
Parallelism and computational performance
in GPAW: Recent features

Ask Hjorth Larsen

CAMD, Technical University of Denmark

June 1, 2021

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

I Many changes since 2016 Jyväskylä GPAW meeting

I In this talk: Brief description of overall parallelization and
redistributions

I Then overview of many smaller (but signi�cant) performance
features

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Ultrabrief overview of parallel distribution

GPAW(kpts =..., nbands =...,

parallel={'kpt ': K, 'domain ': D, 'band ': B})

I FD mode: ψ̃kn(r): Distributed over k-points/spins, domains,
bands

I PW mode: Like FD, but �domains� means a distribution over
planewaves

I LCAO mode: Like FD, but �bands� often means �orbitals�

I Wavefunctions are the biggest and most expensive, and are
generally shared among all processes in some way.

I Other quantities are sometimes stored redundantly for
convenient access together with wavefunctions.

I Computations with redundantly stored data is often optimized
using a �distribute�work�redistribute� pattern.

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Ultrabrief overview of parallel distribution

3D main CPU mesh

I k-points/spins ψkn(r)

I bands/orbitals ψkn(r), Hµν , cµn

I Domains ψkn(r)

I Actual news (since 2016): Jens Jørgen Mortensen added
�domains� (distribution over planewaves) to PW mode!

Temporary redistributions to �world�

I ScaLAPACK Hµν , cµn

I Atomic quantities ∆Hasp

I Fine-grid (Poisson, XC)

I LCAO atomic corrections/projections: Now with sparse Scipy
matrices!

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

3D grid redistribution

(Old version; work presented in 2016 GPAW meeting)

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

I More general version for any grids and any communicators

I Simple arguments: Function is very easy to call

I Many parts of the code do not yet make good use of grid
redistribution

I Used for: FastPoissonSolver (Mikael Kuisma), extra vacuum
Poisson solver (Tuomas Rossi), augment_grids/libvdwxc

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Use �augment grids� in non-small systems!

Use GPAW(parallel=dict(augment_grids=True), ...)

Total number of cores used: 6

Parallelization over k-points: 6

Domain decomposition: 1 x 1 x 1

3 x 2 x 1 (xc only)

Number of atoms: 16

Number of atomic orbitals: 144

Number of bands in calculation: 110

Number of valence electrons: 176

Bands to converge: occupied

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Reusing wavefunctions when positions change

If atoms move a little bit, it's a good idea to reuse the
wavefunctions from the previous positions.

Methods for reusing wavefunctions

I Do nothing (keep wavefunctions unchanged). Fine for LCAO
where basis functions automatically �follow� atoms.

I Some DFT codes use extrapolation from previous positions
(e.g. for MD)

I GPAW FD/PW: Un-project and re-project wavefunctions to
new positions

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

PAW projector/partial wave dual basis

Consider the good old PAW transformation:

|ψ̃n〉 = T̂ |ψn〉 , (1)

which is de�ned from partial waves and projectors:

T̂ = 1 +
∑
ai

(|φ̃ai 〉 − |φai 〉) 〈p̃ai | . (2)

Partial waves and projectors form a dual basis which is
approximately complete close to their atom:∑

i

|φ̃ai 〉 〈p̃ai | ≈ identity (close to atom a) (3)

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Wavefunction reuse

I Subtract projected partial waves from wavefunctions:

|ψ̃n〉 ← |ψ̃n〉 −
∑
ai

|φ̃ai 〉Ra
old
〈p̃ai |ψ̃n〉 (4)

I Move each atom from Ra
old to Ra

new, assuming projections
P ani = 〈p̃ai |ψ̃n〉 remain the same

I Re-add projected partial waves to wavefunctions around new
atomic centers:

|ψ̃n〉 ← |ψ̃n〉+
∑
ai

|φ̃ai 〉Ra
new
〈p̃ai |ψ̃n〉 (5)

I (Requires application of k-point phase exp(ik ·∆R) to
coe�cients P ani for any atom which moves across cell
boundary)

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

GPAW(experimental ={'reuse_wfs_method ': 'paw '}, ...)

With method 'keep':

log10 -error: total

time wfs density energy

iter: 1 21:49:44 +0.45 -91.127478

iter: 2 21:49:47 -0.77 -1.09 -77.999287

iter: 3 21:49:50 -0.92 -1.23 -71.599034

iter: 4 21:49:54 -0.87 -1.41 -70.405095

With method 'paw':

log10 -error: total

time wfs density energy

iter: 1 21:18:58 -1.09 -71.425455

iter: 2 21:19:02 -2.55 -1.69 -69.986275

iter: 3 21:19:05 -1.66 -1.85 -68.960482

iter: 4 21:19:09 -2.97 -2.40 -68.943224

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

10 4 10 3 10 2 10 1 100

Movement distance dx [Å]

0

5

10

15

20

25
SC

F
ite

ra
tio

ns
 to

 re
co

nv
er

ge
 a

fte
r m

ov
e

SCF steps during first step = 16

Keep WFS
Use PAW-projections

(Note: larger dx eventually increase energy which makes system
harder to converge)

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

LCAO-based WFS reuse method

|ψ̃n〉 ← |ψ̃n〉 ±
∑
µν

|Φµ〉S−1
µν 〈Φν |ψn〉 (6)

Pros:

I Handles orthogonality correctly

I Supports more complete basis sets

Cons:

I Method is likely too slow to be useful

I Somewhat more complex due to inversion/linsolve

I Not implemented/working in all cases (k-points)

But more important: Someone should implement a way to reuse
wavefunctions when the cell changes!

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

ELPA

I ELPA is an e�cient parallel eigensolver library

I https://elpa.mpcdf.mpg.de/

I A. Marek et al 2014 J.Phys.: Condens. Matter 26 213201

I In GPAW, Elpa can now be used together with ScaLAPACK
and uses the same parallel data distribution

I Elpa solves generalized eigenvalue problem about twice as fast
as ScaLAPACK/DC (in our benchmark)

I Elpa can also do other operations; we can probably bene�t
from exploring those!

I GPAW(parallel=dict(sl_auto=True, use_elpa=True), ...)

https://elpa.mpcdf.mpg.de/

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

from gpaw.utilities.timing import ParallelTimer

calc = GPAW(timer=ParallelTimer (), ...)

...

$ gpaw-plot-parallel-timings timings.*.txt

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Parallel timings: Elpa and ScaLAPACK

Call stack as a function of time
(seconds) for Elpa (bottom) and
ScaLAPACK/DC (top)

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Comparing multiple ranks

I Timings plotted for multiple ranks in same computation

I Only minor discrepancies (teal = scalapack redistribution)

I Further optimization and load balancing can be quite
important for systems with fewer atoms, e.g. MD simulations

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Broadcast imports

Module initialization in Python

I Locate �le on disk, often searching multiple import paths

I Read �le (bytecode)

I Register module in sys.modules and execute module code

Parallel bottlenecks with HPC

I Many cores need to read each �le at the same time

I Python/GPAW/ASE/numpy/scipy contain hundreds of
modules

I BlueGene/P: Tens of thousands of cores, import overhead can
be more than an hour

I Ine�cient network �lesystems: I have seen 1 minute import
overhead on just one 12-core node

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Broadcast imports

from gpaw.broadcast_imports import broadcast_imports

with broadcast_imports:

import numpy as np

import scipy

...

I GPAW uses broadcast imports to import (parts of) itself and
other libraries

I Users can also use broadcast imports if/whenever they want

I Essential for massively parallel computations and exascale

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Broadcast imports

What happens when we enter the context (�with:� block)?
On rank == 0 On rank != 0

Set custom importloader Set custom importloader
Create empty �module cache� Wait for data . . .
On import, store module bytecode
Execute code in with: block
Broadcast bytecode Receive bytecode
Restore default importloader Execute code in with: block

On import, store module in
sys.modules and execute
bytecode
Restore default importloader

Important to restore default loader: Else the code may import a
module only on a subset of ranks, causing deadlock

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

Conclusions

Novel, interesting, and/or underused features

I Wavefunction reuse using PAW projectors

I Augment grids: Use all cores for XC

I grid2grid: Distribute directly from 3D grid into other 3D grid

I FastPoissonSolver: We no longer need to worry about Poisson
solvers!

I Elpa/ScaLAPACK (mostly for LCAO)

I Dev: Benchmark your features with ParallelTimer

I Broadcast imports for big computations

How can we best leverage these features, and document or
automate parameter choices?

	Introduction
	

	Grid to grid
	

	Reuse wavefunctions
	

	Elpa, benchmarking
	

	Parallel imports
	

	Conclusion
	

