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Plan

Topics

AHL Basics of group theory and representations

MV Symmetry in quantum mechanics

GT Systematic characterization with point groups

FCV Lattices and space groups

etc Miscellaneous applications
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The big spoiler page

Why this is interesting

I Hamiltonian is invariant under symmetry transformations.
Symmetries lead to degeneracies, selection rules

I The symmetry operations of a system form a group, for which
reason we shall now indulge ourselves in group theory

I Systems can be characterized in terms of point groups and
space groups
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Groups

Definition
A group is a set G with the following properties:

I There exists a binary operation ∗ : G×G→ G

I The operation ∗ is associative, i.e. for all A,B,C in G,

A ∗ (B ∗ C) = (A ∗B) ∗ C

I G contains an identity element E ∈ G such that for all A ∈ G,

A ∗ E = E ∗A = A

I Each element A ∈ G has an inverse A−1 ∈ G such that

A ∗A−1 = A−1 ∗A = E
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Important groups

I The set of regular n× n matrices with matrix product,
identity matrix as identity element and matrix inversion

I The set of symmetry operations on a physical system, which
could be reflections, translations, rotations, improper rotations
(rotation and reflection)
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A simple example

Symmetry operations on e.g. NH3, CH3Cl

I Consider three identical atoms A, B, C
(see upper configuration on figure)

I Three rotations C3, C2
3 = C−1

3 , C3
3 = E

I Three reflections σA, σB, σC

I Improper rotations (denoted Sn) are all
equivalent to reflections in this case, e.g.
C3σA = σB

I This six-element group is denoted C3v

(that’s a C)

C3

CB

A

BA

C

Figure: Definition of
system and action of C3
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Matrix representations

Representation

I A symmetry operation is a linear transformation

I Each operation in a symmetry group can be represented by a
matrix

I The group operation ∗ now corresponds to matrix
multiplication

I If the matrices are n× n, the mapping between group
operations and matrices is called a representation of the group

I Actually one can always ascribe matrix representations to
finite groups
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Alternative representations

Two example representations of C3 in the C3v case

I Use atomic sites {A,B,C} as basis. Then

C′3 =

 ↑ ↑ ↑
C3(A) C3(B) C3(C)
↓ ↓ ↓

 =

0 0 1
1 0 0
0 1 0


I Use axes {x̂, ŷ, ẑ} as basis. C3 is then represented by

C3 =

 ↑ ↑ ↑
C3(x̂) C3(ŷ) C3(ẑ)
↓ ↓ ↓

 =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


I But our system is essentially 2D, so why would we need 3

dimensions? Moreover, if there were four atoms the second
example would yield even more dimensions!
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Reducibility
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