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Motivation

I Common exchange-correlation functionals do not account well
for strongly correlated systems

I A notable example is the stretching and dissociation of H2

I This talk is about the physics and Kohn-Sham potential of
H2-like systems in the dissociation limit, revealing some
fundamental features of the True Functional
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Paper reference

I N. Helbig, I.V. Tokatly, A. Rubio: “Exact Kohn-Sham
potential of strongly correlated finite systems”

I (I suppose you could say that the part about “finite” may be
a bit of a stretch, so to speak)

I arXiv:0908.0710v1 [cond-mat.str-el] 5 Aug 2009

What happens in the paper/talk

I We consider two-atom, two-electron systems in the
dissociation limit

I For sufficiently simple systems it is possible to get the exact
Kohn-Sham potential, which yields a correct description in the
dissociation limit
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The hydrogen molecule in reality

I The H2 ground state is the ordinary bonding orbital occupied
with one electron of each spin

I This is a singlet state: spatial part is symmetric, spin part
antisymmetric (|↑↓〉 − |↓↑〉)

I In other words: the electrons have opposite spin, and reside
equally on each atom. Both spins thus contribute equally to
the electron density everywhere.

I As the molecule dissociates, eventually we must end up with
two single hydrogen atoms, each with one electron possessing
a definite spin (a triplet state)

I I.e. the electrons each reside on one atom. The density
around each atom is either completely spin-up or spin-down.
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Hubbard model

I Consider the Hubbard Hamiltonian (ciσ removes an electron
on atom i with spin σ):

H = −t
∑
σ

(c†1σc2σ + etc.) + U
∑
i

c†i↓ci↓c
†
i↑ci↑

I The Hubbard term adds energy for having both spin states
occupied on the same atom

I In the dissociation limit, t→ 0 (no hopping), and the U
contribution will dominate, penalizing mixed spins and
recovering correct ground state with electrons localized on
distinct atoms
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Symmetry breaking

Figure: Neutral spin-density of two electrons with same spatial
wavefunction (top) versus separate spin-polarized densities of isolated
atoms (below). Shapes and scales are arbitrary
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The hydrogen molecule in Kohn-Sham

I Normal functionals describe ground state of H2 well but fail to
reproduce symmetry break for large atomic separations

I The Kohn-Sham electrons are non-interacting, and thus
cannot “talk together” to localize on distinct atoms. Thus
there must be a KS orbital residing on both atoms, which is
the true KS ground state

I But if DFT is supposed to be exact, then there must exist a
true Kohn-Sham potential that yields the correct total density
anyway
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Some basic equations

I Suppose we have a Kohn-Sham state φ(r) with two electrons
in it. Then the density is

n(r) = 2|φ(r)|2 = 2φ2(r)

I The Kohn-Sham equation for this state is[
−1

2
∇2 + vs(r)

]
φ(r) = εφ(r)

I Isolating the Kohn-Sham potential, and substituting n(r),

vs(r) =
1
2
∇2
√
n(r)√
n(r)

+ ε

We can get the KS potential for any density like that.
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Extremely simple 1D system

I Atomic potential: vext(x) = −v
[
δ(x− d

2) + δ(x+ d
2)
]

I Interaction potential: vint(|x− x′|) = λδ(x− x′), λ→∞
I This can be solved analytically

Solutions

I Wavefunction Ψ(x, x′) = |φ+(x)φ−(x′)− φ+(x′)φ−(x)|, with
φ±(x) = e−α±|x+d/2| ± e−α±|x−d/2|

I Density n(x) = φ2
+(x) + φ2

−(x)
I This density corresponds to the KS potential (for d→∞):

vs(x) = vext(x) + ∆vs(x), ∆vs(x) = v2

2 cosh2(2vx)

I The potential ∆vs(x) is shaped like a wall between the atoms,
even though the atoms are very far away!
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Slightly more complicated 1D system

I vext(x) = −v
[

1
cosh2(x−d/2)

+ 1
cosh2(x+d/2)

]
I vint(|x− x′|) = b

cosh2(x−x′)

From numerically
calculated WFs, the
Kohn-Sham potential
∆vs(x) approaches the
same shape as the
previous analytical wall in
spite of the different form
of vext and vint.
Apparently this shape is
somehow universal!
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Some remarks

I As we know, the KS system cannot possibly break the
symmetry, and is stuck with an orbital that covers both atoms

I The exact KS potential takes the shape of a wall between the
atoms, forcing the orbital to reproduce the separate atomic
densities

I This prevents “hopping” between the atoms, much like what
takes place in the Hubbard model.

I The wall is evidently a fundamental physical feature, which
doesn’t depend on the exact shape of the potentials vext and
vint. However it does depend on the well depth v, or
ionization potential I = −v2/2



Introduction Physics of hydrogen dissociation The dissociation Kohn-Sham potential

Asymmetric dimers

I Consider the asymmetric external potential
vext = − v1

cosh2(x−d/2)
− v2

cosh2(x+d/2)

I The exact KS potential now contains two contributions (α1,2

and I1,2 simply related to v1,2)

v(1)
s (x) =

(α1 + α2)2/8
cosh2[(α1 + α2)(x+ x0)]

“wall”

v(2)
s (x) =

I2 − I1
1 + exp[2(α1 + α2)(x+ x0)]

“shelf”

with x0 = O(d)
I Aside from the wall, the potential on one side of the wall is

shifted so as to make the atomic potential wells equally deep
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Figure: Shell plus wall appearing for different atom types. The potential
eventually approaches zero for x→ −∞
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3D systems

I The formula for the exact KS potential from the density can
be readily generalized to 3D. Thus it is trivial to perform a
numerical calculation on a real (dissociated) H2 system.

I The exact KS potential is

∆vH2
s (r) =

1− r1 · r2/r1r2

4 cosh2(r2 − r1)

I This has the form of a peak as seen previously with the same
functional form along the molecular axis
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Figure: Kohn-Sham potential for H2 in the dissociation limit
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Conclusion

I The Kohn-Sham potential of any two-electron system can be
calculated in the dissociation limit

I The potential depends only on the ionization potentials of the
atoms in question; aside from these, its form is universal

I Maybe some day, all this can be included in standard XC
approximations!
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