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The Poisson equation is

∇2φ(r) = ρ(r). (1)

This is a second-order linear di�erential equation which in physics relates an
electrostatic potential φ(r) to a continuous charge distribution ρ(r). The goal
of this tutorial is to write a Python code which calls a C extension to solve the
Poisson equation in two dimensions on a uniform real-space grid. To keep life
simple, we will do this for zero boundary conditions1, and only for rectangular
domains with equal spacing in the x and y directions.

Grids and Laplacian

De�ne �rst a simple 1D grid (e.g. using np.linspace) and a
function whose second derivative you know analytically. How
can you calculate the second derivative using �nite di�erences?

Next we represent a function f(x, y) as a two-dimensional array fij ≡
f(xi, yj), where xi = x0 + ih and yj = y0 + jh de�ne a uniform rectangular
grid with spacing h, and where i = 0, . . . , I and j = 0, . . . , J are integer indices.

Choose a 2D grid and a suitable charge distribution ρ(x, y)
whose potential you might want to calculate later on, then
plot it with imshow from matplotlib.

It may be helpful to use numpy functions like

• x = np.linspace(start, stop, npoints)

1It is common to solve with zero boundary conditions and later correct the boundary
conditions by pre/postprocessing. This is simple because the equation is linear.
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• X, Y = np.meshgrid(x, y)

• Now X and Y are useful for de�ning 2D functions like X**2 + Y**2.

Interactive interpreters and Jupyter notebooks are good for playing around and
trying things, but if some day we would like to make our solver available as a
Python module, we should write it as a Python module.

Put the code into a Python �le and make sure things work as
a standalone code.

The Laplacian ∇2 can be discretized onto our grid by locally approximating the
second-order derivatives from the neighbouring grid points:

∇2φ(x, y) =

(
∂2

∂x2
+

∂2

∂y2

)
φ(x, y)

≈ 1

h2
[φi+1,j + φi,j+1 + φi−1,j + φi,j−1 − 4φij ] . (2)

This is called the 5-point stencil. Each value is evaluated from the 5 closest grid
points. It approximates the Laplacian within an error of O(h2), so we say it is
a second-order stencil.2

I. Implement a function which calculates the Laplacian of a
function fij on the grid.

Clearly the stencil only works on the interiour of the grid. Recall that we earlier
endeavoured to �x the boundary conditions to zero.

Poisson solver

In our grid representation the Poisson equation reads

φi+1,j + φi,j+1 + φi−1,j + φi,j−1 − 4φij = ρijh
2. (3)

Isolating φij , we de�ne an iterative map in which the potential φk+1
ij at the

(k + 1)th step is calculated from that of the kth step according to

φk+1
ij ← 1

4
(φki−1,j + φki+1,j + φki,j+1 + φki,j−1 − ρijh2). (4)

Lo and behold, as we iterate this enough times, φkij approaches the solution no
matter which starting potential we chose.

Implement a function which iterates (4), then solve the Poisson
equation as described above for some chosen density ρ(x, y).

2By using more neighbours, it is possible to formulate more accurate stencils with order
O(h2n) where n is the number of nearest neighbours used.
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If the Poisson solver works, it should be easy to verify that the residual R[φk] =
∇2φk(x, y)− ρ(x, y) approaches zero. Also, the norm of the residual is a useful
measure for whether the calculation has converged. Be sure to make some plots
while considering this.

Package the code into a function solve(rho, phi, h,

epsilon) so the user can provide di�erent arrays, grid spacing
h, and a tolerance ε which controls how well the calculation is
converged.

This can be done using basic Python loops or using numpy. How much faster
is the numpy version?

Gauss�Seidel solver

If we loop over i and j in increasing order, we will already have passed (i− 1, j)
and (i, j − 1) by the time we reach (i, j). Hence we already have the new and
improved φk+1

i−1,j and φ
k+1
i,j−1 of which we can take immediate advantage:

φk+1
ij ← 1

4
(φk+1

i−1,j + φki+1,j + φki,j+1 + φk+1
i,j−1 − ρijh

2). (5)

This iterative scheme is called the Gauss�Seidel method. The former is called
the Jacobi method.

How many iterations does it take to solve the Poisson equation
for a given tolerance with Gauss�Seidel versus Jacobi?

The Gauss�Seidel method will require fewer iterations. We easily wrote the
Jacobi update using Numpy arrays, but it is not straightforward to write the
Gauss�Seidel update likewise.

Sometimes there is a function that can solve the problem for us, but not
always. Indeed there will always be some types of functions that cannot be
done as e�ciently as in C:

• Complex element-wise mathematical operations on the same array, like
np.sqrt(1 + A**2 * (1 + A)) lead to several loops over the same chunk
of memory, and would be faster to do in C using a single loop.

• Any operations where the each element successively depend on each other
in a tight loop.

In our case, both these things are a problem to some extent. For high-performance
computing it is normally �ne to write most code in Python, but a few parts will
be very performance critical and hence nice to have in a low-level language like
C. We now have an excuse to write the Gauss�Seidel update scheme in C.
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Calling C from Python

There are many ways to call C from Python. The simplest is probably to use
the module ctypes. First we need to know how to write a function in C. Here
is some inspiration:

#include <stdio.h>

int multiply_vector(double a, double *v, int len)

{

int i;

for(i=0; i < len; i++) {

v[i] *= a;

}

}

int multiply(double a, double b)

{

double c = a * b;

printf("multiply %f %f --> %f\n", a, b, c);

return c;

}

int main(int argc , char **argv)

{

double x = multiply (2.0, 3.0);

printf("got %f\n", x);

double v[5] = {1.0, 2.0, 0., -1., 42.};

multiply_vector (0.5, v, 5);

int i;

for(i=0; i < 5; i++) {

printf("%f\n", v[i]);

}

return 0;

}

This �le, which we shall call example.c, can be compiled by gcc example.c.
This will produce a binary called a.out which will run and print some things.

Write a �hello world� program in C, then compile and run it.

Add a function which computes something simple (e.g., a+ b)
and verify that it works.

In C, arrays are represented as a shape (here two integers I, J) plus the data
(here a double* pointer to the �rst element, with the n×m elements following
in immediate succession).
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Pass a numpy array to C. In Numpy you get elements like
array[i, j]. But in C you just have a pointer to a chunk of
data (and the shape). How do you get element i, j then?

Once we have �gured out how the 2D index i, j is mapped to the single index
0 ≤ n ≤ IJ , it will be possible to loop over arrays and write the solver.

Write a Gauss�Seidel solver in C.
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