Group Theory with Applications to Electronic **Structure**

George Tritsaris, Marco Vanin, Federico Calle Vallejo, Ask Hjorth Larsen

Electronic Structure Journal Club E08

October 22, 2008

(ロ) (御) (君) (君) (君) 君 のぬの

KORK STRATER STRAKER

Plan

Topics

- AHL Basics of group theory and representations
	- MV Symmetry in quantum mechanics
	- GT Systematic characterization by point groups
- FCV Lattices and space groups
	- etc Miscellaneous applications

KORK STRATER STRAKER

The big spoiler page

Why this is interesting

- \blacktriangleright Hamiltonian is invariant under symmetry transformations. Symmetries lead to degeneracies, selection rules
- \triangleright The symmetry operations of a system form a group, for which reason we shall now indulge ourselves in group theory
- \triangleright Systems can be characterized in terms of point groups and space groups

Groups

Definition

A group is a set G with the following properties:

- **►** There exists a binary operation $* : G \times G \rightarrow G$
- **Figure 1.** The operation $*$ is associative, i.e. for all A, B, C in G .

$$
A * (B * C) = (A * B) * C
$$

 \blacktriangleright G contains an identity element $E \in G$ such that for all $A \in G$,

$$
A\ast E=E\ast A=A
$$

KORK ERKER ADE YOUR

► Each element $A \in G$ has an inverse $A^{-1} \in G$ such that

$$
A \ast A^{-1} = A^{-1} \ast A = E
$$

Important groups

- \blacktriangleright The set of regular $n \times n$ matrices with matrix product as the group operation
- \triangleright The set of symmetry operations on a physical system, which could be reflections, translations, rotations, improper rotations (rotation and reflection)
- \blacktriangleright There are many other "important" groups which are not so relevant for us

KORK STRATER STRAKER

A simple example

Symmetry operations on e.g. $NH₃$, CH₃Cl

- \triangleright Consider three identical atoms A, B, C (see upper configuration on figure)
- Group contains three rotations C_3 , $C_3^2 = C_3^{-1}$, $C_3^3 = E$, and three reflections σ_A , σ_B , σ_C
- Improper rotations (denoted S_n) are all equivalent to reflections in this case, e.g. $C_3\sigma_A=\sigma_C$
- \blacktriangleright This six-element group is denoted \mathscr{C}_{3v} (that's a C)

Figure: Definition of system and action of C_3 **KORK STRAIN A BAR SHOP**

Group tables

All combinations of $x * y$ form the group table for \mathscr{C}_{3v}

K ロ ▶ K @ ▶ K 할 X X 할 X 및 할 X X Q Q O

 \triangleright Observe that e.g. the rotations here form a subgroup: successive rotations only ever form other rotations

Representations of groups

Mapping

- A representation of a group G associates a matrix with every element of G , such that the matrix product implements the group operation (and so on wrt. inversion, identity)
- \triangleright More specifically, if $R_1, R_2, R_3 \in G$ have respective matrices $\mathbf{R}_1, \mathbf{R}_2, \mathbf{R}_3$, then

$$
R_1 * R_2 = R_3 \implies \mathbf{R}_1 \mathbf{R}_2 = \mathbf{R}_3
$$

- \triangleright The representation of a group is also a group. If the matrices are $n \times n$, the representation is called *n*-dimensional
- \triangleright A group can have multiple representations, possibly of different dimension

Alternative representations

Two examples of matrices for C_3 in \mathscr{C}_{3v} representations

 \blacktriangleright Use atomic sites $\{A, B, C\}$ as basis. Then

$$
\mathbf{C}_3 = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ C_3(A) & C_3(B) & C_3(C) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}
$$

► Use axes $\{\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\}$ as basis. C_3 is then represented by

$$
\mathbf{C}'_3 = \begin{bmatrix} \uparrow & \uparrow & \uparrow \\ C_3(\hat{\mathbf{x}}) & C_3(\hat{\mathbf{y}}) & C_3(\hat{\mathbf{z}}) \\ \downarrow & \downarrow & \downarrow \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

 \triangleright But our system is essentially 2D, so why would we need 3 dimensions? Moreover, if there were four atoms the former example would yield even more dimensi[on](#page-7-0)s[!](#page-9-0)
example would yield even more dimensions!
example would yield even more dimensions!

KORK ERKER ADE YOUR

Reducibility

Block diagonalization in \mathscr{C}_{3v}

 \triangleright When using \hat{z} as a basis vector, it turns out (not surprisingly) that every symmetry operation R in \mathcal{C}_{3v} has a matrix of the block-diagonal form

$$
\mathbf{R} = \begin{bmatrix} r_{11} & r_{12} & 0 \\ r_{21} & r_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$

It is always possible to obtain "maximally" block diagonalized matrices by choosing a suitable basis. We say that the matrix is written in reduced form

Reducibility, continued

Generally

In reduced form, all symmetry operations R have matrices with the same block structure, which we can write as

$$
\mathbf{R} = \begin{bmatrix} [\mathbf{R}_1] & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & [\mathbf{R}_2] & & \vdots \\ \vdots & & \ddots & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & [\mathbf{R}_n] \end{bmatrix}
$$

 \triangleright We say that the representation above is reducible into several irreducible representations, each of which corresponds to one block

Irreducible representations

This is why irreducible representations are interesting

 \triangleright The irreducible representations of a group have dimensions n_1, \ldots, n_k such that

$$
n_1^2 + n_2^2 + \cdots + n_k^2 = \{\text{no. of symmetry ops.}\}
$$

- \blacktriangleright In particular, there can never be more irreducible representations of a group than the group's element count
- \triangleright Spoiler: each irreducible representation will correspond to an energy level of the physical system, giving rise to degeneracies when dimension is larger than 1