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ABSTRACT

Efficient solution of partial differential equations require a
match between the algorithm and the target architecture.
Many recent chip multiprocessors, CMPs (a.k.a. multi-core),
feature low intra-thread communication costs and smaller
per-thread caches compared to previous shared memory mul-
ti-processor systems. From an algorithmic point of view
this means that data locality issues become more important
than communication overheads. A fact that may require a
re-evaluation of many existing algorithms.

We have investigated parallel implementations of multi-
grid methods using a parallel temporally blocked, naturally
ordered smoother. Compared to the standard multigrid so-
lution based on a red-black ordering, we improve the data
locality often as much as ten times, while our use of a fine-
grained locking scheme keeps the parallel efficiency high.

Our algorithm was initially inspired by CMPs and it was
surprising to see that our OpenMP multigrid implementa-
tion ran up to 40 percent faster than the standard red-black
algorithm on a contemporary 8-way SMP system. Thanks to
the temporal blocking introduced, our smoother implemen-
tation often allowed us to apply the smoother two times at
the same cost as a single application of a red-black smoother.
By executing our smoother on a 32-thread UltraSPARC T1
(Niagara) SMT/CMP and a simulated 32-way CMP we dem-
onstrate that such architectures can tolerate the increased
communication costs implied by the tradeoffs made in our
implementation.

Categories and Subject Descriptors

D.3.4 [Software]: PROGRAMMING LANGUAGES—Pro-
cessors, Optimization; D.1.3 [Software]: PROGRAMMING
TECHNIQUES—Concurrent Programming, Parallel prog-
ramming; G.1.3 [Mathematics of Computing]: NUMER-
ICAL ANALYSIS—Numerical Linear Algebra
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1. INTRODUCTION

Whenever there is a paradigm shift in computer architec-
ture, algorithms for high performance computing need to be
re-evaluated and possibly modified to assure that they still
achieve the best possible performance. Recent development
in microprocessor technology has been focused on simultane-
ous multi-threading (SMT) [5, 7] and chip multiprocessing
(CMP) [2, 7] architectures. All major processor vendors are
at the moment releasing chip multiprocessors with several
threads [8, 9, 10, 12]. The introduction of such processors
has several implications for the design of efficient parallel
algorithms. The per-thread cache size will be significantly
smaller compared to SMPs built from many single-threaded
CPUs. Running large input sets may therefore require opti-
mizations for data locality. Further, minimizing communi-
cation and synchronization may not be of imperative impor-
tance any more, since communication between the threads
can be performed on-chip via fast shared caches. In the light
of these architectural changes, we re-consider the paralleliza-
tion of a widespread and important computational kernel in
this paper.

The basic problem studied below is the solution of a large,
structured system of equations using a multigrid scheme, see
e.g. Wesseling [17]. This computation is found at the heart
of scientific computing applications in a range of disciplines.
In the algorithms, a basic smoothing operation is recursively
applied to a sequence of array data structures. Standard
smoothers such as Gauss-Seidel, SOR and ILU all have the
same type of internal data dependencies, and they are tra-
ditionally parallelized using multicolor orderings of the grid
points [1]. Unfortunately, the algorithms arising from these
orderings are difficult to parallelize if cache-blocking tech-
niques are added to increase data reuse. As an alternative,
we propose to use a much more synchronization-intensive
dataflow parallelization technique for the standard, natural
ordering of the unknowns. This type of scheme enables us
to exploit recently cached data in a better way than the
standard multicolor technique.

The temporal blocking allows us to apply a sequence of
smoothing operations at a cost that is only slightly larger



than for applying the smoother once. This leads to reduced
computational time for the multigrid scheme, since the num-
ber of multigrid iterations is significantly reduced while the
cost per iteration is only marginally increased.

A dataflow parallelization technique for structured grid
Gauss-Seidel-type smoothers was considered already in the
very early days of parallel computing [13]. However, it was
almost immediately abandoned since the multicolor schemes
proved to be much more efficient on parallel systems where
synchronization is expensive. The idea of utilizing temporal
blocking to improve cache utilization in serial implementa-
tions of multigrid smoothers has also been considered earlier,
both for the two-color red-black [16] and natural [14] order-
ings. The main contribution of this paper is to combine
the two techniques, and to show that the resulting paral-
lel multigrid scheme is faster than the standard method on
CMPs.

The rest of this paper is structured as follows: First, we in-
troduce the Gauss-Seidel smoother and the concept of grid
orderings by considering the model problem solved in the
experiments later. After this, we describe the parallel tem-
porally blocked Gauss-Seidel smoother, and we evaluate this
algorithm in detail in terms of performance and scalability.
We continue by introducing multigrid methods, which we
use to solve the model problem. Finally, we evaluate the
performance of the multigrid solver. The experiments are
performed on both traditional SMP systems and on CMPs.
The results on an SMP system show our new smoother al-
gorithm to perform two iterations at the same time as a
single iteration with as standard red-black implementation.
The reason for this is that the cache miss ratios are reduced
by order of magnitudes at the expense of higher communi-
cation overhead compared to the red-black implementation.
The results from running the codes on a CMP processor,
show that the additional communication in the temporally
blocked Gauss-Seidel kernel does not degrade the perfor-
mance on such systems. This is caused by all communication
taking place via a shared second level cache.

2. SMOOTHERS

For wide classes of application problems, a multigrid it-
erative method is the most efficient technique for solving
systems of equations

Lu = f, (1)

where u is the numerical solution to a partial differential
equation (PDE), f is the discretized forcing function, and
L is a stencil operator representing a discretization of the
derivatives in the PDE on a structured grid. For a d-dimen-
sional problem solved on a grid with N¢ grid points, grid
functions like w and f are stored in d-dimensional arrays
with N¢ entries, and data parallel stencil operators such as
L are applied by computing weighted averages of function
values at a set of neighboring grid points. The basic build-
ing block of a multigrid method is a relazation, or smoothing
iteration as described by Algorithm 1. In this section, we re-

Algorithm 1 Relaxation(u,f)
u = 0 {Initial guess}
while convergence is not reached do
u = S(u, f) {Apply smoother}
end while

view the classical setting where Algorithm 1 is used for solv-
ing Equation 1 on a single grid. The discussion of multigrid
schemes, where the smoother is employed on a hierarchy of
grids, is deferred to Section 9.

The standard smoothing operators S in Algorithm 1 are
given by the Jacobi, Gauss-Seidel and SOR splittings, see
e.g. Young [18]. For all these three methods, S is similar to
L in the sense that it is applied by combining grid function
values at a set of neighboring grid points. However, for the
two latter methods, S is also different from L in the sense
that it is not data parallel, the computations at the different
grid points must be performed in a certain order.

As for all iterative methods, the computational time for
Algorithm 1 depends on the time needed for a single applica-
tion of the smoother and the total smoothing steps required.
A major problem with the classical splitting methods men-
tioned above is that the number of steps grows with N,
and in practice it is normally not feasible to compute an
accurate solution u to the PDE using these schemes. The
convergence is accelerated dramatically if the smoother is
employed within a multigrid method.

We now introduce the PDE that will be solved in the ex-
periments later, and we use this setting to further discuss
Gauss-Seidel smoothers and the concept of grid point order-
ings. We consider a standard model problem, the Poisson
equation with homogenous boundary conditions solved in
the unit cube,

—Au =f inQ=10,1?
u =0 ondQ. (2)

Using the standard 7-point stencil finite-difference discretiza-
tion, the difference operator L is defined by
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Here h is the step length of the uniform grid and the indices
(i, 4, k) run over all N* interior points in the grid. The rela-
tion (4) is equivalent to a symmetric, positive definite system
of N* equations. A Gauss-Seidel smoother for this problem
is easily implemented using the in situ computations:

UGk = Sugik) = (“(m,j,m T U-15.k) T UG G11R)
Fugi,j—1,k) + Uggk+1) T UG E—1) T hzf(i,j’k))o (4)

Here, the ordering of the computations determines if the
right hand side terms u; ;,x) of Equation 4 contain the old
solution value or the already computed new value. Thus,
Equation 4 represents a family of Gauss-Seidel smoothers,
which produce different results for different orderings of the
computations. Conversely, a given ordering corresponds to
a specific set of data dependencies for the computation of
the new values in .

The most straightforward way to order the computations
in (4) is the natural or lexzicographical ordering. This corre-
sponds to performing the computations using a simple triple
loop over the indices (i, j, k), which leads to inherently se-
quential dependencies. Another popular way of ordering the
computations is to use a multicolor ordering. A special case
of this ordering technique is the two-color red-black order-
ing. Here, odd and even points are updated in two separate
sweeps. In this case the data dependency in the algorithm
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Figure 1: Natural and Red-black orders in a 3D
problem. The 7-point stencil accesses data in all
three directions.

only dictates that the two sweeps must be performed in se-
quence, while each sweep is fully data parallel. An example
of the two orderings and the 7-point stencil can be found in
Figure 1.

3. CACHE OPTIMIZED SMOOTHERS

The natural Gauss-Seidel ordering utilizes the cache bet-
ter than the red-black version as long as the data values are
stored in sequential order and the cache is not large enough
to store the entire problem. This is the consequence of the
red-black algorithm traversing the data values in two sepa-
rate sweeps, thus causing the data to be evicted from the
cache before the second sweep is performed.

Since the solution of the problem requires the stencil to be
applied many consecutive times, it is possible to further im-
prove the cache performance. This can be done by reusing
the data values before discarding them in the cache accord-
ing to Sellappa et al. [14]. This technique is called the tem-
porally blocked Gauss-Seidel (TBGS). The order of applying
the stencil to the data values is shown in Figure 2 and works
as follow: First the stencil is applied to all data points in
slice 1 according to the figure. The arrows indicate that
the stencil traverses all data points from the top row to the
bottom row of the slice. Second the stencil is applied to all
data points in slice 2, third the stencil is applied to all data
points in slice 1 for a second time and fourth the stencil
is applied to all data points in slice 3 the first time. The
scheme continues like this until the stencil has been applied
to all data points two times. This scheme is more cache
efficient than the natural Gauss-Seidel ordering, since the
stencil can be applied several times to each data point be-
fore it is being discarded from the cache. Mathematically,
the temporally blocked Gauss-Seidel scheme is identical to
the natural ordered Gauss-Seidel.

We define the number of times we traverse the data points
from one corner to the diagonal corner as the number of
sweeps. During a single sweep, the stencil can be applied
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Figure 2: Access pattern of the temporally blocked
Gauss-Seidel smoother (TBGS)

several times to each data point, as we saw in the exam-
ple above. The number of times the stencil is applied is
called the number of steps. An important performance mea-
surement therefore becomes the number of steps per sweep,
called o. In the previous example found in Figure 2 o = 2.
The natural Gauss-Seidel ordering has o = 1. For the red-
black ordering, o = 0.5, since two sweeps, one for the data
of each color, are required for the stencil to be applied to all
data points.

The red-black ordering can also be optimized for locality
in a similar way as for the natural Gauss-Seidel ordering.
A thorough investigation of such techniques was performed
by Weiss et al. [16]. These techniques include loop fusion,
where the stencil is applied to the red and black data points
within a single sweep (o = 1), and loop blocking, where sev-
eral steps are made in one sweep (o > 1). These techniques
manage very well to reduce the number of cache misses,
since the data is reduced several times before eviction. We
have found that the performance of such cache optimized
red-black smoothers is equal to the performance of the tem-
porally blocked Gauss-Seidel smoother. However, there is
a drawback with the cache optimized red-black ordering: it
is not easily parallelized since it re-introduces dependencies
between the data points, see Section 4.



4. PARALLEL TEMPORALLY BLOCKED
GAUSS-SEIDEL

A major contribution of this article is to show that the
temporally blocked Gauss-Seidel scheme can be efficiently
parallelized on shared-memory multiprocessors. The nat-
ural Gauss-Seidel ordering is seldom used in parallel cases
since it requires fine-grained locking [6]. The locking leads
to a high communication cost, which causes a poor speedup.
However, we show that this communication overhead can be
compensated by a better cache usage.

The proposed parallelization uses a flag-vector of size t x
N, where t is the number of threads and N is the problem
size. The flags indicate how many times the stencil has
been applied to the data elements of the corresponding slice
according to Figure 3. The total size required for the flag-
vector is negligible compared to the total N® problem size
for realistic values of ¢t and V.

A thread t can start executing on the next slice in step
s if two conditions are fulfilled. The first condition (1) is
that the thread ¢ — 1 already has performed step s. This
condition prevents thread ¢ from performing step s before
thread ¢ — 1. The second condition (2) is that the flags for
thread ¢t and ¢ + 1 indicate that the same number of steps
has been made. This condition prevents thread ¢ to perform
step s + 1 before thread t + 1 performs step s. These two
conditions guarantee that the parallel execution yields the
same results as the sequential execution.

The parallelization of the temporally blocked Gauss-Seidel
smoother leads to a start time overhead which is caused by
threads ¢ > 0 having to wait for the thread above to com-
plete its part of the slice. The behavior is similar to that of
pipelining and the size of the overhead is (¢ — 1)/(oN). In
most cases, the cost is small since the problem size, N, nor-
mally is larger than the number of threads, t. The overhead
is proportional to the number of sweeps. Since, o indicates
the number of steps per sweep, a large value of o leads to a
smaller start time overhead for a fixed number of steps.

The temporally blocked red-black smoother by Kowarschik
et al. [16] can also be parallelized using a similar fine-
grained locking technique. However, in this case the up-
dating scheme will be more complex and the overlap be-
tween the threads increases since red and black points needs
to be updated in pairs. These differences will increase the
programming effort needed to orchestrate the needed syn-
chronization. Furthermore, a temporally blocked red-black
smoother will exhibit similar start time overheads since the
data dependencies are exposed.

5. EXPERIMENTAL SETUP

In this article, most experiments have been run on an Ul-
traSPARC IV+ shared-memory system. The baseline sys-
tem consists of a 8-way processor card installed in a Sun
server. The processor card has four CPU chips, each with
two 1.5 GHz processor cores. The cores have separate 64 KB
L1 data caches. The two cores of each chip share an inter-
nal 2 MB L2 cache and an external 32 MB L3 cache. This
system is from an architectural point of view a mixed 8-way
CMP/SMP system.

The UltraSPARC IV+ system is the computer with the
best overall floating-point performance that is available to
us at the moment. However, since this system is not a pure
CMP-design and we want to evaluate the effect of the pro-

posed algorithms on such systems, we have performed addi-
tional experiments on CMPs in Section 8.

The UltraSPARC IV+ system runs the Solaris 9 operating
system. All codes were written in Fortran 90 and compiled
with high-level optimization (fast) using the Sun Forte 8.1
Fortran 95 OpenMP compiler. We used double precision for
all floating-point values which correspond to 8 bytes of data.
We choose to disable the compiler-assisted software-prefetch
mechanism since the success of the prefetching varies be-
tween different versions of the code. Our experiments from
running with the prefetch enabled ensure us the overall re-
sults presented in the article are not obscured by this mea-
sure. All runs were performed four times on a non-loaded
system. We only report the results of the fastest of the four
runs. The results normally varied less than one percent be-
tween the runs.

6. SEQUENTIAL PERFORMANCE

In this Section we evaluate the behavior of the Gauss-
Seidel smoothers. We use three different problem sizes,
where N equals 129 (27 + 1), 257 (2% 4 1) and 513 (2° 4 1).
The total data size required for storage of the solution, u
is 16.4 MB, 129 MB and 1030 MB respectively. Note that
the right hand side, f, of Equation 4 also requires the same
amount of storage.

We start with the analysis of cache behavior and execu-
tion time of the sequential TBGS-smoother. The sequential
execution time per step is presented in Table 1. The values
indicate how long each step takes depending on how many
steps are performed in each sweep, o. We performed a total
of 16 steps for each experiment. The results show that the

RBGS TBGS
o 0.5 1 2 4 8 16

N=129 | 0.094 | 0.086 | 0.071 | 0.061 | 0.070 | 0.074
N=257 | 2.488 1.508 | 1.048 | 0.814 | 0.698 | 0.641
N=513 | 19.95 12.12 | 8.975 | 7.429 | 9.975 | 12.58

Table 1: Execution time per step for the RBGS- and
TBGS-solvers at different problem sizes on the Ul-
traSPARC IV+ processor. o is varied for the TBGS-
solver.

execution time per step is larger for the RBGS-smoother
than the baseline TBGS-smoother with ¢ = 1 for all prob-
lem sizes. However, the difference in execution time per step
is much smaller for the N = 129 problem size. The reason
is that at this problem size, the entire problem almost fits
into the third level cache of the UltraSPARC IV+ processor.
For the larger problem sizes, N = 257 and N = 513, two
steps with the TBGS-smoother take less time than a single
RBGS-smoother step thanks to the better cache usage in
the second and third level caches. The cost of performing
additional steps per sweep is low for the TBGS-smoother.
The TBGS-smoother operates on a number of slices at a
given time. The size of each slice is the size of each data
value times the size in the x- and y-directions, 8N? B. The
larger the number of steps per sweep is, the larger the num-
ber of slices needed to cache the data becomes. If o = 4,
step 1 is performed on slice z, step 2 on slice z — 1, step 3
on slice z — 2 and step 4 on slice z — 3. Thus, the required
number of slices is four. However, we also access data in
slices z + 1 and z — 4 since the 7-point stencil is extended




Y|

A | |

t0 )

tl

e

R

oo el ooy,

" 0l[0.0l 0] o [0l [0l o) 0)[01[0);
-aTolfellollaTa [0 (o 1o)lol:

< [0/[o][o}[o][0][0l[0][0] (ol[0]
(a) Perform step 1 on the (b) Perform step 1 on the

first slice on t0. first slice on t1.

t0 )

tlé

) el

R

Lo 0)[0][01]0)[0][0), 9 ) I
i
.2 . 2 I

3 [0l[o][0]{o][0l[o][0]T0] 3 [0][o][0l[o][0l[o][0][0]
(c) Perform step 1 on the (d) Perform step 2 on the

second slice on t0. first slice on t0.

Figure 3: Principle of parallelization of 3D temporally blocked Gauss-Seidel.

in these directions. We call the slices that are accessed in
the computations the active region. Since the solution of the
problem also has a right hand side, f, one additional slice
of data is required for each o. The number of slices needed
for the computation of each active region is equal to 20 + 2.
In Table 2, the required data size for each active region has
been calculated. The RBGS-smoother needs to fit the en-

o 1 2 4 8 16
slices 4 6 10 18 34
N=129 [ 0.5 MB | 0.76 MB | 1.3 MB | 2.3 MB | 4.3 MB
N=257 | 2.0 MB 3.0 MB 5.0 MB | 9.1 MB 17 MB
N=513 | 8.0 MB 12 MB 20 MB 36 MB 68 MB

Table 2: Required data size for each active region.

tire problem into cache to exploit temporal locality between
steps. This is not the case for the TBGS-smoother since it
is enough to fit the the active region in cache for an efficient
cache usage. The number of cache misses will be reduced by
a factor o because of the temporal blocking as long as the
active region fits in the cache. Hence, the execution time
per step should decrease for larger values of o. However,
Table 1 shows that the execution time per step actually in-
creases when o > 4 for the N = 129 and N = 513 problem
sizes. This can be explained by the fact that the active re-
gion increases in size when o grows and it will eventually be
too large to fit in some level of the UltraSPARC IV+ cache
hierarchy. The level two cache is 2 MB and can store the ac-
tive region at o < 4 for the NV = 129 problem size. Similarly,
the third level cache size is 32 MB and is large enough to
store all active regions for all problem sizes except at o > 4
for N = 513.

To further increase the understanding of the sequential
performance, the RBGS- and TBGS-smoothers have been
analyzed using the StatCache tool developed by Berg et
al. [3]. The tool uses a probabilistic approach that makes it
possible to compute the cache miss ratios of any cache size
from sparse data samples collected during a single run®.

The cache miss ratio curves for the RBGS- and TBGS-
smoothers generated by StatCache is presented in Figure 4.
The problem size is N = 129 and the results assume a cache
block size of 64 B. There are many interesting conclusions
to draw from this figure: The cache miss ratio is inversely

!"While StatCache’s assumption is fully associative caches
with random replacement, we regard these results as roughly
representative for any fairly-associative cache.

proportional to o for cache sizes between 4 and 16 MB. The
RBGS miss ratios are almost twice as high as for TBGS1
(TBGS with ¢ = 1) for all problem sizes except for the
case where the entire problem can be cached. This differ-
ence in performance can be explained by the fact that the
RBGS-smoother cannot reuse data between steps since data
from the first sweep have been evicted. The TBGS-smoother
performs equally well for all values of o at cache sizes up to
about 512 KB. At larger problem sizes, the smoothers differ.
As can be seen in Figure 4, the TBGS16-smoother has the
lowest miss ratios for cache sizes larger than 2 MB. Between
512 KB and 4 MB we see that the cache miss ratios differ
between TBGS1 and TBGS16. The TBGS1 cache miss ra-
tio is still the half of RBGS. TBGS2 has the lowest ratio
at 1 MB, TBGS4 at 2 MB and TBGS16 at 16 MB. The
reason for these drops is that the active region requires a
larger cache size for higher values of o. The StatCache fig-
ures clearly show that for larger cache sizes, the miss ratio is
halved for each doubling of o for the TBGS-smoother. The
StatCache results for the N = 257 and N = 513 problem
sizes are not presented here. However, they are very similar
to the results for the N = 129 problem size.

7. PARALLEL PERFORMANCE

We continue with a study of the parallel performance of
the RBGS- and TBGS-smoothers. The TBGS-smoother was
parallelized according to Section 4. The execution time per
step is presented in Figure 5 for all problem sizes. The num-
ber of threads is varied between 1 and 8 in this experiment.

For the studied architecture, adding several threads leads
to a larger effective cache size. The level two and level three
caches of the UltraSPARC IV+ processor are shared be-
tween two cores. This means that if two threads run on the
same processor, the effective level two and three cache size
is unchanged. In the four-threaded runs the cache size is
doubled and in the eight-threaded runs the size is quadru-
pled. However, the first level caches are private and doubles
with each doubling of the number of cores.

In the previous section, we concluded that for all sequen-
tial runs the execution time per step is smaller for the TBGS-
smoother than the RBGS-smoother. In the parallel cases
this is only true for the runs with problem sizes larger than
N = 129. There are two reasons for this behavior. The
first reason is that in the TBGS-smoother, the ratio be-
tween communication and computation is larger the smaller
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Figure 5: Execution time per step for 1, 2, 4 and 8 threads on the UltraSPARC IV+ system.

the problem is since fewer computations are made before
synchronization has to be made with the next thread. Since
the computations are dependent on each other in the TBGS-
smoother and are restricted by flag synchronization, the cost
is much higher than in the RBGS-smoother. The second rea-
son is that the entire problem fits in the third level cache for
the N = 129 problem size. The major advantage with the
TBGS-smoother is that the cache miss ratio is much lower
than for the RBGS-smoother. In modern processors the ac-
cess time to memory can be several hundreds of cycles. It is
therefore crucial to avoid memory references for good per-
formance. The additional cost of accessing the third level
cache instead of the second level cache is not as severe.

Another interesting behavior in the different TBGS smo-
others can be observed in the execution time per step as
the number of threads increases. As described in the pre-
vious section, the fastest sequential execution time per step
is found for o = 4 at problem sizes N = 129 and N = 513
because of the cache sizes of the computer. The same be-
havior can be observed for two threads. This is because the
second and third level caches are shared and the cache size
is unchanged for two threads. When more than two threads
are used, the fastest execution time per step is instead found
in TBGS with ¢ = 8 and o = 16 because more cache space
is available.

Figure 6 shows that compared to the base-line sequential
RBGS-smoother, the speedup on eight threads is between
7.1 and 9.0 for the parallel RBGS-smoother on the three
problem sizes. The speedup is largest for the smallest prob-
lem size because the entire problem fits into the third level
caches of the processors. The eight-thread TBGS-smoother
shows a speedup of between 7.2 and 8.3 compared to the
sequential TBGS-smoother depending on the problem size.

8. SCALABILITY

In this section, we will investigate the scalability of the
TBGS- and RBGS-smoothers on present and future com-
puter systems. We have therefore performed scalability ex-
periments on a number of different architectures. The three
studied systems are (1) a traditional 32-way cc-NUMA, (2) a
32-way SMT/CMP UltraSPARC T1 and (3) a simulated 32-
way pure CMP. We have chosen not to include the previously
studied UltraSPARC IV+ system in this section because it
only can execute eight parallel threads.

The traditional cc-NUMA (1) consists of 32-processor Ul-
traSPARC Illcu based Sun E15K server. The server is a
NUMA system with four processors per node. Each Ultra-
SPARC Illcu runs at 900 MHz and has a 64 KB first level
data cache and a 8 MB second level cache. The data were
allocated in parallel to avoid NUMA allocation effects.



10 ’4‘ Zthreads=1 Mthreads=2 [threads=4 Nthreads=8 ’*

94
\
s—
N N <
¥ ¥ ¥ N N N
5. N Y X Y Y N
L NN = N N B
N X N
g
N BY Y
N BY I
N AN AN
N AN AN

Figure 6: Speedup of the RBGS- and TBGS-
smoothers for three different problem sizes on the
UltraSPARC IV+ system.

The UltraSPARC T1 [7] processor can run 32 parallel
threads and is built from eight four-threaded cores, each
with an 8 KB level one data cache and a shared 3 MB
level two cache. Since each core has four separate threads,
which share the same pipeline, the processor is a eight-core
4-way SMT multiprocessor. The UltraSPARC T1 proces-
sor is primarily made for multithreaded workloads like web
servers and JAVA application servers. The chip has a single
floating-point unit for all 32 threads and hence its perfor-
mance is poor for scientific applications.

The last studied system is a pure 32-way simulated CMP.
This CMP has been configured using the Vasa simulator
framework [15], which is based on the Simics full system
simulator [11]. The simulator execute the same unmodified
binaries as the previous systems. The simulated pure CMP
is configured to resemble the UltraSPARC T1 processor ex-
cept that it has no SMT-cores. On the simulated system,
each thread has a separate pipeline. However, similar to
the UltraSPARC T1 processor, a total of eight 8 KB first
level caches are available and each first level cache is shared
between four threads. The second level cache is somewhat
larger in the simulated system, 4 MB, than in the Ultra-
SPARC T1, 3 MB, because of constraints in the simulator.
The cache and memory latencies of the simulated machine
was chosen to match the latencies of the UltraSPARC T1.
The simulated CMP has a separate floating-point unit for
each thread.

8.1 Scalability on a cc-NUMA system

The first scalability experiment was to compare the per-
formance of the RBGS- and TBGS-smoothers on the cc-
NUMA system. Figure 7 shows the performance ratio per
step between the TBGS- and RBGS-smoothers for the N =
257 problem size at different number of threads. The ra-
tio is about 1.6 for the TBGS1-smoother compared to the
RBGS-smoother for a single threaded run. This ratio means
that if the TBGS-smoother would take one second per step,
the RBGS-smoother would require 1.6 seconds to perform a
step. When o is increased, the performance ratio increases.
The small number of second level cache misses makes the
TBGS-smoothers with large values of o very competitive es-
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Figure 7: Performance ratio per step between the
TBGS- and RBGS-smoothers for the 32-way cc-
NUMA system, N=129.

pecially since the memory access latency on this cc-NUMA
system is large. However, the more threads that are used,
the lower the ratio becomes. This is caused by an increased
communication overhead in the TBGS-smoother. An inter-
esting behavior in Figure 7 is that for ¢ = 8 and o = 16
the performance ratio is lower for four threads or less. The
active region does not entirely fit in the second level cache
for these problems.

The speedup for the RBGS-smoother relative the sequen-
tial RBGS-smoother is 39.4 on 30 threads for this problem
size. The reason for the super-linear speedup is probably
that the total size of the level two caches of all processors
becomes larger when many threads are used. As mentioned
in Section 3, RBGS could in the sequential case be optimized
using blocking. Therefore the speedup would have been less
if we compared the best cache optimized sequential RBGS-
smoother with the original parallelized RBGS-smoother.

The TBGS16-smoother is about twice as fast as the RBGS-
smoother at 30 threads. The conclusion is that the TBGS-
smoother is a competitive choice also on traditional shared-
memory machines since it scales well up to at least 30 threads.
For even larger number of threads, the RBGS-smoother could
be a better choice.

8.2 Scalability on CMPs

We continue with a study of the scalability of the TBGS-
smoother on two types of CMPs. Our first study was per-
formed on the UltraSPARC T1 processor. We edited the
TBGS- and RBGS-smoothers to operate on 8 B integer val-
ues instead of 8 B floating-point values because of the pro-
cessors lack of efficient floating-point computations. This
makes the algorithms totally irrelevant for scientific pur-
poses. However, we can still study the algorithms from a
scalability point of view. As previously mentioned, the Ul-
traSPARC T1 processor has eight 4-way SMT-cores. We
have found that the SMT-ness of the processor has a signif-
icant influence on the performance for this problem. There-
fore, we have made an additional study of a simulated 32-
way pure CMP without SMT-cores. This study makes it
possible to distinguish performance influences caused by the
processor being a mixed SMT /CMP processor from the pure



CMP case. All experiments have been carried out on floating-
point values on the simulated machine.

In Figure 8, the performance ratio per step is compared
for the RBGS- and the TBGS1-smoother at the N = 129
problem size. The figure shows both the performance ratio
for the UltraSPARC T1 and the simulated pure CMP. For
both processors, the threads are bound in a round-robin
fashion to the cores. That is, the first eight threads are
bound to the different cores and when additional threads
are added, they are equally divided between the cores.
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Figure 8: Performance ratio per step between TBGS
and RBGS for the 32-way UltraSPARC T1 and the
simulated 32-way pure CMP, N=129.

The performance ratio of the simulated CMP is larger
than for the UltraSPARC T1 when many threads are used.
The reason for this behavior is that the UltraSPARC T1 has
SMT-cores. Since the figure shows the ratio between two
smoothers that should perform basically the same type of
work, this cannot be an effect of several threads contending
the pipeline within a single core. The main difference be-
tween the TBGS1- and the RBGS-smoothers is as explained
earlier that the RBGS-smoother causes about twice as many
second level cache misses. The UltraSPARC T1 cores are
designed for hiding memory latencies by performing other
useful work during the memory accesses. The processor
manages better to hide latencies for the RBGS- than the
TBGS1-smoother since there are twice as many memory ac-
cesses. Therefore, the ratio becomes smaller when several
threads are used within every core. In the pure CMP-case,
a memory access will simply stall the pipeline until the data
comes back. No other useful work is done during the stall.
The stall time will be proportional to the number of cache
misses for both smoothers.

The UltraSPARC T1 curve in Figure 8 also shows dis-
tinct steps at 8, 16 and 24 threads. This is an effect of
uneven work distribution between the cores. The first step
occurs when 10 threads are used. In this case, two cores
will have two threads executing, while the rest of the cores
only executes a single thread. Hence, the cores with two
threads executing will dominate the total execution time.
Once again, the SMT-cores influence the execution. In the
RBGS-smoother, more second level cache misses occur than
in the TBGS1-smoother, and the SMT-cores manage bet-
ter to hide the RBGS memory latencies. At 8, 16 and 24

threads, the number of threads per core is well balanced
and hence the TBGS-smoother performs best relative to the
RBGS-smoother.

The SMT/CMP performance discussion does not explain
how the RBGS- smoother could perform better than the
TBGS1-smoother at more than 24 threads (performance ra-
tio < 1). The reason for this behavior is that the TBGS1-
smoother has a start time overhead according to Section 4.
This overhead becomes larger the more threads that are
used. For this small problem size, N = 129, the effect is
significant. The start time overhead is also the reason for
the slope of the UltraSPARC T1 curve in Figure 8. If we
compensate for the start time overhead, we could get a mea-
sure of the communication cost of the smoothers. The ratio
for the UltraSPARC T1 processor at 30 threads is 1.05 and
for the pure CMP 1.34 if we compensate for the start time
overhead. The ratio is for both processors 1.34 for a single
thread. The conclusion is that the cost of communication is
negligible for the TBGS1-smoother on a CMP. However, the
scalability of the TBGS-smoother is negatively influenced by
two other factors: (1) the start time overhead and (2) the
SMT-design of the UltraSPARC T1 processor.

Figure 9 shows the performance ratio between the RBGS-
and the TBGS-smoothers, when o is varied on the Ultra-
SPARC T1 processor. On this processor, a larger o leads to
fewer cache misses and therefore the performance of TBGS
becomes better. Since the memory access latency is much
smaller on the UltraSPARC T1 server compared to tradi-
tional cc-NUMA systems, the effect of increasing o is smaller.
The difference between for example TBGS1 and TBGS2
should also decline for a large number of threads since the
SMT-design manages to hide memory latencies better for
applications with more memory accesses. This is difficult
to conclude from Figure 9. The reason is once again the
start time overhead. The larger the value of o, the smaller
the start time overhead becomes. Therefore all the TBGS1,
TBGS2 and TBGS4 ratio curves would meet at about 1.1 if
we would have compensated for the start time overhead.
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Figure 9: Effect of ¢ on the performance ratio per
step between TBGS and RBGS for the 32-way Ul-
traSPARC T1, N=129.

We conclude the discussion on CMPs by comparing the
speedup curves for the RBGS- and TBGS1-smoothers on the
UltraSPARC T1 and the simulated pure CMP in Figure 10.



The speedup curve is computed relative the performance
of the sequential RBGS-smoother for each processor type.
The speedup is largest for the TBGS1-smoother on the pure
CMP. The rather poor speedup of both the RBGS- and the
TBGS1-smoother on the UltraSPARC T1 processor at more
than 24 threads, is probably caused by a lack of resources
in the pipeline when it is being used by all four threads. It
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Figure 10: Speedup curves of the TBGS1- and
RBGS-smoothers on the 32-way UltraSPARC T1
processor and the simulated 32-way pure CMP,
N=129.

should be noted that CMP-designs have greater tendencies
to suffer from memory bandwidth limitations than single-
core processors. The reason is that all threads in a CMP
compete for the same bandwidth resources. Therefore it is
more important to lower the number of memory references
on a CMP. However, in our experiments we do not satu-
rate the memory bandwidth of the UltraSPARC T1 proces-
sor. The reason is that the processor has an unusually high
memory bandwidth of 25.6 GB/s. If the memory bandwidth
had not been large enough, the TBGS-smoother would have
had a much larger performance advantage compared to the
RBGS-smoother.

9. MULTIGRID ACCELERATION

As remarked already in Section 2, smoothing steps are in
general not used in the simple form given by Algorithm 1.
Instead, they are employed within a multigrid method. The
basic idea of this type of scheme is to apply the smoother
not only at the finest grid (level m), but also use it for com-
puting corrections at a sequence of coarser grids defined by
levels [ = 1,...,m. The smoother S; is used to reduce a
given component of the representation of the error, usually
the high frequency part, at level I. For transferring values
between grid levels, the restriction and prolongation oper-
ations R; and P;, have to be defined. As for the difference
operators L;, these are data parallel stencil operations.

The most fundamental multigrid scheme consists of re-
placing the single smoothing operation in Algorithm 1 with
a standard v-cycle. In this case, the grid hierarchy is recur-
sively descended until only a single, scalar equation remains.
When this has been solved, the correction is step-by-step
prolonged to finer grids and added to the current solution.
This results in Algorithm 2. In the sequel, we use the term

Algorithm 2 Multigrid_vcycle(l,u;, fi)

ug, fi,wi,dy,vp :: grid functions at level [
Si1,Li, P, Ry :: stencil operations at level [
if [ =1 then
solve the scalar equation Liui; = fi and return
else
wy = S} (u, fi) {Apply the smoother v times}
di = Liyw; — fi {Compute the defect}
di—1 = Rid; {Restrict the defect}
9:  wv;—1 =0 {Starting guess}
10:  call Multigrid_vcycle(l — 1,v3—1,di—1)
11: v = Pwv—1 {Prolong the coarse grid}
12:  w; = w; — v {Correct the solution}
13:  w = 5] (w, fi) {Apply the smoother ~ times}
14: end if

iteration for counting the number of v-cycles. Note that in
Algorithm 2, the number of smoothing steps ~ is normally a
small constant. In fact, in many existing application codes
v =1 is regularly used.

If a d-dimensional problem is solved, the grid at level I,
I=1,...,m contains N/ grid points where in the simplest
case N; = 2! — 1. Since all operators involve only a set of
neighboring points, it is clear that O(N{) arithmetic opera-
tions are required on each level. For each coarsening of the
grid, the number of grid points is reduced by a factor 2¢, and
a simple calculation shows that the arithmetic requirement
for the standard v-cycle is still O(Nld). For important classes
of PDEs, it can be proved that standard smoothers, restric-
tions and prolongations result in an multigrid method that
converges in O(1) iterations, independently of N,,, see e.g.
Wesseling [17]. Thus, in these cases the multigrid scheme
has optimal arithmetic requirements.

When used for a single grid, as described in Algorithm 1, it
was already in [18] proved that the asymptotic convergence
rate for the natural and red-black Gauss-Seidel schemes is
equal for the model problem considered here. However,
when applied as smoothers in the multigrid algorithm 2,
then the red-black ordering results in slightly faster conver-
gence [17]. In [17], it is also stated that for large problems,
a multigrid scheme with a red-black Gauss-Seidel smoother
results in possibly the most efficient solver for the Poisson
equation in terms of the number of arithmetic operations
performed.

Except for the smoother, all operations in Algorithm 2
are data parallel. Since the red-black Gauss-Seidel smoother
has the smallest arithmetic requirements and also presents
a high degree of parallelism, this has been the standard
scheme in applications for some time. We have implemented
multigrid methods using both our temporally blocked, par-
allelized naturally ordered smoother and the standard red-
black scheme. The v-cycle iteration was put inside a par-
allel region, which implies that the data dependencies have
to be protected by global barriers. The data parallel op-
erations were parallelized using OpenMP work-sharing con-
structs. For the coarsest grids, the amount of data will be
very small. This leads to increased parallel overhead com-
pared to the arithmetical work [4], and eventually to reduced
load balance. However, since the time spent computing on
the coarsest grids is many magnitudes smaller than the time
spent on the finest grids, the effect will usually be negligible.



10. MULTIGRID PERFORMANCE

The final study made in this paper is to study the per-
formance of the multigrid solvers for the Poisson equation,
which use the RBGS- and TBGS-smoothers. Once again,
all experiments have been performed on the 8-way Ultra-
SPARC IV+ CMP/SMP system. The execution time of
the multigrid solver is dominated by the smoothing opera-
tion [14]. The multigrid solvers are run until convergence,
which was defined to be that the norm of the solution should
be 107°(¢) of the original norm.

In Section 9, it was remarked that the red-black smoother
normally has somewhat better convergence rate than the
temporally blocked smoother when used within a multigrid
solver. A faster convergence rate could also be achieved
by increasing the number of smoothing steps at each level,
called v in Algorithm 2. Table 3 shows the number of multi-
grid v-cycles that is required for convergence for the RBGS-
and TBGS-smoothers using different numbers of steps +.

~ 1[2[(3[4]5[6]7

RBGS |N=129 |11 8|7 |7]6]6]6
N=257 |11 |8 |7|7|6|6]|6

N=513 |12 |8 |7|7|6|6]|6

TBGS |N=129 |13 |9 |7|7]6]6]6
N=257 |13 |9 |7|7|6|6]|6

N=513 |13 |9 |7|7|6|6]|6

Table 3: Number of required multigrid v-cycles to
reach convergence for different values of ~.

In Figure 11, the sequential execution time until conver-
gence is presented for the multigrid solvers using the RBGS-
and TBGS-smoothers for different values of «. The results
are presented for three different problem sizes, N = 129,
N = 257 and N = 513. The results show that the solver
with the TBGS-smoother and v = 3 or v = 5 performs
best for all problem sizes. When the RBGS-smoother is em-
ployed, the best performance is obtained for v = 2. The
reason for the better performance of the TBGS multigrid
solver is that the cost of performing additional smoothing
vsteps is smaller in the TBGS- than the RBGS-smoother.

We parallelized the multigrid solver with two types of
smoothers, RBGS and TBGS, using OpenMP. Note that
no performance optimizations, such as blocking, have been
made to other parts of the multigrid code than the smooth-
ing steps. However, as mentioned earlier the execution time
is dominated by this operation.

In Figure 12, the normalized execution time until conver-
gence of the parallel solvers is presented. Three problem
sizes are run with 1, 2, 4 and 8 processors. All execution
times are normalized relative the sequential RBGS-smoother
multigrid solver. The best values of «y is used both for RBGS
(v =2) and TBGS (y = 5). The best values stayed the same
independent of the number of threads used for both solvers.
The results show that the parallel TBGS multigrid solver
is the fastest for the N = 257 and N = 513 problem size.
In the N = 129 case, the parallel RBGS multigrid solver
performs better. At this problem size, the communication
cost is the largest and at more than two threads, the entire
problem fits into the third level caches of the processors.
Hence, the superior cache memory behavior of the TBGS-
smoother compared to the RBGS-smoother is not exploited.
The relative speedup of the fastest TBGS multigrid solver

1.2
‘ Zthreads=1 Mthreads=2 Hthreads=4 Nthreads=8
)
£ 1.0 1 ¢
=
c
K] 0.8
=
S
3
% 0.6
)
?
N 0.4 -
©
E 02
(<}
=
0.0
P threads=1
M threads=2
B threads=4
Nthreads=8

Figure 12: Normalized execution time of the par-
allel multigrid solvers with RBGS- and TBGS-
smoothers for N=129, N=257 and N=513 on the
8-way CMP/SMP UltraSPARC IV+ system. The
execution time is normalized relative the single pro-
cessor RBGS multigrid solver.

compared to the fastest RBGS multigrid solver is presented
in Table 4. Translating the speedup into percentages, the

threads | N=129 | N=257 | N=513
1 1.46 1.57 1.55
2 0.96 1.59 1.58
4 0.86 1.60 1.66
8 0.90 1.62 1.63

Table 4: Relative speedup of the multigrid solver
with TBGS-smoothing compared to the RBGS
multigrid solver on the 8-way CMP/SMP Ultra-
SPARC IV+ system.

TBGS multigrid solver is about 40 percent faster than the
RBGS multigrid solver for N = 257 and N = 513. For
N = 129, the performance is somewhat worse for the TBGS
multigrid solver than the RBGS multigrid solver.

11. CONCLUDING REMARKS

The paper presents a parallelization technique for the nat-
ural Gauss-Seidel ordering used as a smoother within a multi-
grid solver. The technique called parallel temporally blocked
Gauss-Seidel exploits temporal cache locality much better
than the normally used parallelization technique based on
the red-black ordering. The temporally blocked smoother
makes it possible to perform more than one step at a very
low additional cost, since the temporal locality is preserved.

The temporally blocked Gauss-Seidel smoother has a lar-
ger communication cost than the red-black smoother, but it
is compensated by its superior cache behavior. On a shared-
memory multiprocessor with four two-way chip multiproc-
essors, the Poisson equation can be solved about 40 per-
cent faster using a multigrid method based on the tempo-
rally blocked Gauss-Seidel smoother instead of the red-black
smoother.

On future computer systems with chip multiprocessors,
the communication cost will be decreased compared to re-



25 300 2500
— %TBGS MRBGS — wTBGS MRBGS — %TBGS MRBGS
m 2 250 3
820 8 8 2000 -
® @ 200 - @
E 15 E E 1500 - _
< 7 < 150 - =
RUEl B s 7 $ 1000 -
3 . e 3
2 5 / 4] i / 2 500 -
i | Il B i
0 é A 0 é 0 LA 7 ‘
1. 2 3 4 5 6 7 1. 2 3 4 6 7 1. 2 3 4 5 6 7
Steps/MG_Vcycle Steps/MG_Vcycle Steps/MG_Vcycle
(a) Sequential execution time until (b) Sequential execution time until (c) Sequential execution time until
convergence for N = 129 depending convergence for N = 257 depending convergence for N=513 depending
on the number of steps per multigrid on the number of steps per multigrid on the number of steps per multi-
v-cycle. v-cycle. grid v-cycle.

Figure 11: Sequential performance of the multigrid solvers with RBGS- and TBGS-smoothers on the 8-way

CMP /SMP UltraSPARC IV+ system.

cent systems, since synchronization can be made using a
shared second level cache. We show that on a 32-way chip
multiprocessor the communication cost is negligible and hence
the scalability is good also for a communication-intense al-
gorithm.

The low cost of synchronization within chip multiproces-
sors should encourage researchers to re-evaluate also other
algorithms. For example, when standard ILU- and IC-factor-
izations are used for preconditioning in, e.g., conjugate gra-
dient schemes, exactly the same type of stencil operations
and data dependencies as for the Gauss-Seidel smoother ap-
pear. Also in these cases, the traditional parallel algorithms
use multicolor orderings to avoid frequent synchronization.
The results presented in this paper indicate that when the
schemes are implemented on modern architectures, this may
not longer be the best choice for maximum performance.
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