Group Theory with Applications to Electronic Structure

George Tritsaris, Marco Vanin, Federico Calle Vallejo, Ask Hjorth Larsen

Electronic Structure Journal Club E08

October 22, 2008

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Plan

Topics

- AHL Basics of group theory and representations
 - MV Symmetry in quantum mechanics
 - GT Systematic characterization by point groups
- FCV Lattices and space groups
 - etc Miscellaneous applications

The big spoiler page

Why this is interesting

- Hamiltonian is invariant under symmetry transformations.
 Symmetries lead to degeneracies, selection rules
- The symmetry operations of a system form a group, for which reason we shall now indulge ourselves in group theory
- Systems can be characterized in terms of point groups and space groups

Groups

Definition

A group is a set G with the following properties:

- There exists a binary operation $*: G \times G \rightarrow G$
- The operation * is associative, i.e. for all A, B, C in G,

$$A \ast (B \ast C) = (A \ast B) \ast C$$

• G contains an identity element $E \in G$ such that for all $A \in G$,

$$A\ast E=E\ast A=A$$

• Each element $A \in G$ has an inverse $A^{-1} \in G$ such that

$$A * A^{-1} = A^{-1} * A = E$$

Important groups

- \blacktriangleright The set of regular $n \times n$ matrices with matrix product as the group operation
- The set of symmetry operations on a physical system, which could be reflections, translations, rotations, improper rotations (rotation and reflection)
- There are many other "important" groups which are not so relevant for us

A simple example

Symmetry operations on e.g. NH_3 , CH_3CI

- Consider three identical atoms A, B, C (see upper configuration on figure)
- Group contains three rotations C₃, C₃² = C₃⁻¹, C₃³ = E, and three reflections σ_A, σ_B, σ_C
- Improper rotations (denoted S_n) are all equivalent to reflections in this case, e.g. C₃σ_A = σ_C
- This six-element group is denoted C_{3v} (that's a C)

Figure: Definition of system and action of C_3

Overview 00	Basic group theory ○○○●	
The \mathscr{C}_{3v} group		

Group tables

▶ All combinations of x * y form the group table for \mathscr{C}_{3v}

x^*y	E	C_3	C_3^2	σ_A	σ_B	σ_C
E	E	C_3	C_{3}^{2}	σ_A	σ_B	σ_C
C_3	C_3	C_3^2	E	σ_C	σ_A	σ_B
C_3^2	C_3^2	E	C_3	σ_B	σ_C	σ_A
σ_A	σ_A	σ_B	σ_C	E	C_3	C_3^2
σ_B	σ_B	σ_C	σ_A	C_{3}^{2}	E	C_3
σ_C	σ_C	σ_A	σ_B	C_3	C_3^2	E

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Observe that e.g. the rotations here form a subgroup: successive rotations only ever form other rotations

Representations of groups

Mapping

- ► A representation of a group G associates a matrix with every element of G, such that the matrix product implements the group operation (and so on wrt. inversion, identity)
- More specifically, if $R_1, R_2, R_3 \in G$ have respective matrices $\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3$, then

$$R_1 * R_2 = R_3 \implies \mathbf{R}_1 \mathbf{R}_2 = \mathbf{R}_3$$

- ► The representation of a group is also a group. If the matrices are n × n, the representation is called n-dimensional
- A group can have multiple representations, possibly of different dimension

Alternative representations

Two examples of matrices for C_3 in \mathscr{C}_{3v} representations

• Use atomic sites $\{A, B, C\}$ as basis. Then

$$\mathbf{C}_3 = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ C_3(A) & C_3(B) & C_3(C) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

 \blacktriangleright Use axes $\{\hat{\mathbf{x}},\hat{\mathbf{y}},\hat{\mathbf{z}}\}$ as basis. C_3 is then represented by

$$\mathbf{C}_{3}' = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ C_{3}(\hat{\mathbf{x}}) & C_{3}(\hat{\mathbf{y}}) & C_{3}(\hat{\mathbf{z}}) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

But our system is essentially 2D, so why would we need 3 dimensions? Moreover, if there were four atoms the former example would yield even more dimensional.

Reducibility

Block diagonalization in \mathscr{C}_{3v}

▶ When using ẑ as a basis vector, it turns out (not surprisingly) that every symmetry operation R in C_{3v} has a matrix of the block-diagonal form

$$\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & 0\\ r_{21} & r_{22} & 0\\ 0 & 0 & 1 \end{bmatrix}$$

It is always possible to obtain "maximally" block diagonalized matrices by choosing a suitable basis. We say that the matrix is written in reduced form

Reducibility, continued

Generally

▶ In reduced form, all symmetry operations *R* have matrices with the same block structure, which we can write as

$$\mathbf{R} = egin{bmatrix} [\mathbf{R}_1] & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & [\mathbf{R}_2] & & dots \ dots & & \ddots & \mathbf{0} \ \mathbf{0} & \cdots & \mathbf{0} & [\mathbf{R}_n] \end{bmatrix}$$

We say that the representation above is reducible into several irreducible representations, each of which corresponds to one block

Irreducible representations

This is why irreducible representations are interesting

• The irreducible representations of a group have dimensions n_1, \ldots, n_k such that

$$n_1^2 + n_2^2 + \dots + n_k^2 = \{$$
no. of symmetry ops. $\}$

- In particular, there can never be more irreducible representations of a group than the group's element count
- Spoiler: each irreducible representation will correspond to an energy level of the physical system, giving rise to degeneracies when dimension is larger than 1