
Parallel Poisson Solver in Fortran

Nilas Mandrup Hansen, Ask Hjorth Larsen

January 19, 2010

1 Introduction

In this assignment the 2D Poisson problem (Eq.1) is to be solved in either
C/C++ or FORTRAN, first in serial and then in parallel using OpenMP.

∂2u

∂x2
+

∂2u

∂y2
= f(x, y) (1)

Consider the heat distribution in a square room. The A radiator is placed in
the room with a radiation of 200◦C/m2. Three of the room’s walls are kept at
20◦C while the last wall is kept at 0◦C, meaning that the boundary conditions
of the Dirichlet type.

2 Serial computing (Jacobi & Gauss-Seidel)

In this question the problem is solved iteratively in serial. The two iteration
methods used are the Jacobi method, (Eq. 2), and the Gauss-Seidel method,
(Eq. 3).

u
(k+1)
i,j =

1

4

(

u
(k)
i−1,k + u

(k)
i+1,k + u

(k)
i,j−1 + u

(k)
i,j+1 +∆2fi,j

)

(2)

u
(k+1)
i,j =

1

4

(

u
(k+1)
i−1,k + u

(k)
i+1,k + u

(k+1)
i,j−1 + u

(k)
i,j+1 +∆2fi,j

)

(3)

From the preceeding equations it can be seen that for the Jacobi update method,
every new value is calculated by using the values of the previous iteration. The
old values are taken from one matrix and written to a different one, requiring
the allocation of two equally large buffers, T and U . After updating U according
to Eq. (2), its contents are copied back to T explicitly before next iteration. We
note that a pointer-swapping scheme is clearly more efficient, but didn’t bother
to implement that.

For the Gauss-Seidel update method, each new value is computed from its
neighbours like in the Jacobi method, but then immediately written back to the
source array. This means that if the elements are updated in memory-contiguous
order, the next element will depend on already-updated values at (i− 1, j) and

1

(i, j − 1), while the other two neighbours have not yet been updated. The
Gauss-Seidel method is known to converge in half the iteration count compared
to Jacobi, and does not require an additional buffer.

The solution to the Poisson problem is presented in Fig. 1 for the grid size
N2 = 4096. The placement of the radiator is clearly seen in the figure. The
presented figure is based on the Jacobi method, and the Gauss-Seidel method
is observed to yield the same result. The solution is assumed to be found when

0
0.5

1
1.5

2

0
0.5

1
1.5

2

0

5

10

15

20

25

xy

T

Figure 1: Plot of the temperature distribution, Grid size N2 = 4096.

the stop criterion ||U−Uold||F < errmax is reached, i.e. that the Frobenius norm
of the difference between the current field and the one from previous iteration
is smaller than the maximum error errmax = 1e− 7.

The implementations have been tested on the grid sizes listed in Table 1 on
p. 2).

Grid Size Number of elements

8x8 64
16x16 256
32x32 1024
64x64 4096

128x128 16384
256x256 65536
512x512 262144

Table 1: Tested grid sizes.

The number of iterations as a function of number of elements is shown in
Fig. 2. Observe that both methods yield a slope of 1 on log-log axes, which
means that the complexity is O(n2).

The Gauss-Seidel method converges twice as fast as the Jacobi method in
terms of number of iterations, corresponding precisely to the vertical displace-

2

ment between the two lines. Fig. 3 shows the wall clock time as a function

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

Number of Elements N2

N
u
m

b
er

o
f
In

te
ra

ti
o
n
s

#

Jacobi
Jacobi slope= 1.00
GS
GS slope= 1.00

Figure 2: Number of iterations as a function of grid size N2 on loglog.

of grid size. The wall clock time increases equal amounts for both methods,
meaning that the Jacobi method uses half the time per iteration compared to
the Gauss-Seidel method for small problems. This we find both remarkable and
unlikely, but nonetheless quite consistent. A possible explanation is that read-
ing and writing to the same array makes it more difficult for the compiler to
optimize.1

Finally Fig. 4 show the number of iterations per second. Here it can be
seen that in general the Jacobi method manages more iterations per second
than the Gauss-Seidel method for problems having a maximum size of about
512x512 elements. One should remember that a grid of 512x512 corresponds
to approximately 2MB, which is less than the cache size of the CPU (8MB),
meaning that the Jacobi method is the fastest method. If one uses, e.g. a
1600x1600 grid, then the memory requirement is approximately 20MB. When
the amount of data exceeds the cache size, it is expected that the Gauss-Seidel
will do more iterations per second since it uses two grids, whereas the Jacobi
method uses three grids. This was tested on a 1600x1600 grid where the Gauss-
Seidel method was approximately 10% faster that the Jacobi in total, i.e. still
much slower per iteration.

1Indeed we have tested that the red-black Gauss-Seidel solver (to be discussed later), which
doesn’t read from and write to the same memory in immediate succession, uses slightly less
time per updated element compared to the Jacobi solver.

3

10
1

10
2

10
3

10
4

10
5

10
6

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of Elements N2

W
a
ll

cl
o
ck

ti
m

e
[s

]

Jacobi
Gauss Seidel

Figure 3: Wall clock time as a function of grid size N2 on loglog.

10
1

10
2

10
3

10
4

10
5

10
6

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Elements N2

N
u
m

b
er

o
f
In

t.
p
er

se
co

n
d

[i
n
t/

s]

Jacobi
Gauss Seidel

Figure 4: Number of iterations per second as a function of grid size N2 on
semilogx.

4

0 2 4 6 8 10 12 14 16
Processors

0

5

10

15

20

S
p
e
e
d
u
p

400
800
1200
1600

Figure 5: Speedup of Jacobi method as a function of process count for different
problem sizes.

3 Parallelization of Jacobi solver

The Jacobi method is simple to parallelize: Each process is made responsible
for a distinct slice of the output matrix by declaring the outermost loop as
parallel. The elements on the domain boundaries of the input array are read
concurrently by different processes, but this is fine as nothing is written back
to that array. Some synchronization is required, since no thread should begin
copying the contents of the output array back into the input array, but this is
taken care of by the implicit barrier at the end of the parallel for loop.

Omitting convergence check, the update loop is2:

do n=1,maxiter

!$omp do

do j=2, nx - 1

do i=2, ny - 1

U(i, j) = 0.25 * (T(i-1, j) + T(i+1, j) + T(i, j-1)&

+ T(i, j+1) + F(i, j))

enddo

enddo

!$omp end do

enddo

Figure 5 shows the scaling properties of the Jacobi method. For small ma-
trices the performance is limited as each process has little work between the
barriers. Larger matrices scale better as there is more work compared to the

2The array F contains a premultiplied factor of ∆2

5

amount of synchronization. For sufficiently large problems, the matrices do not
fit into the CPU cache size for low CPU counts, which hampers performance
due to cache misses. Adding more CPUs makes the buffers fit into the cache,
resulting in superlinear speedup for “medium-sized” matrices. Sufficiently large
matrices do not fit into the cache either way and thus do not achieve superlin-
ear speedup. On the contrary, the 1600 by 1600 matrix does not scale well in
spite of the very little synchronization required. We believe the large number of
CPUs combined with many cache misses strain the main memory bandwidth.

4 Parallelization of Gauss-Seidel solver

The Gauss-Seidel solver is not quite as easily parallelized, as information is
read from and written back to the same array. Each process must therefore
ensure that the neighbours of the element which it is about to update have
been updated precisely the right number of times, which requires explicit syn-
chronization if the update is performed in straight-forward memory-contiguous
order.

A useful Ansatz would be to divide the problem into e.g. horizontal slices,
each process having one slice. Process 1 will then start with the top slice and
will, at some point finish updating it. At this point process 2 in the slice
immediately below can start updating, since its upper boundary elements have
now been updated. Meanwhile process 0 restarts, iterating the first slice a second
time, but must not again update the lowest row before process 2 has finished
its own top row. This way, each process can start updating slices further down
the array in a pipeline-like fashion, requiring synchronized access to the top and
bottom rows in each domain. This is called temporal blocking. In principle
this can scale well since only neighbouring processes communicate, but some
overhead must be expected. Also the method is rather complicated.

4.1 Red-black Gauss-Seidel

In place of temporal blocking we have implemented a so-called red-black scheme.
In this scheme we perform one update by making two entire sweeps of the array:
first we update half the points in a checkerboard pattern, where each update
follows the same formula as the Jacobi method. Then we perform a second
sweep, updating the other half of the points using the values calculated in the
first sweep. While the first sweep uses purely “old” values, the second sweep
uses purely “new” values such that on average a point is updated from two new
and two old values, making this a Gauss-Seidel scheme.

The red-black method is parallelized simply by dividing the matrix into
slices over the non-leading dimension, and giving each process one slice. The
advantage is that during one sweep, every element is either written or read, but
not both, so synchronization is required only between distinct sweeps.

This makes the red-black implementation both simple and highly scalable.
A drawback is that we incur the overhead of looping over the same array twice,

6

0 2 4 6 8 10 12 14 16
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

400
800
1200
1600

Figure 6: Speedup of the red-black Gauss-Seidel implementation as a function
of process count for various problem sizes.

only touching half the elements each time, thus also taking less advantage of
caching. Another, much more profound drawback is that the red-black scheme
is limited to finite-difference stencils that are in fact red-black.

The code for the red-black scheme is seen here:

!$omp parallel shared(T, F, nx, ny, maxiter, interval, maxerr) &

!$omp & private(n, i, j, istart, istop)

do n=1, 2 * maxiter

!$omp do

do j=2, nx - 1

istart = 2 + mod(j + n, 2)

istop = ny - 1

do i=istart, istop, 2

T(i, j) = 0.25 * (T(i-1, j) + T(i+1, j) + T(i, j-1) &

+ T(i, j+1) + F(i, j))

enddo

enddo

!$omp end do

enddo

!$omp end parallel

The istart parameter alternates between the first and second row on each
sweep, while the loop variable has a stride of 2.

Figure 6 shows the scaling properties of the Gauss-Seidel implementation.
The plot looks quite similar to Figure 5. The 800 by 800 problem does (mostly)
not scale superlinearly as in the Jacobi case, because with only two buffers

7

allocated, the problem almost fits into the cache even in serial. Unlike for the
Jacobi method, even the 1600 by 1600 problem scales superlinearly, confirming
that the Gauss-Seidel method is considerably more buffer-friendly.

8

