Parallelism and computational performance
in GPAW: Recent features

Ask Hjorth Larsen
CAMD, Technical University of Denmark

June 1, 2021

Introduction

@00

» Many changes since 2016 Jyvaskyld GPAW meeting

In this talk: Brief description of overall parallelization and

redistributions

» Then overview of many smaller (but significant) performance
features

v

Introduction Grid to grid R vefunctions Elpa, benchmarking Parallel imports

Oeo

Ultrabrief overview of parallel distribution

GPAW (kpts=..., nbands=...,
parallel={’kpt’: K, ’domain’: D, ’band’: B})

» FD mode: ¢F(r): Distributed over k-points/spins, domains,
bands

» PW mode: Like FD, but “domains” means a distribution over
planewaves

» LCAO mode: Like FD, but “bands” often means “orbitals”

> Wavefunctions are the biggest and most expensive, and are
generally shared among all processes in some way.

» Other quantities are sometimes stored redundantly for
convenient access together with wavefunctions.

» Computations with redundantly stored data is often optimized
using a “distribute—work—redistribute” pattern.

Introduction
ooe

Ultrabrief overview of parallel distribution

3D main CPU mesh
> k-points/spins ¢y, (1)
» bands/orbitals wgﬂ(r), H,, cun
» Domains ¥y, (r)

» Actual news (since 2016): Jens Jgrgen Mortensen added
“domains” (distribution over planewaves) to PW mode!

Temporary redistributions to “world”
> ScalAPACK H,,, ¢
> Atomic quantitg A?—Iasp
» Fine-grid (Poisson, XC)

» LCAO atomic corrections/projections: Now with sparse Scipy
matrices!

Grid to grid
000

3D grid redistribution

emacs@erlkoenig
File Edit Options Buffers Tools Python Help
BE B *x B undo X B Q

def redistribute(gd, gd2, src, distribute_dir, reduce_dir, operation='forth’
"""perform certain simple redistributions among two grid descriptors. I

Redistribute src from gd with decomposition X x Y x Z to gd2 with
decomposition X x YZ x 1, or some variation of this. We say that
we "reduce" along Z while we "distribute" along Y. The
redistribution is one-to-one.

Asmasmomas -

distribute dir

Directions are specified as ©, 1, or 2. gd2 must be serial along
the axis of reduction and nust parallelize enough over the
distribution axis to match the size of gd.comm.

Returns the redistributed array which is compatible with gd2.

Note: The communicator of gd2 must in general be a special

pernutation of that of gd in order for the redistribution axes to

align with domain rank assignment. Use the helper function
get_compatible_grid_descriptor to obtain a grid descriptor which

uses a compatible communicator."""

- grid_redistribute.py 3% L49 Git-master (Python ElDoc)]

(Old version; work presented in 2016 GPAW meeting)

us

Introduction Grid to grid vefunctions , benchmarking

Parallel imports Conclusion
000 @

emacs@erlkoenig = @

File Edit oOptions Buffers Tools Python Help

s BB Esee Undc BE Q

def gridzgrid(comm, gd1, gd2, src_g, dst_g, offsetl_c=None, offsetz_c=None):
assert np.all(src_g.shape == gdi.n_c)
assert np.all(dst_g.shape == gd2.n_c)

ni1_cp, rankzparposi = get_domains_from_gd(comm, gdi, offset_c=offset1 _c)
n2_cp, rank2parposz = get_domains_from_gd(comm, gdz, offset_c=offsetz_c)

ni_cp, n2_cp,
rank2parpos1, rank2parposz,
src_g, dst_g)

general_redistribute(comm, I

- grid.py 74% L154 Git-master (Python ElDoc)

» More general version for any grids and any communicators
» Simple arguments: Function is very easy to call

» Many parts of the code do not yet make good use of grid
redistribution

» Used for: FastPoissonSolver (Mikael Kuisma), extra vacuum
Poisson solver (Tuomas Rossi), augment _grids/libvdwxc

Grid to grid
ocoe

Use “augment grids” in non-small systems!

Use GPAW(parallel=dict (augment_grids=True), ...)

Total number of cores used: 6
Parallelization over k-points: 6
Domain decomposition: 1 x 1 x 1

3 x 2 x 1 (xc only)

Number of atoms: 16

Number of atomic orbitals: 144
Number of bands in calculation: 110
Number of valence electrons: 176
Bands to converge: occupied

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports

®00000

Reusing wavefunctions when positions change

If atoms move a little bit, it's a good idea to reuse the
wavefunctions from the previous positions.

of©

Methods for reusing wavefunctions

» Do nothing (keep wavefunctions unchanged). Fine for LCAO
where basis functions automatically “follow” atoms.

» Some DFT codes use extrapolation from previous positions
(e.g. for MD)

» GPAW FD/PW: Un-project and re-project wavefunctions to
new positions

Reuse wavefunctions

O®0000

PAW projector/partial wave dual basis

Consider the good old PAW transformation:

|7Zn> = 72‘¢n>)

which is defined from partial waves and projectors:

7= 1+ 300) - 10f)) Gt

Partial waves and projectors form a dual basis which is
approximately complete close to their atom:

Z |6¢) (p?] ~ identity (close to atom a)

i

Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports

[e]e] lele]e]

Wavefunction reuse

» Subtract projected partial waves from wavefunctions:

[$n) < |9n) — ZI@ (B3 [4bn) (4)

» Move each atom from RY, to R, assuming projections
P% = (p?|1),) remain the same

» Re-add projected partial waves to wavefunctions around new
atomic centers:

[} <= 1) + 3 162)m,, (BE140) (5)

» (Requires application of k-point phase exp(ik - AR) to
coefficients P2, for any atom which moves across cell
boundary)

Reuse wavefunctions Elpa, benchmarking
000e00

GPAW (experimental={’reuse_wfs_method’: ’paw’},

With method ’keep’:

iter:
iter:
iter:
iter:

W N e

time

21:49:
21:49:
21:49:
21:49:

With method ’paw?’:

iter:
iter:
iter:
iter:

D w N

time
21:18:
21:19:
21:19:
21:19

44
47
50
54

58
02
05

:09

loglO-error: total

wis density energy
+0.45 -91.127478
-0.77 -1.09 -77.999287
-0.92 -1.23 -71.599034
-0.87 -1.41 -70.405095
loglO-error: total

wis density energy
-1.09 -71.425455
-2.55 -1.69 -69.986275
-1.66 -1.85 -68.960482

-2.97 -2.40 -68.943224

Reuse wavefunctions

[e]e]e]e] lo]

N
6,]

—— Keep WFS
—— Use PAW-projections

N
o
1

=
(5]
1

=
o
1

wv
1

SCF iterations to reconverge after move

o

1074 1073 1072 1071 100
Movement distance dx [A]

(Note: larger dx eventually increase energy which makes system
harder to converge)

Reuse wavefunctions
0O0000e

LCAO-based WFS reuse method

[Pn) < |¢hn) iZ@ o (Pl tn) (6)

Pros:
» Handles orthogonality correctly

» Supports more complete basis sets

Cons:
> Method is likely too slow to be useful
» Somewhat more complex due to inversion/linsolve

» Not implemented/working in all cases (k-points)

But more important: Someone should implement a way to reuse
wavefunctions when the cell changes!

Introduction

/avefunctions Elpa, benchmarking Parallel imports

[Jelele)

ELPA is an efficient parallel eigensolver library
https://elpa.mpcdf .mpg.de/
A. Marek et al 2014 J.Phys.: Condens. Matter 26 213201

In GPAW, Elpa can now be used together with ScaLAPACK
and uses the same parallel data distribution

Elpa solves generalized eigenvalue problem about twice as fast
as ScaLAPACK/DC (in our benchmark)

Elpa can also do other operations; we can probably benefit
from exploring those!

GPAW(parallel=dict(sl_auto=True, use_elpa=True), ...)

https://elpa.mpcdf.mpg.de/

Elpa, benchmarking
0@00

from gpaw.utilities.timing import ParallelTimer
calc = GPAW(timer=ParallelTimer (), ...)

$ gpaw-plot-parallel-timings timings.*.txt

Introduction Grid to grid e wavefunctions Elpa, benchmarking Parallel imports Conclusion
[e]e] le) [}

Parallel timings: Elpa and ScaLAPACK

Click on a patch to get the name

Set symmetry ScipyAtomicCorrectio
TCI: Evaluate spline Distribute overlap m
Basic WFS set positi B Blacs Orbital Layout
0.044 Basis functions set #E# General diagonalize
mktci ® Redistribute coefs
ST tci mmmm Send coefs to domain
P tci r® > Calculate projection
blocked summation EEEE Density
Scalapack redistribu HEEE Pseudo densit:
0.02 LCAO WFS Initialize memz Calculate density ma
Hamiltonian Construct density
Initialize Hamiltoni Symmetrize density
Atomic density matri
Multipole moments
0,004 Poisson Normalize
: Communicate fwd 0 mesa Mix
fft2 oo ¢ Forces
Communicate fwd 1 W LCAO forces
fft . nitial
Communicate bwd 1 22 Get density matrix
—0.021 Communicate bwd O mmmm Potentia
Hartree integrate/re HENE Prepare TCl loop
[4 Calculate atomic Hanms®® broadcast dH
1000 1200 1400 1600 1800 2000 2200 Atomic mms Not so complicated |
XC Correction XN Complicated loop
I I k {_. . 'F . gcognmurwcate -\\ \gaac:g ftarbsLtlm
~0.04 -cycle N istribute
Ca Sta c as a tun Ctlo no tl me LCADyei ensolver ~EEEE Density initialized
Potential matrix
(seconds) for Elpa (bottom) and

—0.04 -0.02 0.00 0.02 0.04

ScaLAPACK/DC (top)

Introduction Grid to grid Reuse efunctions

Elpa, benchmarking Parallel imports Conclusion

[e]e]e])

Comparing multiple ranks

General diagonalize

1450 1475 1500 1525 1550 1575 1600 1625 1650

» Timings plotted for multiple ranks in same computation
» Only minor discrepancies (teal = scalapack redistribution)

» Further optimization and load balancing can be quite
important for systems with fewer atoms, e.g. MD simulations

Introduction Grid to grid vefunctions Elpa, benchmarking Parallel imports

[Jole}

Broadcast imports

Module initialization in Python

> Locate file on disk, often searching multiple import paths
> Read file (bytecode)
» Register module in sys.modules and execute module code

Parallel bottlenecks with HPC
> Many cores need to read each file at the same time

» Python/GPAW/ASE/numpy/scipy contain hundreds of
modules

» BlueGene/P: Tens of thousands of cores, import overhead can
be more than an hour

» Inefficient network filesystems: | have seen 1 minute import
overhead on just one 12-core node

Parallel imports

(o] lo}

Broadcast imports

from gpaw.broadcast_imports import broadcast_imports

with broadcast_imports:
import numpy as np
import scipy

» GPAW uses broadcast imports to import (parts of) itself and
other libraries

» Users can also use broadcast imports if /whenever they want

> Essential for massively parallel computations and exascale

Introduction G o gric vavefunctions Elpa, benchmarking Parallel imports

ooe

Broadcast imports

What happens when we enter the context (“with:" block)?

On rank == On rank !'= 0
Set custom importloader Set custom importloader
Create empty “module cache” Wait for data ...

On import, store module bytecode
Execute code in with: block
Broadcast bytecode Receive bytecode

Restore default importloader Execute code in with: block
On import, store module in
sys.modules and execute
bytecode

Restore default importloader
Important to restore default loader: Else the code may import a
module only on a subset of ranks, causing deadlock

Introduction Grid to grid R vefunctions pa, benchmarking Parallel imports Conclusion

Conclusions

Novel, interesting, and/or underused features

» Wavefunction reuse using PAW projectors

» Augment grids: Use all cores for XC

» grid2grid: Distribute directly from 3D grid into other 3D grid
>

FastPoissonSolver: We no longer need to worry about Poisson
solvers!

Elpa/ScaLAPACK (mostly for LCAO)

Dev: Benchmark your features with Parallel Timer

vy

» Broadcast imports for big computations

How can we best leverage these features, and document or
automate parameter choices?

	Introduction
	

	Grid to grid
	

	Reuse wavefunctions
	

	Elpa, benchmarking
	

	Parallel imports
	

	Conclusion
	

