forces.ravel() forces -= self.mode * np.dot(forces, self.mode) forces = forces.reshape(-1 ,3) def copy(self): return FixedMode(self.index.copy(), self.mode) def __repr__(self): return 'FixedMode(%s, %s)' % (ints2string(self.index), self.mode.tolist()) class FixedPlane(FixConstraintSingle): """Constrain an atom *a* to move in a given plane only. The plane is defined by its normal: *direction*.""" def __init__(self, a, direction): self.a = a self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction)) def adjust_positions(self, oldpositions, newpositions): step = newpositions[self.a] - oldpositions[self.a] newpositions[self.a] -= self.dir * np.dot(step, self.dir) def adjust_forces(self, positions, forces): forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir) def copy(self): return FixedPlane(self.a, self.dir) def __repr__(self): return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist()) class FixedLine(FixConstraintSingle): """Constrain an atom *a* to move on a given line only. The line is defined by its *direction*.""" def __init__(self, a, direction): self.a = a self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction)) def adjust_positions(self, oldpositions, newpositions): step = newpositions[self.a] - oldpositions[self.a] x = np.dot(step, self.dir) newpositions[self.a] = oldpositions[self.a] + x * self.dir def adjust_forces(self, positions, forces): forces[self.a] = self.dir * np.dot(forces[self.a], self.dir) def copy(self): return FixedLine(self.a, self.dir) def __repr__(self): return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist()) class FixCartesian(FixConstraintSingle): "Fix an atom in the directions of the cartesian coordinates." def __init__(self, a, mask=[1,1,1]): self.a=a self.mask = -(np.array(mask)-1) def adjust_positions(self, old, new): step = new[self.a] - old[self.a] step *= self.mask new[self.a] = old[self.a] + step def adjust_forces(self, positions, forces): forces[self.a] *= self.mask def copy(self): return FixCartesian(self.a, 1 - self.mask) def __repr__(self): return 'FixCartesian(indice=%s mask=%s)' % (self.a, self.mask) class fix_cartesian(FixCartesian): "Backwards compatibility for FixCartesian." def __init__(self, a, mask=[1,1,1]): import warnings super(fix_cartesian, self).__init__(a, mask) warnings.warn('fix_cartesian is deprecated. Please use FixCartesian' \ ' instead.', DeprecationWarning, stacklevel=2) class FixScaled(FixConstraintSingle): "Fix an atom in the directions of the unit vectors." def __init__(self, cell, a, mask=[1,1,1]): self.cell = cell self.a = a self.mask = np.array(mask) def adjust_positions(self, old, new): scaled_old = np.linalg.solve(self.cell.T, old.T).T scaled_new = np.linalg.solve(self.cell.T, new.T).T for n in range(3): if self.mask[n]: scaled_new[self.a, n] = scaled_old[self.a, n] new[self.a] = np.dot(scaled_new, self.cell)[self.a] def adjust_forces(self, positions, forces): scaled_forces = np.linalg.solve(self.cell.T, forces.T).T scaled_forces[self.a] *= -(self.mask-1) forces[self.a] = np.dot(scaled_forces, self.cell)[self.a] def copy(self): return FixScaled(self.cell ,self.a, self.mask) def __repr__(self): return 'FixScaled(indice=%s mask=%s)' % (self.a, self.mask) class fix_scaled(FixScaled): "Backwards compatibility for FixScaled." def __init__(self, cell, a, mask=[1,1,1]): import warnings super(fix_scaled, self).__init__(cell, a, mask) warnings.warn('fix_scaled is deprecated. Please use FixScaled ' \ 'instead.', DeprecationWarning, stacklevel=2) class BondSpring(FixConstraint): """Forces two atoms to stay close together by applying no force if they are below threshhold_length, and applying a Hookian force when the distance between them exceeds the thresshhold_length. a1, a2 : indices of atoms 1 and 2 a2 can alternately be a position in space to tether a1 to threshhold_length (float) : the length below which there is no force springconstant (integer) : Hook's law constant to apply when distance between the two atoms exceeds threshhold_length, dimensions of (force / length) """ def __init__(self, a1, a2, threshhold_length, springconstant): if type(a2) == int: self._type = 2 # two atoms tethered together self.indices = [a1, a2] else: self._type = 1 # one atom tethered to a point in space self.index = a1 self.origin = np.array(a2) self.threshhold = threshhold_length self.spring = springconstant def adjust_positions(self, oldpositions, newpositions): pass def adjust_forces(self, positions, forces): if self._type == 2: p1, p2 = positions[self.indices] else: p1 = positions[self.index] p2 = self.origin displace = p2 - p1 bondlength = np.linalg.norm(displace) if bondlength > self.threshhold: magnitude = self.spring * (bondlength - self.threshhold) direction = displace / np.linalg.norm(displace) if self._type == 2: forces[self.indices[0]] += direction * magnitude / 2. forces[self.indices[1]] -= direction * magnitude / 2. else: forces[self.index] += direction * magnitude def __repr__(self): if self._type == 2: return 'BondSpring(%d, %d)' % tuple(self.indices) else: return 'BondSpring(%d) to cartesian' % self.index def copy(self): if self._type == 2: return BondSpring(a1=self.indices[0], a2=self.indices[1], threshhold_length=self.threshhold, springconstant=self.spring) else: return BondSpring(a1=self.index, a2=self.origin, threshhold_length=self.threshhold, springconstant=self.spring) class Filter: """Subset filter class.""" def __init__(self, atoms, indices=None, mask=None): """Filter atoms. This filter can be used to hide degrees of freedom in an Atoms object. Parameters ---------- indices : list of int Indices for those atoms that should remain visible. mask : list of bool One boolean per atom indicating if the atom should remain visible or not. """ self.atoms = atoms self.constraints = [] if indices is None and mask is None: raise ValueError('Use "indices" or "mask".') if indices is not None and mask is not None: raise ValueError('Use only one of "indices" and "mask".') if mask is not None: self.index = np.asarray(mask, bool) self.n = self.index.sum() else: self.index = np.asarray(indices, int) self.n = len(self.index) def get_cell(self): """Returns the computational cell. The computational cell is the same as for the original system. """ return self.atoms.get_cell() def get_pbc(self): """Returns the periodic boundary conditions. The boundary conditions are the same as for the original system. """ return self.atoms.get_pbc() def get_positions(self): "Return the positions of the visible atoms." return self.atoms.get_positions()[self.index] def set_positions(self, positions): "Set the positions of the visible atoms." pos = self.atoms.get_positions() pos[self.index] = positions self.atoms.set_positions(pos) positions = property(get_positions, set_positions, doc='Positions of the atoms') def get_momenta(self): "Return the momenta of the visible atoms." return self.atoms.get_momenta()[self.index] def set_momenta(self, momenta): "Set the momenta of the visible atoms." mom = self.atoms.get_momenta() mom[self.index] = momenta self.atoms.set_momenta(mom) def get_atomic_numbers(self): "Return the atomic numbers of the visible atoms." return self.atoms.get_atomic_numbers()[self.index] def set_atomic_numbers(self, atomic_numbers): "Set the atomic numbers of the visible atoms." z = self.atoms.get_atomic_numbers() z[self.index] = atomic_numbers self.atoms.set_atomic_numbers(z) def get_tags(self): "Return the tags of the visible atoms." return self.atoms.get_tags()[self.index] def set_tags(self, tags): "Set the tags of the visible atoms." tg = self.atoms.get_tags() tg[self.index] = tags self.atoms.set_tags(tg) def get_forces(self, *args, **kwargs): return self.atoms.get_forces(*args, **kwargs)[self.index] def get_stress(self): return self.atoms.get_stress() def get_stresses(self): return self.atoms.get_stresses()[self.index] def get_masses(self): return self.atoms.get_masses()[self.index] def get_potential_energy(self): """Calculate potential energy. Returns the potential energy of the full system. """ return self.atoms.get_potential_energy() def get_chemical_symbols(self): return self.atoms.get_chemical_symbols() def get_initial_magnetic_moments(self): return self.atoms.get_initial_magnetic_moments() def get_calculator(self): """Returns the calculator. WARNING: The calculator is unaware of this filter, and sees a different number of atoms. """ return self.atoms.get_calculator() def has(self, name): """Check for existance of array.""" return self.atoms.has(name) def __len__(self): "Return the number of movable atoms." return self.n def __getitem__(self, i): "Return an atom." return self.atoms[self.index[i]] class StrainFilter(Filter): """Modify the supercell while keeping the scaled positions fixed. Presents the strain of the supercell as the generalized positions, and the global stress tensor (times the volume) as the generalized force. This filter can be used to relax the unit cell until the stress is zero. If MDMin is used for this, the timestep (dt) to be used depends on the system size. 0.01/x where x is a typical dimension seems like a good choice. The stress and strain are presented as 6-vectors, the order of the components follow the standard engingeering practice: xx, yy, zz, yz, xz, xy. """ def __init__(self, atoms, mask=None): """Create a filter applying a homogeneous strain to a list of atoms. The first argument, atoms, is the atoms object. The optional second argument, mask, is a list of six booleans, indicating which of the six independent components of the strain that are allowed to become non-zero. It defaults to [1,1,1,1,1,1]. """ self.atoms = atoms self.strain = np.zeros(6) if mask is None: self.mask = np.ones(6) else: self.mask = np.array(mask) self.index = np.arange(len(atoms)) self.n = self.index.sum() self.origcell = atoms.get_cell() def get_positions(self): return self.strain.reshape((2, 3)) def set_positions(self, new): new = new.ravel() * self.mask eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]], [0.5 * new[5], 1.0 + new[1], 0.5 * new[3]], [0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]]) self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True) self.strain[:] = new def get_forces(self): stress = self.atoms.get_stress() return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3)) def get_potential_energy(self): return self.atoms.get_potential_energy() def has(self, x): return self.atoms.has(x) def __len__(self): return 2 class UnitCellFilter(Filter): """Modify the supercell and the atom positions. """ def __init__(self, atoms, mask=None): """Create a filter that returns the atomic forces and unit cell stresses together, so they can simultaneously be minimized. The first argument, atoms, is the atoms object. The optional second argument, mask, is a list of booleans, indicating which of the six independent components of the strain are relaxed. 1, True = relax to zero 0, False = fixed, ignore this component use atom Constraints, e.g. FixAtoms, to control relaxation of the atoms. #this should be equivalent to the StrainFilter >>> atoms = Atoms(...) >>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms])) >>> ucf = UCFilter(atoms) You should not attach this UCFilter object to a trajectory. Instead, create a trajectory for the atoms, and attach it to an optimizer like this: >>> atoms = Atoms(...) >>> ucf = UCFilter(atoms) >>> qn = QuasiNewton(ucf) >>> traj = PickleTrajectory('TiO2.traj','w',atoms) >>> qn.attach(traj) >>> qn.run(fmax=0.05) Helpful conversion table ======================== 0.05 eV/A^3 = 8 GPA 0.003 eV/A^3 = 0.48 GPa 0.0006 eV/A^3 = 0.096 GPa 0.0003 eV/A^3 = 0.048 GPa 0.0001 eV/A^3 = 0.02 GPa """ Filter.__init__(self,atoms,indices=range(len(atoms))) self.atoms = atoms self.strain = np.zeros(6) if mask is None: self.mask = np.ones(6) else: self.mask = np.array(mask) self.origcell = atoms.get_cell() def get_positions(self): ''' this returns an array with shape (natoms+2,3). the first natoms rows are the positions of the atoms, the last two rows are the strains associated with the unit cell ''' atom_positions = self.atoms.get_positions() strains = self.strain.reshape((2, 3)) natoms = len(self.atoms) all_pos = np.zeros((natoms+2,3),np.float) all_pos[0:natoms,:] = atom_positions all_pos[natoms:,:] = strains return all_pos def set_positions(self, new): ''' new is an array with shape (natoms+2,3). the first natoms rows are the positions of the atoms, the last two rows are the strains used to change the cell shape. The atom positions are set first, then the unit cell is changed keeping the atoms in their scaled positions. ''' natoms = len(self.atoms) atom_positions = new[0:natoms,:] self.atoms.set_positions(atom_positions) new = new[natoms:,:] #this is only the strains new = new.ravel() * self.mask eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]], [0.5 * new[5], 1.0 + new[1], 0.5 * new[3]], [0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]]) self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True) self.strain[:] = new def get_forces(self,apply_constraint=False): ''' returns an array with shape (natoms+2,3) of the atomic forces and unit cell stresses. the first natoms rows are the forces on the atoms, the last two rows are the stresses on the unit cell, which have been reshaped to look like "atomic forces". i.e., f[-2] = -vol*[sxx,syy,szz]*mask[0:3] f[-1] = -vol*[syz, sxz, sxy]*mask[3:] apply_constraint is an argument expected by ase ''' stress = self.atoms.get_stress() atom_forces = self.atoms.get_forces() natoms = len(self.atoms) all_forces = np.zeros((natoms+2,3),np.float) all_forces[0:natoms,:] = atom_forces vol = self.atoms.get_volume() stress_forces = -vol * (stress * self.mask).reshape((2, 3)) all_forces[natoms:,:] = stress_forces return all_forces def get_potential_energy(self): return self.atoms.get_potential_energy() def has(self, x): return self.atoms.has(x) def __len__(self): return (2 + len(self.atoms)) class FixInternals(FixConstraint): """Constraint object for fixing multiple internal coordinates (bonds, angles, dihedrals)""" def __init__(self, bonds=None, angles=None, dihedrals=None, epsilon=1.e-7, full_output=False): if bonds is None: bonds = [] if angles is None: angles = [] if dihedrals is None: dihedrals = [] self.n = len(bonds) + len(angles) + len(dihedrals) self.constraints = [] self.bonds = bonds self.angles = angles self.dihedrals = dihedrals self.full_output = full_output #for bond in bonds: # self.constraints.append(FixBondLength2(bond[0], bond[1], bond[2])) for i in range(len(bonds)): self.constraints.append(FixBondLength2(bonds[i][0], bonds[i][1],bonds[i][2])) for i in range(len(angles)): self.constraints.append(FixAngle(angles[i][0],angles[i][1],angles[i][2])) for i in range(len(dihedrals)): self.constraints.append(FixDihedral(dihedrals[i][0],dihedrals[i][1],dihedrals[i][2])) self.epsilon = epsilon self.sigma = np.ones([self.n]) if full_output: print self.constraints def adjust_positions(self, old, new): j = 0 if self.full_output: print 'SHAKE convergence' for constraint in self.constraints: constraint.set_h_vectors(old) while (True and j < 40) : i=0 for constraint in self.constraints: constraint.adjust_positions(old, new) self.sigma[i] = constraint.sigma i+=1 if self.full_output: print self.sigma j+=1 for k in range(self.n) : self.sigma[k] = np.abs(self.sigma[k]) if (max(self.sigma) < self.epsilon) : return False if j >= 40: raise ValueError('Shake did not converge') #print 'WARNING! Shake did not converge' def adjust_forces(self, positions, forces): #Project out translations and rotations and all other constraints tx = np.zeros([len(forces)*3]) ty = np.zeros([len(forces)*3]) tz = np.zeros([len(forces)*3]) rx = np.zeros([len(forces)*3]) ry = np.zeros([len(forces)*3]) rz = np.zeros([len(forces)*3]) ff = np.zeros([len(forces)*3]) center = np.zeros(3) for i in range(len(forces)): center += positions[i] center = center / len(forces) for i in range(len(forces)): ff[i*3] = forces[i,0] ff[i*3+1] = forces[i,1] ff[i*3+2] = forces[i,2] tx[i*3] = ty[i*3+1] = tz[i*3+2] = 1 rx[i*3+1] = -(positions[i,2]-center[2]) rx[i*3+2] = (positions[i,1]-center[1]) ry[i*3] = (positions[i,2]-center[2]) ry[i*3+2] = -(positions[i,0]-center[0]) rz[i*3+0] = -(positions[i,1]-center[1]) rz[i*3+1] = (positions[i,0]-center[0]) rx /= np.sqrt(np.dot(rx,rx)) ry /= np.sqrt(np.dot(ry,ry)) rz /= np.sqrt(np.dot(rz,rz)) tx /= np.sqrt(np.dot(tx,tx)) ty /= np.sqrt(np.dot(ty,ty)) tz /= np.sqrt(np.dot(tz,tz)) list_constraints = [tx,ty,tz,rx,ry,rz] #Add all constraint vectors for constraint in self.constraints: constraint.adjust_forces(positions, forces) list_constraints.insert(0,constraint.h) #QR DECOMPOSITION - GRAM SCHMIDT aa = np.column_stack((list_constraints)) (aa,bb) = np.linalg.qr(aa,mode = 'full') #Projektion hh = [] for i, constraint in enumerate(self.constraints): hh.append(aa[:,i] * np.row_stack(aa[:,i])) txx = aa[:,self.n]*np.row_stack(aa[:,self.n]) tyy = aa[:,self.n+1]*np.row_stack(aa[:,self.n + 1]) tzz = aa[:,self.n+2]*np.row_stack(aa[:,self.n + 2]) rxx = aa[:,self.n+3]*np.row_stack(aa[:,self.n + 3]) ryy = aa[:,self.n+4]*np.row_stack(aa[:,self.n + 4]) rzz = aa[:,self.n+5]*np.row_stack(aa[:,self.n + 5]) T = (txx + tyy + tzz + rxx + ryy + rzz) for i in range(self.n): T += hh[i] ff = np.row_stack(ff) - np.dot(T, np.row_stack(ff)) for i in range(len(forces)): forces[i,0] = ff[i*3+0,0] forces[i,1] = ff[i*3+1,0] forces[i,2] = ff[i*3+2,0] if self.full_output: print 'Projecting out forces' def copy(self): return FixInternals(self.bonds, self.angles, self.dihedrals) def __repr__(self): return 'FixInternals' class FixBondLength2(FixConstraint): """Constraint object for fixing a bond length.""" def __init__(self, bond, indices, masses, maxstep=0.01): """Fix distance between atoms with indices a1 and a2.""" self.indices = indices self.bond = bond self.h1 = None self.h2 = None self.masses = masses self.h = [] self.sigma = 1. def set_h_vectors(self, pos): dist1 = pos[self.indices[0]] - pos[self.indices[1]] self.h1 = 2*(dist1) self.h2 = -self.h1 def adjust_positions(self, old, new): h1 = self.h1 / self.masses[0] h2 = self.h2 / self.masses[1] dist1 = new[self.indices[0]] - new[self.indices[1]] dist = np.dot(dist1,dist1) self.sigma = dist-self.bond**2 lamda = -self.sigma / (2*np.dot(dist1,(h1-h2))) new[self.indices[0]] += lamda * h1 new[self.indices[1]] += lamda * h2 def adjust_forces(self, positions, forces): self.h1 = 2*(positions[self.indices[0]] - positions[self.indices[1]]) self.h2 = -self.h1 self.h = np.zeros([len(forces)*3]) self.h[(self.indices[0])*3] = self.h1[0] self.h[(self.indices[0])*3+1] = self.h1[1] self.h[(self.indices[0])*3+2] = self.h1[2] self.h[(self.indices[1])*3] = self.h2[0] self.h[(self.indices[1])*3+1] = self.h2[1] self.h[(self.indices[1])*3+2] = self.h2[2] self.h /= np.sqrt(np.dot(self.h,self.h)) def copy(self): return FixBondLength2(self.bond, self.indices, self.masses) def __repr__(self): return 'FixBondLength2(%d, %d, %d)' % tuple(self.bond, self.indices) class FixAngle(FixConstraint): """Constraint object for fixing an angle.""" def __init__(self, angle, indices,masses ): """Fix atom movement to construct a constant angle.""" self.indices = indices self.a1m = masses[0] self.a2m = masses[1] self.a3m = masses[2] self.angle = np.cos(angle) self.h1 = None self.h2 = None self.h3 = None self.h = [] self.sigma = 1. def set_h_vectors(self, pos): r21 = pos[self.indices[0]] - pos[self.indices[1]] r21_len = np.sqrt(np.dot(r21,r21)) e21 = r21 / r21_len r23 = pos[self.indices[2]] - pos[self.indices[1]] r23_len = np.sqrt(np.dot(r23,r23)) e23 = r23 / r23_len angle = np.dot(e21,e23) self.h1 = -2*angle*((angle*e21-e23) / (r21_len)) self.h3 = -2*angle*((angle*e23-e21) / (r23_len)) self.h2 = -(self.h1+self.h3) def adjust_positions(self, oldpositions, newpositions): r21 = newpositions[self.indices[0]] - newpositions[self.indices[1]] r21_len = np.sqrt(np.dot(r21,r21)) e21 = r21 / r21_len r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]] r23_len = np.sqrt(np.dot(r23,r23)) e23 = r23 / r23_len angle = np.dot(e21,e23) self.sigma = angle*angle-self.angle * self.angle h1 = self.h1 / self.a1m h3 = self.h3 / self.a3m h2 = self.h2 / self.a2m h21 = h1 - h2 h23 = h3 - h2 # Calculating new positions deriv = 2*angle*(((np.dot(r21,h23)+np.dot(r23,h21))/(r21_len*r23_len)) \ -(np.dot(r21,h21)/(r21_len*r21_len)+np.dot(r23,h23)/(r23_len*r23_len))*angle) lamda = -self.sigma / deriv newpositions[self.indices[0]] += lamda * h1 newpositions[self.indices[1]] += lamda * h2 newpositions[self.indices[2]] += lamda * h3 def adjust_forces(self, positions, forces): r21 = positions[self.indices[0]]-positions[self.indices[1]] r21_len = np.sqrt(np.vdot(r21,r21)) e21 = r21 / r21_len r23 = positions[self.indices[2]]-positions[self.indices[1]] r23_len = np.sqrt(np.vdot(r23,r23)) e23 = r23 / r23_len angle = np.dot(e21,e23) self.h1 = -2*angle*((angle*e21-e23)/(r21_len)) self.h3 = -2*angle*((angle*e23-e21)/(r23_len)) self.h2 = -(self.h1+self.h3) self.h = np.zeros([len(positions)*3]) self.h[(self.indices[0])*3] = self.h1[0] self.h[(self.indices[0])*3+1] = self.h1[1] self.h[(self.indices[0])*3+2] = self.h1[2] self.h[(self.indices[1])*3] = self.h2[0] self.h[(self.indices[1])*3+1] = self.h2[1] self.h[(self.indices[1])*3+2] = self.h2[2] self.h[(self.indices[2])*3] = self.h3[0] self.h[(self.indices[2])*3+1] = self.h3[1] self.h[(self.indices[2])*3+2] = self.h3[2] self.h /= np.sqrt(np.dot(self.h,self.h)) def copy(self): return FixAngle(self.angle, self.indices, [self.a1m, self.a2m, self.a3m]) def __repr__(self): return 'FixAngle(%s, %f)' % (tuple(self.indices), np.arccos(self.angle)) class FixDihedral(FixConstraint): """Constraint object for fixing an dihedral using the shake algorithm. This one allows also other constraints.""" def __init__(self, angle, indices, masses): """Fix atom movement to construct a constant dihedral angle.""" self.indices = indices self.a1m = masses[0] self.a2m = masses[1] self.a3m = masses[2] self.a4m = masses[3] self.angle = np.cos(angle) self.h1 = None self.h2 = None self.h3 = None self.h4 = None self.h = [] self.sigma = 1. def set_h_vectors(self, pos): r12 = pos[self.indices[1]] - pos[self.indices[0]] r12_len = np.sqrt(np.dot(r12,r12)) e12 = r12 / r12_len r23 = pos[self.indices[2]] - pos[self.indices[1]] r23_len = np.sqrt(np.dot(r23,r23)) e23 = r23 / r23_len r34 = pos[self.indices[3]] - pos[self.indices[2]] r34_len = np.sqrt(np.dot(r34,r34)) e34 = r34 / r34_len a = -r12 - np.dot(np.dot(-r12,e23) ,e23) a_len = np.sqrt(np.dot(a,a)) ea = a / a_len b = r34 - np.dot(np.dot( r34,e23) ,e23) b_len = np.sqrt(np.dot(b,b)) eb = b / b_len angle = np.dot(ea,eb) if angle < -1: angle = -1 if angle > 1: angle = 1 self.h1 = (eb - angle * ea) / a_len self.h4 = (ea - angle * eb) / b_len self.h2 = self.h1 * ((np.dot(-r12,e23)/r23_len)-1) + (np.dot(r34,e23)/r23_len) * self.h4 self.h3 = -self.h4 * ((np.dot(r34,e23)/r23_len)+1) - (np.dot(-r12,e23)/r23_len) * self.h1 def adjust_positions(self, oldpositions, newpositions): r12 = newpositions[self.indices[1]] - newpositions[self.indices[0]] r12_len = np.sqrt(np.dot(r12,r12)) e12 = r12 / r12_len r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]] r23_len = np.sqrt(np.dot(r23,r23)) e23 = r23 / r23_len r34 = newpositions[self.indices[3]] - newpositions[self.indices[2]] r34_len = np.sqrt(np.dot(r34,r34)) e34 = r34 / r34_len n1 = np.cross(r12,r23) n1_len = np.sqrt(np.dot(n1,n1)) n1e = n1 / n1_len n2 = np.cross(r23,r34) n2_len = np.sqrt(np.dot(n2,n2)) n2e = n2 / n2_len angle = np.dot(n1e,n2e ) if angle < -1: angle = -1 if angle > 1: angle = 1 self.sigma = angle**2 - self.angle**2 h1 = self.h1 / self.a1m h2 = self.h2 / self.a2m h3 = self.h3 / self.a3m h4 = self.h4 / self.a4m h12 = h2 - h1 h23 = h3 - h2 h34 = h4 - h3 deriv = (np.dot(n1,np.cross(r34,h23)+np.cross(h34,r23)) + np.dot(n2,np.cross(r23,h12)+np.cross(h23,r12))) \ /(n1_len*n2_len) deriv -= ((np.dot(n1,np.cross(r23,h12)+np.cross(h23,r12))/(n1_len**2))+(np.dot(n2,np.cross(r34,h23)+ \ np.cross(h34,r23))/(n2_len**2))) * angle deriv *= -2 * angle lamda = -self.sigma / deriv newpositions[self.indices[0]] += lamda * h1 newpositions[self.indices[1]] += lamda * h2 newpositions[self.indices[2]] += lamda * h3 newpositions[self.indices[3]] += lamda * h4 def adjust_forces(self, positions, forces): r12 = positions[self.indices[1]] - positions[self.indices[0]] r12_len = np.sqrt(np.dot(r12,r12)) e12 = r12 / r12_len r23 = positions[self.indices[2]] - positions[self.indices[1]] r23_len = np.sqrt(np.dot(r23,r23)) e23 = r23 / r23_len r34 = positions[self.indices[3]] - positions[self.indices[2]] r34_len = np.sqrt(np.dot(r34,r34)) e34 = r34 / r34_len a = -r12 - np.dot(np.dot(-r12,e23) ,e23) a_len = np.sqrt(np.dot(a,a)) ea = a / a_len b = r34 - np.dot(np.dot( r34,e23) ,e23) b_len = np.sqrt(np.dot(b,b)) eb = b / b_len angle = np.dot(ea,eb) if angle < -1: angle = -1 if angle > 1: angle = 1 self.h1 = (eb - angle * ea) / a_len self.h4 = (ea - angle * eb) / b_len self.h2 = self.h1 * ((np.dot(-r12,e23)/r23_len)-1) + (np.dot(r34,e23)/r23_len) * self.h4 self.h3 = -self.h4 * ((np.dot(r34,e23)/r23_len)+1) - (np.dot(-r12,e23)/r23_len) * self.h1 self.h = np.zeros([len(positions)*3]) self.h[(self.indices[0])*3] = self.h1[0] self.h[(self.indices[0])*3+1] = self.h1[1] self.h[(self.indices[0])*3+2] = self.h1[2] self.h[(self.indices[1])*3] = self.h2[0] self.h[(self.indices[1])*3+1] = self.h2[1] self.h[(self.indices[1])*3+2] = self.h2[2] self.h[(self.indices[2])*3] = self.h3[0] self.h[(self.indices[2])*3+1] = self.h3[1] self.h[(self.indices[2])*3+2] = self.h3[2] self.h[(self.indices[3])*3] = self.h4[0] self.h[(self.indices[3])*3+1] = self.h4[1] self.h[(self.indices[3])*3+2] = self.h4[2] self.h /= np.sqrt(np.dot(self.h,self.h)) def copy(self): return FixDihedral(self.angle, self.indices, [self.a1m, self.a2m, self.a3m, self.a4m]) def __repr__(self): return 'FixDihedral(%s, %f)' % (tuple(self.indices), self.angle)