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1 Introduction

This document concerns the implementation of a Fortran programme capable of
calculating digits of pi, one which can do matrix-vector multiplication, and one
which calculates the Mandelbrot set. The programmes are parallelized using
the automatic parallelization (which the £90 compiler supports through the
-xautopar option) and/or explicitly with OpenMP.

2 Calculating digits of pi

It is known that
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The terms of this sum are independent of each other, and the calculation there-
fore embarrasingly parallel.
With OpenMP we implement this calculation using the following loop:

'$omp parallel do shared(n) private(i) reduction(+: pi)
do i=1, n
pi =pi+ 1.0/ (1.0 + ((i - 0.5) / n)**2)
end do
'$omp end parallel do

The exact same code is used with automatic parallelization, with the exception
of the parameters -xautopar -xreduction instead of ~xopenmp in the makefile.

Figure 1 shows the speedup as a function of processor count for the 7 calcu-
lation code using OpenMP as well as automatic parallelization, which seem to
differ little in terms of performance. With a small number of iterations (22°) the
parallelization is, unsurprisingly, less efficient than with a larger number (224)
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Figure 1: Speedup for parallel calculation of = with automatic parallelization

and OpenMP when calculating with few or many iterations. The total time

on the order of milliseconds when doing only few iterations, which means pro-

cess startup overhead prevents perfect scaling of this otherwise embarrasingly

parallel operation.

(both iteration counts are rather large given that the calculated value is only a
double precision number, but the high iteration counts make timings more
reliable).

The source files can be found in the appendix.

3 Matrix times vector multiplication

The product y of a matrix A and a vector = has the elements

yi =Y Aijz;. (2)
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This we implement in terms of an outer loop over ¢ and an inner loop over j,
where we parallelize the outer loop.

Since Fortran uses column-major ordering, and since we don’t want to worry
too much about transposes and definitions, we use the indexing scheme A (i*N
+ j) rather than actual two-dimensional arrays.

With OpenMP and automatic parallelization we use the same loop:

'$omp parallel do shared(A, x, y, M, N) private(tmp, i, j)
doi=1, M
tmp = 0.0
do j=1, N
tmp = tmp + A(j + N * i) * x(j)
end do
y(i) = tmp
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Figure 2: Speedup of matrix times vector function using -xautopar (a) and
explicit OpenMP (b).

end do
'$omp end parallel do

Each processor writes to different areas of the destination matrix, so no syn-
chronization is required.

Figure 2 shows the speedup of the matrix times vector function with -~xautopar
and OpenMP for different matrix sizes and processor counts. With a 4000 x 4000
matrix, most or all of the matrix fits into the L2 cache when using more than
10 CPUs (7.6 MB for 16 CPUs with a cache size of 8 MB), which results in a
dramatic speedup due to fewer cache misses.

The larger matrices will not fit into the cache (the 6000 x 6000 uses 17
MB on 16 CPUs), and thus behave in a more usual manner: Larger matrices
parallelize better as the CPUs have more work compared to the (constant)
amount of synchronization. We think the imperfect scaling observed for very
large matrices is caused by having too many processes read data from the main
memory.

We note that smaller matrices (of size around 500-2000) tend to scale su-
perlinearly as they start fitting better into L1 and L2 caches (not shown in the
figure).

Source files can be found in the appendix.

4 Mandelbrot

For this exercise, the Mandelbrot set is computed and visualized by using the
provided mandelbrot.zip file, which contains the following FORTRAN files;

e main.f90: The main program for Mandelbrot.



e mandel.f90: Contains the Mandelbrot calculations.

e timestamp.f90: Simply prints the current YMDHMS date as a time
stamp.

Also provided is a Makefile as well as several other files which are not impor-
tant to mention.

For the first part of the exercise, the Mandelbrot program is simply to be com-
piled by the gmake command in order to produce a serial version of Mandelbrot.
The output of the executable is shown in fig. 3

Figure 3: The Mandelbrot set

4.1 Parallelizing the Code

For the second part of the exercise, the Mandelbrot executable should be gen-
erated as a parallel version by using the OpenMP worksharing constructs. Most
of the resources are used in the triple do-loop calculating the Mandelbrot set.
In order to parallelize the code, a team of threads is created by using the com-
mand !$parallel do. Also the loop counters are set to private, while all other
variables are set to shared (see source code in app. C).

When compiling the code with the mentioned modifications, one obtains a par-
allel version of the executable mandelbrot. The runtimes for a different number
of threads is shown in Fig. 4.

It can be seen from the figure that the code does not scale well.



e e e = N
~ S > ® S
T T T T

L L L L

Speed up factor
® S
T :
L L

0 L L L L L L L L L

8 10 12 14 16 18 20
Number of threads

Figure 4: Speed up vs. number of threads. Using static workload distribution.

4.2 Modifications the to the Parallel version of the Man-
delbrot

From the preceding section it was seen that the code did not scale well. In
order to optimize the parallel version, we profiled the program by utilizing the
collect command. The result was visualized in the Analyzer program. The
result showed that approximately 95% of the workload was distributed to only
two threads even though four threads were available.

In order to overcome the problem a dynamic distribution of the workload was
specified in the code by specifying the clause schedule(dynamic,5) in the par-
allel do environment (see app. D). The result is presented in Fig. 5

From the figure it can be seen that the speed-up factor has improved consider-
ably when using dynamic workload distribution.

4.3 Using Orphaning

As a last part of this exercise, the code should utilize orphaning. This is a
useful feature of the OpenMP, since it allows the user to declare workshare or
synchronization directives which are not located within a parallel region. This
means that the programmer has the possibility to run the same subroutine with
or without parallelization.

An example is shown in app. E. Here a flag has been inserted in the main
document which allows the user to run the subroutine mandel in either serial
or parallel computation.
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Figure 5: Speed up vs. number of threads. Using dynamic workload distribu-

tion.

A Pi calculation source files

A.1 pi/omp/pi.f90

module picalc
contains

subroutine findpi(n, pi)
implicit none

integer, intent(in) :: n
double precision, intent (out)
call findpi_ompreduce(n, pi)
'call findpi_ourreduce(n, pi)
pi = pi * 4.0 / n

end subroutine findpi

subroutine findpi_ompreduce(n,
implicit none

integer, intent(in) :: n
double precision, intent (out)

integer :: i

pi = 0.0

!'$omp parallel do shared(mn) private(i) reduction(+:

do i=1, n

8 10 12
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pi)

pi

14

pi = pi + 1.0 / (1.0 + ((i - 0.5) / n)*%2)

end do
!'$omp end parallel do
end subroutine findpi_ompreduce

subroutine findpi_ourreduce(n,
implicit none

integer, intent(in) :: n

pi)

16

pi)

18

20
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double precision, intent(out) :: pi
integer :: i

double precision :: local_pi

pi = 0.0

!$omp parallel shared(m, pi) private(local_pi)
local_pi = 0.0
!'$omp do private (i)
do i=1, n
local_pi = local_pi + 1.0 / (1.0 + ((i - 0.5) / n)=*%*2)
end do
!'$omp end do

!$omp critical (sum)
pi = pi + local_pi
!'$omp end critical (sum)
!$omp end parallel
end subroutine findpi_ourreduce

subroutine iterate(i, n, tmp)
implicit none

integer, intent(in) :: i, n
double precision, intent(out) :: tmp

tmp = 1.0 / (1.0 + ((i - 0.5) / n)**2)
end subroutine iterate

end module picalc
A.2 pi/omp/main.f90

program calculate_pi
use picalc, only: findpi
use omp_lib

integer :: n! = 2%x%27
double precision :: pi, t1, t2

read*, n

tl = omp_get_wtime()
call findpi(n, pi)
t2 = omp_get_wtime()

print*, omp_get_max_threads(), t2 - ti

end program calculate_pi

A.3 pi/omp/makefile

ARGS=-03 -openmp

AUTOPAR_ARGS = -xautopar -xloopinfo -xreduction

findpi: pi.o main.f90
£90 $(ARGS) pi.o main.f90 -o findpi

pi.o:
£f90 -c $(ARGS) pi.f90

clean:
rm -f pi.o picalc.mod
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B Matrix times vector source files

B.1 mxv/omp/main.f90

program matrix
use m_mxv
use omp_lib

integer :: M, N
double precision, dimension(:), allocatable :: A
double precision, dimemnsion(:), allocatable y
double precision, dimemnsion(:), allocatable X
double precision :: tmp
integer :: i, j
double precision :: timel, time2
integer :: ops_per_mxv, approx_opcount , number_of_runs, opcount, iter
read*x, M
N =M
ops_per_mxv = M * N
approx_opcount = 8000 * 8000 * 4 ! probably reasonable in terms of real-
time
number_of _runs = (approx_opcount / ops_per_mxv) * omp_get_max_threads()
opcount = number_of_runs * ops_per_mxv
allocate (A(N * M), y(M), x(N))
write(unit=0, *) ’size:’, M, ’; runs:’, number_of_runs, ’; ops:’, opcount,
&
’; cpus:’, omp_get_max_threads()
!'$omp parallel
!'$omp do
do i=1, M
do j=1, N
A(j + M x i) = 1.0
enddo
enddo
!'$omp end do
!$omp do
do i=1, N
x(i) = 1.0
enddo
!$omp end do
!$omp end parallel
timel = omp_get_wtime()
do iter=1, number_of_runs
call mxv(A, M, N, x, y)
enddo
time2 = omp_get_wtime()
print*, omp_get_max_threads(), ((time2 - timel) / real(number_of_runs))

end program matrix

B.2 mxv/omp/mxv.f90

module m_mxv
contains

subroutine mxv(A, M, N, x, y)
integer, intent(in) :: M,
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double precision, dimension(N * M),

double precision, dimension(N),
double precision, dimension(M),

integer :: i, j

double precision :: tmp
!$omp parallel do shared(A, x, y, M, N) private (tmp,

do i =1, M

tmp = 0.0
do j =1, N
tmp = tmp + A(j + N * i) * x(
end do
y(i) = tmp
end do
!'$omp end parallel do
end subroutine mxv
end module m_mxv
B.3 mxv/omp/makefile
ARGS = -g -fast -xopenmp -xloopinfo

run: mxv.o main.f90

£f90 $(ARGS) main.f90 mxv.o

mxv.o:
£f90 -c $(ARGS) mxv.£f90

clean:
rm -f run mxv.o m_mxv.mod

C Source code

subroutine mandel (n,

integer ( kind = 4
integer ( kind = 4
integer ( kind = 4
integer ( kind = 4
real ( kind = 8
real ( kind = 8
real ( kind = 8
real ( kind = 8
real ( kind = 8
real ( kind = 8

image = 0.0

!$omp parallel default (none)

-0 run

intent (in)

3)

intent (in) :: x
intent (out) :: y

- mandel.f90

image ,

A A ARG E RN AN

n

image (n,n)

max_iter)

max_iter

i,
X,
Vs

i, k
x1,
yi,

X_max =
X_min =
y_max =
y_min =

y_max ,x1,y1,x2,y2) private(i,j,k)

!'$omp do
do i =1, n
do j =1, n
x = ( real (
+ real ( n

/ real ( n

y = ( real (
real ( n
/ real ( n

+

kind

x2
y2

kind =

kind

kind
kind
kind

1.25D+00
2.25D+00
1.75D+00
1.75D+00

oe]
~
*

X_max
8 ) * x_min

8 ) * y_max
8 ) * y_min

i,

3)

shared (n, image ,max_iter ,x,y,x_min,x_max,y_min,
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! image (i, j)

x1
yi

do

end

end d
end do
!'$omp end do

yi + x
y

.or. &
.or. &
.or. &

=k

X
=7y
k = 1, max_iter
x2 = x1 * x1 - y1 =*
y2 = 2 x x1 *x yl +
if ( x2 < -2.0D+00
2.0D+00 < x2
y2 < -2.0D+00
2.0D+00 < y2 ) then
image (i, j)
exit
end if
x1 = x2
yi = y2
do
o

!'$omp end parallel
end subroutine

subroutine mandel (n,

integer
integer
integer
integer
real
real
real
real
real
real

image =

!'$omp parallel default (none)

0.

(
(
(
(
(
(
(
(
(
(

0

kind =

kind
kind
kind
kind
kind
kind
kind
kind

kind =

00 00 0 0 0 0 & > >

Source code - mandel.f90

image , max_iter)

)
)
)
)
)
)
)
)
)
)

n
image (n,n)
max_iter

i, j, k

x, x1, x2

y, yi, y2

X_max = 1.25D+00
x_min = - 2.25D+00
y_max = 1.75D+00
y_min = - 1.75D+00

shared (n, image ,max_iter ,x,y,x_min,x_max,y_min,

y_max ,x1,y1,x2,y2) private(i,j,k)
!$omp do schedule (dynamic,5)

do i =1
do j

X =

, n
=1

+

+

>

n

real
real
real

real
real
real

! image (i, j)

x1
yi

oe]
~
*

1, kind = X_max
kind = 8 ) * x_min
1, kind = 8 )

1, kind = 8 ) * y_max

kind = 8 ) * y_min
1, kind = 8 )

10
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do k = 1, max_iter

x2 = x1 * x1 - y1 *x y1l + x
y2 = 2 % x1 * y1 + y

if ( x2 < -2.0D+00 .or. &
2.0D+00 < x2 .or. &

y2 < -2.0D+00 .or. &
2.0D+00 < y2 ) then

image(i,j) = k
exit

end if

x1 = x2
yl = y2

end do

end do

end

!'$omp end
!'$omp end

E Source code - main.f90 and mandel.f90

end

do

do
parallel
subroutine

program main
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MAIN is the main program for MANDELBROT.

Discussion:

MANDELBROT computes an image of the Mandelbrot set.

Licensing:

This code is distributed under the GNU LGPL license.

Modified:

08 August 2009

Author:

John

Burkardt

Modified by:
Bernd Dammann
Boyan Lazarov

Local Parameters:

Local

, integer COUNT_MAX, the maximum number of iterations taken

for a particular pixel.

implicit

integer
integer

none
( kind = 4 ) n = 2501
( kind = 4 ) count_max =

11

800



integer ( kind = 4 ) c

real ( kind = 8 ) :: c_max, c_max_inv

integer ( kind = 4 ), dimension(:,:), allocatable :: image

character ( len = 255 ) :: filename

real ( kind = 8 ) Xx_max = 1.25D+00

real ( kind = 8 ) x_min = - 2.25D+00

real ( kind = 8 ) :: y_max = 1.75D+00

real ( kind = 8 ) y_min = - 1.75D+00

real:: flag

flag=10.1

allocate (image (n,n))

write ( x, ’(a)’ ) > 7

write ( %, ’(a)’ ) ’MANDELBROT’

write ( *, ’(a)’ ) ° FORTRAN90 version’

write ( x, ’(a)’ ) ’ 7

write ( %, ’(a)’ ) ’ Create an PNG image of the Mandelbrot set.’

write ( *x, ’(a)’ ) > ?

write ( *, ’(a)’ ) ’ For each point C = X + i*Y’

write ( *, ’(a,gl4.6,a,gl4.6,a)’ ) > with X range [’, x_min, ’,’, x_max,
7])

write ( *, ’(a,gl4.6,a,g14.6,a)’ ) ’> and Y range [’, y_min, °’,’, y_max,
)]7

write ( *, ’(a,i8,a)’ ) ’ ~carry out ’, count_max, ’ iterations of the map’

write ( *, ’(a)’ ) > Z(n+1) = Z(n)"2 + C.’

write ( *, ’(a)’ ) ’ If the iterates stay bounded (norm less than 2)°’

write ( *, ’(a)’ ) ’ then C is taken to be a member of the set.’

write ( x, ’(a)’ ) > 7

write ( *, ’(a)’ ) ’ A PNG image of the set is created using’

write ( *, ’(a,i8,a)’ ) N = ’, n, ’> pixels in the X direction and’

write ( *, ’(a,i8,a)’ ) N = ’, n, ’> pixels in the Y direction.’

write ( x, ’(a)’ ) > 7

! Carry out the iteration for each pixel, determining COUNT.
call timestamp ( )

'l private(i,j,k)

if (flag.GT.1) then

!'$omp parallel default(none) shared(n,image,count_max)
call mandel(n,image,count_max)

!'$omp end parallel

else

call mandel(n, image,count_max)

endif

write ( *, ’(a)’ ) > ?

write ( *, ’(a)’ ) ’ Calculation of the image finished. ’

call timestamp ( )

uncomment the following line, if you don’t need the PNG output
stop

call writepng to save a PNG image in filename

filename = "mandelbrot.png"//CHAR(0)
call writepng(filename, image, n, n)
deallocate(image)

write ( x, ’(a)’ ) > 7
write ( *x, ’(a)’ ) &
> PNG image data stored in "’ // trim ( filename ) // ’".°
write ( *, ’(a)’ ) * 7
write ( *, ’(a)’ ) ’MANDELBROT’
write ( *, ’(a)’ ) ’> Normal end of execution.’
write ( x, ’(a)’ ) > 7

12
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call timestamp ( )

stop
end

subroutine mandel (n,

integer
integer
integer
integer
real
real
real
real
real
real

image = 0.

(
(
(
(
(
(
(
(
(
(

0

kind =
kind =
kind =
kind =
kind =
kind =
kind =
kind =
kind =
kind =

(SRR I I NI NI NN

image, max_iter)

n
image (n,n)
max_iter
i, j, k
x, x1, x2
¥y, y1, y2
x_max =
x_min = -
y_max =
y_min = -

RN e

!'$omp do schedule (dynamic,5)

do i =1,
do j =

x = (

n
1

+

+

B

n

real (
real ( n
real ( n

real (
real ( n
real ( n

! image(i,j) = 0

x1
yi

do k

x2
y2

if

en

x1

yi

end d
end do

end do
!'$omp end do

= x
=V

d

o

j -1, kind = 8
- Jjs kind = 8
- 1, kind = 8

i -1, kind = 8
- i, kind = 8
- 1, kind = 8

1, max_iter

x1 * x1

-yl x y1 + x

2 x x1 % y1 + y

x2 < -2.0D+00 .or. &
2.0D+00 < x2 .or. &
y2 < -2.0D+00 .or. &
2.0D+00 < y2 ) then

image(i,j) = k

exit

= x2

y2

end subroutine
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) * y_max
) * y_min



