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I Many changes since 2016 Jyväskylä GPAW meeting

I In this talk: Brief description of overall parallelization and
redistributions

I Then overview of many smaller (but signi�cant) performance
features
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Ultrabrief overview of parallel distribution

GPAW(kpts =..., nbands =...,

parallel={'kpt ': K, 'domain ': D, 'band ': B})

I FD mode: ψ̃kn(r): Distributed over k-points/spins, domains,
bands

I PW mode: Like FD, but �domains� means a distribution over
planewaves

I LCAO mode: Like FD, but �bands� often means �orbitals�

I Wavefunctions are the biggest and most expensive, and are
generally shared among all processes in some way.

I Other quantities are sometimes stored redundantly for
convenient access together with wavefunctions.

I Computations with redundantly stored data is often optimized
using a �distribute�work�redistribute� pattern.
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Ultrabrief overview of parallel distribution

3D main CPU mesh

I k-points/spins ψkn(r)

I bands/orbitals ψkn(r), Hµν , cµn

I Domains ψkn(r)

I Actual news (since 2016): Jens Jørgen Mortensen added
�domains� (distribution over planewaves) to PW mode!

Temporary redistributions to �world�

I ScaLAPACK Hµν , cµn

I Atomic quantities ∆Hasp

I Fine-grid (Poisson, XC)

I LCAO atomic corrections/projections: Now with sparse Scipy
matrices!
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3D grid redistribution

(Old version; work presented in 2016 GPAW meeting)
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I More general version for any grids and any communicators

I Simple arguments: Function is very easy to call

I Many parts of the code do not yet make good use of grid
redistribution

I Used for: FastPoissonSolver (Mikael Kuisma), extra vacuum
Poisson solver (Tuomas Rossi), augment_grids/libvdwxc
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Use �augment grids� in non-small systems!

Use GPAW(parallel=dict(augment_grids=True), ...)

Total number of cores used: 6

Parallelization over k-points: 6

Domain decomposition: 1 x 1 x 1

3 x 2 x 1 (xc only)

Number of atoms: 16

Number of atomic orbitals: 144

Number of bands in calculation: 110

Number of valence electrons: 176

Bands to converge: occupied
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Reusing wavefunctions when positions change

If atoms move a little bit, it's a good idea to reuse the
wavefunctions from the previous positions.

Methods for reusing wavefunctions

I Do nothing (keep wavefunctions unchanged). Fine for LCAO
where basis functions automatically �follow� atoms.

I Some DFT codes use extrapolation from previous positions
(e.g. for MD)

I GPAW FD/PW: Un-project and re-project wavefunctions to
new positions
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PAW projector/partial wave dual basis

Consider the good old PAW transformation:

|ψ̃n〉 = T̂ |ψn〉 , (1)

which is de�ned from partial waves and projectors:

T̂ = 1 +
∑
ai

(|φ̃ai 〉 − |φai 〉) 〈p̃ai | . (2)

Partial waves and projectors form a dual basis which is
approximately complete close to their atom:∑

i

|φ̃ai 〉 〈p̃ai | ≈ identity (close to atom a) (3)
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Wavefunction reuse

I Subtract projected partial waves from wavefunctions:

|ψ̃n〉 ← |ψ̃n〉 −
∑
ai

|φ̃ai 〉Ra
old
〈p̃ai |ψ̃n〉 (4)

I Move each atom from Ra
old to Ra

new, assuming projections
P ani = 〈p̃ai |ψ̃n〉 remain the same

I Re-add projected partial waves to wavefunctions around new
atomic centers:

|ψ̃n〉 ← |ψ̃n〉+
∑
ai

|φ̃ai 〉Ra
new
〈p̃ai |ψ̃n〉 (5)

I (Requires application of k-point phase exp(ik ·∆R) to
coe�cients P ani for any atom which moves across cell
boundary)



Introduction Grid to grid Reuse wavefunctions Elpa, benchmarking Parallel imports Conclusion

GPAW(experimental ={'reuse_wfs_method ': 'paw '}, ...)

With method 'keep':

log10 -error: total

time wfs density energy

iter: 1 21:49:44 +0.45 -91.127478

iter: 2 21:49:47 -0.77 -1.09 -77.999287

iter: 3 21:49:50 -0.92 -1.23 -71.599034

iter: 4 21:49:54 -0.87 -1.41 -70.405095

With method 'paw':

log10 -error: total

time wfs density energy

iter: 1 21:18:58 -1.09 -71.425455

iter: 2 21:19:02 -2.55 -1.69 -69.986275

iter: 3 21:19:05 -1.66 -1.85 -68.960482

iter: 4 21:19:09 -2.97 -2.40 -68.943224
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LCAO-based WFS reuse method

|ψ̃n〉 ← |ψ̃n〉 ±
∑
µν

|Φµ〉S−1
µν 〈Φν |ψn〉 (6)

Pros:

I Handles orthogonality correctly

I Supports more complete basis sets

Cons:

I Method is likely too slow to be useful

I Somewhat more complex due to inversion/linsolve

I Not implemented/working in all cases (k-points)

But more important: Someone should implement a way to reuse
wavefunctions when the cell changes!
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ELPA

I ELPA is an e�cient parallel eigensolver library

I https://elpa.mpcdf.mpg.de/

I A. Marek et al 2014 J.Phys.: Condens. Matter 26 213201

I In GPAW, Elpa can now be used together with ScaLAPACK
and uses the same parallel data distribution

I Elpa solves generalized eigenvalue problem about twice as fast
as ScaLAPACK/DC (in our benchmark)

I Elpa can also do other operations; we can probably bene�t
from exploring those!

I GPAW(parallel=dict(sl_auto=True, use_elpa=True), ...)

https://elpa.mpcdf.mpg.de/
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from gpaw.utilities.timing import ParallelTimer

calc = GPAW(timer=ParallelTimer (), ...)

...

$ gpaw-plot-parallel-timings timings.*.txt
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Parallel timings: Elpa and ScaLAPACK

Call stack as a function of time
(seconds) for Elpa (bottom) and
ScaLAPACK/DC (top)
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Comparing multiple ranks

I Timings plotted for multiple ranks in same computation

I Only minor discrepancies (teal = scalapack redistribution)

I Further optimization and load balancing can be quite
important for systems with fewer atoms, e.g. MD simulations
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Broadcast imports

Module initialization in Python

I Locate �le on disk, often searching multiple import paths

I Read �le (bytecode)

I Register module in sys.modules and execute module code

Parallel bottlenecks with HPC

I Many cores need to read each �le at the same time

I Python/GPAW/ASE/numpy/scipy contain hundreds of
modules

I BlueGene/P: Tens of thousands of cores, import overhead can
be more than an hour

I Ine�cient network �lesystems: I have seen 1 minute import
overhead on just one 12-core node
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Broadcast imports

from gpaw.broadcast_imports import broadcast_imports

with broadcast_imports:

import numpy as np

import scipy

...

I GPAW uses broadcast imports to import (parts of) itself and
other libraries

I Users can also use broadcast imports if/whenever they want

I Essential for massively parallel computations and exascale
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Broadcast imports

What happens when we enter the context (�with:� block)?
On rank == 0 On rank != 0

Set custom importloader Set custom importloader
Create empty �module cache� Wait for data . . .
On import, store module bytecode
Execute code in with: block
Broadcast bytecode Receive bytecode
Restore default importloader Execute code in with: block

On import, store module in
sys.modules and execute
bytecode
Restore default importloader

Important to restore default loader: Else the code may import a
module only on a subset of ranks, causing deadlock
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Conclusions

Novel, interesting, and/or underused features

I Wavefunction reuse using PAW projectors

I Augment grids: Use all cores for XC

I grid2grid: Distribute directly from 3D grid into other 3D grid

I FastPoissonSolver: We no longer need to worry about Poisson
solvers!

I Elpa/ScaLAPACK (mostly for LCAO)

I Dev: Benchmark your features with ParallelTimer

I Broadcast imports for big computations

How can we best leverage these features, and document or
automate parameter choices?
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