
JWars - A Generi
 Strategy Game inJavaMidterm proje
t � Informati
s and Mathemati
al ModellingAuthors:Mi
hael Fran
ker Christensen, s031756Ask Hjorth Larsen, s021864Supervisor:Paul Fis
herAugust 8, 2006

DTU - Te
hni
al University of DenmarkLyngby

Front page: Soviet T-34 tanks supported by infantry advan
ing a
ross the Rus-sian steppes

Abstra
tThis proje
t do
uments the development of the real-time strategy game JWarswhi
h uses a unique hierar
hi
al for
e stru
ture to improve the player's abil-ity to
ontrol large for
es, plus provides a basis for advan
ed AI intera
tionsbetween units. The game, whi
h is written in Java, in
ludes several API pa
k-ages providing
ollision dete
tion, path�nding, networking and numerous minor
omponents. These are designed spe
i�
ally for handling large, sparse gameworlds and are parti
ularly suited for modelling realisti
 environments. The re-port dis
usses ea
h of the
orresponding problems in detail, fo
using on analysisand design while demanding little spe
i�
 knowledge of the Java programminglanguage.The game aims to in
orporate the ta
ti
ally advan
ed gameplay of turn-based ta
ti
al wargames into a
lassi
al real-time setting. The game in itspresent state demonstrates the appli
ability of the underlying framework, whi
hprovides all the basi
 fun
tionality required by the genre. Development is ex-pe
ted to
ontinue, adding further game
ontent and
omplexity.

Contents
Abstra
t iContents iiList of �gures . vList of tables . viiiPrefa
e 11 Introdu
tion 21.1 Introdu
tion to the genre . 21.1.1 Ba
kground . 21.1.2 RTS
ombat and
ontrol 41.2 Why JWars? . 71.2.1 Flaws in
ontemporary real-time games 71.2.2 Military hierar
hy . 81.3 Overview . 81.3.1 Features of JWars . 91.3.2 The JWars API modules 91.3.3 Produ
t requirements . 101.4 Reading this report . 112 Ar
hite
ture 122.1 Conne
tion and initialization . 122.1.1 Loading game data . 132.1.2 Laun
hing the game . 132.2 Flow of
ontrol . 142.2.1 Syn
hronization . 142.2.2 Deterministi
 behaviour 152.2.3 Player input and network instru
tions 162.2.4 AI, orders and their exe
ution 162.2.5 Con
lusion . 17ii

3 Networking 193.1 Choosing a network model . 193.2 Syn
hronization . 203.2.1 Intera
tivity: network instru
tions 203.2.2 Syn
hronization instru
tions 213.2.3 Con
lusion . 213.3 The networking API . 223.3.1 Implementation notes . 233.3.2 Random numbers and deterministi

ode 244 World of JWars 254.1 Flow of
ontrol and timing . 254.1.1 Game loop vs. timer . 254.1.2 The game timer . 264.1.3 Game performan
e dis
ussion 274.1.4 Interpolation during rendering 274.2 Coordinate spa
es . 274.2.1 Coordinate data representation 284.2.2 Important
oordinate systems 304.3 Terrain . 304.3.1 Terrain in games . 314.3.2 Map design . 314.3.3 Random terrain generator 324.3.4 Terrain obje
ts . 354.3.5 Terrain apperean
e . 364.4 Event handling . 374.4.1 Types of events . 384.4.2 Performan
e
onsiderations 384.4.3 Queueing system . 385 Collision dete
tion 405.1 Basi
s of
ollision dete
tion . 405.1.1 Divide and
onquer approa
h 405.1.2 Tile registration strategy 415.1.3 Shapes and sizes of
olliding entities 425.2 Design of the
ollision dete
tor 435.2.1 The
he
king routine . 435.2.2 The
ollision grid . 445.2.3 Further features . 445.2.4 E�
ien
y and optimization 455.2.5 Using the
ollision dete
tor 455.3 Con
lusion . 46iii

6 Path�nding 476.1 Path�nding in general and in JWars 476.1.1 The algorithm . 486.1.2 Data stru
ture . 506.2 Implementation . 516.2.1 Expanding and sear
hing 516.3 Final design . 557 Dynami
al game obje
ts 587.1 Unit organization . 587.1.1 Real-world military organization 587.1.2 Military
ommand in
omputer games 597.1.3 Tree-based unit representation 607.1.4 Network distinguishability of units 617.2 Game data management . 617.2.1 Inheritan
e versus data-based game obje
t
lassi�
ation . 627.2.2 Category model . 627.2.3 Content loading by
ategories 647.2.4 Con
lusion . 657.3 Unit AI . 657.3.1 Hierar
hi
al stru
ture . 657.3.2 Design
onsiderations . 687.3.3 AI layering stru
ture . 697.3.4 Future AI work . 698 Combat dynami
s 718.1 Firing and damage . 718.1.1 Combat rule set . 728.1.2 �Weapon vs. armour�, or �armour vs. weapon�? 738.1.3 Stru
ture of the weapons API 748.1.4 Firing routine . 758.1.5 Impa
t handling by armour 758.1.6 Con
lusion . 768.2 Vision . 768.2.1 Vision in games . 778.2.2 Approa
h 1: dire
t observer-observer
he
king 788.2.3 Approa
h 2: observer-terrain
he
king 798.2.4 The spotting routine . 798.2.5 Final design . 818.2.6 Evaluation and dis
ussion 829 Graphi
s 839.1 A
tive versus passive rendering 839.2 Double bu�ering . 849.3 Battle�eld rendering and layers 859.4 Optimization of the rendering routine 86iv

9.5 Con
lusion . 8710 Game improvements 8810.1 Future work . 8810.2 Known issues . 8911 Con
lusion 90Referen
es 92Appendix 92A Game manual 93A.1 Running the program . 93A.2 In-game
ontrol . 95A.2.1 Using the panels . 95A.2.2 Marking and moving units 97B Development plan 100

v

List of Figures1.1 S
reenshot from Star
raft. The vora
ious Zerg swarm is overrun-ning a Terran settlement. 62.1 Flow
hart illustrating the pro
ess of exe
uting an instru
tion is-sued by a player. The player performs an a
tion whi
h results inthe networking
ode writing the appropriate instru
tion identi-�er and data a
ross the network (dashed line). The server addsa time stamp to the instru
tion and e
hoes it (se
ond dashedline) to all
lients, at whi
h point the instru
tion is s
heduled forexe
ution at the spe
i�ed time. 172.2 S
hemati
 overview of the �ow of
ontrol. Bla
k arrowheads de-note that one module a�e
ts the state of another a
tively, whereaswhite arrowheads denote a �ow of information from one
ompo-nent to another (requested by the
omponent towards whi
h thearrow points). New information enters the system only via net-working. The �ow of information from the world to the rendering
ode en
ompasses all unit positions, in reality this is availablethrough the
ollision dete
tor. Not in
luded on the graph: �ring
an lead to elimination of units whi
h in turn removes them fromthe
ollision dete
tor and results in the invo
ation of relevant AImethods. 184.1 Two
oordinate systems. Axes are similar to those normally usedwith s
reen
oordinates. The bla
k × in the left system is trans-formed to the × in the right system, but the inverse transfor-mation yields the grey × in the left system be
ause of integerdivision. 294.2 The mid-line displa
ement used on a one-dimensional map 334.3 The diamond square algorithm running on a 5x5 grid until termi-nation. If the grid were larger, the �rst steps would be identi
al,but the algorithm would
ontinue by halving the step size andperforming the same operation over and over. 344.4 This is a 3D model of a diamond-square algorithm running on aNxN map. It
learly illustrates how jagged maps
ome to lookmore natural. 34vi

4.5 These are two maps randomly generated by the terrain generator.It is not immediately noti
able but both maps are periodi
, i.e.their edges wrap. 354.6 Terrain graphi
s. Though the terrain
onsists of tiles, 32 pixels onea
h side, this is not
learly visible due to the amount of varyingtile images. Some trees are visible in the right side of the pi
ture. 375.1 The
ollision grid visualized. The number of units registered inea
h tile is listed inside the tile. This is an in-game s
reenshot;the debug grid
an be enabled by passing -d as a runtime parameter. 426.1 A simple path�nding problem. 496.2 A single iteration in the loop of the path�nder. The expandfun
tion
alls it self repeatedly so all needed nodes are found. . . 546.3 The illustration shows the path�nder tra
king around the largeobje
t on its way to the target zone. The fastest route however isto ignore the large obje
ts and go straight for the smaller building,around, and then for the goal. 567.1 Example of a unit tree. Only the nodes with downward pointingarrowheads are expanded. This is part of a s
reenshot from JWars. 607.2 Di�erent unit
lasses by inheritan
e hierar
hy. 637.3 Parallel inheritan
e hierar
hy of unit
lasses in JWars and
at-egory
lasses. The fully inked arrows denote inheritan
e rela-tionship, while the dashed lines denote
orresponden
e betweena
lass of unit and a
lass of
ategory. 647.4 Categories. The
ontinuous boxes indi
ate
ategory
lasses whereasthe dotted boxes list examples of a
tual
ategory obje
ts of the
orresponding
lass. Arrows indi
ate inheritan
e. 658.1 Soviet T-34 tank with wire mesh for prote
tion against the Panz-erfaust anti-tank weapon.[9℄ . 748.2 Armour statisti
s for a T-34 tank. This is part of a s
reenshotfrom the game. 768.3 Side hit or front hit? The proje
tion S of the tank side on thenormal of the impa
t dire
tion is about equal in length to theproje
tion F of the front, so the probability of hitting the side isabout 50 %. 778.4 The spotting routine. The
urrent observer is surrounded bya dashed
ir
le, the radius of whi
h is equal to the maximumvision range. The algorithm will traverse the four tiles that over-lap the
ir
le and expend no time
he
king the rest of the map.These four tiles
ontain eight observers aside from the
urrentone, four of whi
h are outside the vision range. The remainingfour observers (ex
luding the
urrent one) that are inside thevision range are subje
ted to an a
tual observer-observer
he
k. . 80vii

9.1 The rendering routine. Di�erent steps are indi
ated by numbers.Steps 4 and 7 are very fast on modern
omputers and are notlikely to have signi�
ant impa
t on performan
e. 87A.1 The JWars laun
her. 94A.2 The game lobby. Manstein and Rokossovsky are
hatting beforea friendly game of JWars. 95A.3 The battle is raging between the Russian and German for
es. . . 96A.4 A green
ir
le around units is a noti�
ation about the players
urrent sele
tion of troops. When troops are sele
ted their desti-nation
oordinates be
ome green lines on the ground to illustratetheir
urrent heading. 98

viii

List of Tables7.1 The data�le entry de�ning the weapon
ategory
orrespondingto a German 75mm Kampfwagenkanone (tank gun). The right
olumn
ontains the a
tual lines in the data�le, while the left
ol-umn is only for des
ription. The �repower data
omprises ammotype (armour pier
ing), armour penetration (in millimetres) and�kill index� (e�e
tiveness against infantry). 667.2 Data�le entry de�ning the German Panzer IV tank. The entriesin the weapon list are identi�ers of weapons. Noti
e the identi�erof the tank gun from Table 7.1. The other guns and the hulland turret types are also identi�ers of
ategories. These in
lude�lenames of images whi
h are used to display the
omponents. . 668.1 Equivalent terms of
ollision dete
tion and observation handling. 81

ix

x

Prefa
eDuring the development of JWarsmany friends have taken the time and troubleto test the
ode on many di�erent platforms and hardware. This help has beenof immense value to us, parti
ularly for testing the graphi
al performan
e usingdi�erent drivers and graphi
s adaptors, not to mention the performan
e of thenetworking
ode under less-than-optimal (non-LAN)
onditions. In parti
ularwe would like to thank Dennis Dupont Hansen, Kasper Re
k, Peder Skafte-Pedersen and Kenneth Nielsen.Finally we are very grateful for the help and patien
e of our supervisorPaul Fis
her with whom we have had numerous te
hni
al dis
ussions about thevarious software
omponents.

1

Chapter 1Introdu
tion1.1 Introdu
tion to the genreThis se
tion is meant as an introdu
tion to the real-time strategy (from nowon also known as RTS) genre. This se
tion should be seen as history of thegenre as well as a opportunity to understand the general game stru
ture andthe more advan
ed
on
epts in the genre. First we will de�ne the RTS genreand then a qui
k walkthrough around it's history. In the end we will pointout the importent features implemented in RTS games over the years. Thesefeatures will be importent for our proje
t sin
e our goal is to develop a gamewhi
h engine live up to the time's standard.1.1.1 Ba
kgroundJWars in its present form is in the most te
hni
al sense of the words a real-time ta
ti
al game. The term strategy applies to large s
ales of operationswhere logisti
s and supplies be
ome heada
hes. JWars models
ombat at thebattalion level while ex
luding base building and resour
e gathering whi
h areotherwise normal features in RTS games, and is by some de�nitions thereforemerely a ta
ti
al game. Even so, the s
ale of operations is ironi
ally larger thanin most real-time strategy games, and we shall therefore amidst the
ontroversyof genre de�nitions take the liberty of
ategorizing JWars as an RTS.The RTS genre
ame about in the 80's, but was only fully developed andformally seen as a single unique genre 10 years later with titles as Westwood'sDune II and Blizzard's War
raft and War
raft II. For the
asual gamer an RTSgame
an be re
ognized by some simple properties whi
h have grown to distin
tthe genre:1. War planning is essential � strategy2. The player has no `Next turn' button, but instead time progresses
ontin-uously � real-time 2

Other typi
al properties:1. Resour
e gathering and management2. Base building and army produ
tion. The army
onsists of units,
ontrol-lable entities whi
h
an �ght.3. The player has dire
t
ontrol of his units/buildings4. The player must defeat the opponent(s) in battleThe RTS genre was developed from the turn-based strategy games genre. Oneof the �rst RTS games, perhaps the most de�ning game for the genre, is DuneII whose developers were inspired by Sid Meier's Sim City. It should be notedthat while Sim City di�ers from the standard RTS game, it is also re
ognized asa RTS game where the opponent is the game environment itself, and not an AIor another human player. As su
h, many diversities have risen in the RTS genreas game developers be
ome more inventive. Today RTS games are in generalbuilt on a player vs player environment yet providing single player
ampaigns
onsisting of pre-de�ned s
enarios where the player �ghts the
omputer.Most strategy games require the player to understand basi
 military
on-
epts and most often a paper-ro
k-s
issor approa
h on unit
ombat. A unit
an defeat some opposing units, while it in turn will be defeated by a suitableopponent unit. Often this is
ombined with gradual unit improvements by de-velopment in the player's armoury for the
ost of resour
es and time. Resour
esare mentioned as a basi

on
ept in RTS games sin
e e
onomy leads to morehigher military power whi
h in turn leads to higher resour
e in
ome either by
onquering land or holding strategi
 resour
e areas. This has been the basi
approa
h to strategy games, gather resour
es, build up military for
es, gathermore resour
es or fo
using on
utting o� the opponent's supplies and destroyingenemy resour
e areas. In this
o
ktail of
hoi
es for the player
omes the ta
ti-
al manoeuvres and stru
tural pla
ements if possible. Most games today try toin
orporate terrain as a fa
tor in the games and many aspe
ts of real warfarehas
ome in to play like high ground, bottlene
k manoeuvres, entren
hment andso on. As the
omputer game industry grows, so does the amount of time andmoney spent on developing new features in strategy games. Many of the moresu

esful games found a �rm middleground in supporting a lot of features butnot making the game dependent on these. This will allow more simple users
apable of enjoying the game in a relaxed playstyle while the hard
ore gamers
an dive into mi
romanagement1 of troops, exploitation of game engines et
.The average RTS game normally uses the single player
ampaigns as a linearstory introdu
ing sequentially more advan
ed units/
on
epts along the story.Often a
ampaign starts with the player only
ontrolling few simple units withfew degrees of freedom for the player as the mission is laid out. As the player1Mi
romanagement refers to the player ordering ea
h spe
i�
 unit around to optimizetheir performan
e - as opposed to ma
romanagement whi
h involves larger troop movement,maintaining produ
tion and similar issues. 3

ompletes missions more units and buildings or
on
epts will be
ome available -in this way a new bought produ
t will introdu
e units slowly and let the playerfamiliarize himself with the game features in turn, thus not making the gameseem too
ompli
ated. In the JWars proje
t however we will not be in
ludingsingle player missions as we would rather spend time developing the engine thansetting up spe
i�
 s
enarios.In the last
ouple of years RTS games have been improving greatly in onespe
i�
 area - graphi
s. Most of the popular older games relied on 2D graphi
swhile the 3D environments in �rst-person-shooters blossomed. Not until Bliz-zard's release of War
raft III: The Frozen Throne did it be
ome a standardto use 3D engines in RTS games, though earlier games using 3D graphi
s hadbeen around for a while without
onquering large market shares. Graphi
s in-�uen
ed some games' popularity, though most is based on gameplay and theuniverse in whi
h the game takes pla
e. Almost all newer titles use a 3D enginewith
hangeable view angles and zoom fun
tion, in this proje
t however we relyon 2D graphi
s and fo
us on gameplay and the gameengine itself. This is notpurely something we do to save time: 3D environments
an be
ome
onfusing,meaning the player's ability to
ontrol his for
es su�ers.1.1.2 RTS
ombat and
ontrolRTS games fo
us on large s
ale
ombat. All a
tions made by a player areprimarily made with the thought of in
reasing his for
e strength. With this inmind an example of unit balan
ing and a brief explanation of a GUI will opensome doors for the inexperien
ed players.In RTS games the player should be able to
hoose between a wide sele
tionof possibilities for
ombining his for
es. This is where unit balan
e and thestrategy idealism
reates synergy and
reates the dynami
 atmosphere in whi
hthe genre unfolds its true gameplay. The term unit balan
e is used to determinean ordering of how units
ompare against ea
h other in
ombat.In this instan
e we generalize the
on
ept for better understanding. If we
reate an example with 3 di�erent units being measured against ea
h, other forinstan
e an aeroplane, a tank and an anti-air
raft gun (AA gun), logi
 would
reate simple rules for this setup:- Plane beats tank- Tank beats AA gun- AA gun beats planeWe
ould atta
h a for
e ratio on ea
h instan
e if we wanted to use a measure-ment of how many of one type it would take to defeat the other type. Thislooks like a standard ro
k-paper-s
issors setup and a player would never beable to sele
t a single strategy and be sure to win. By expanding this theoryinto
ontaining more di�erent units with strengths and weaknesses the ta
ti
algameplay is ensured in the game as the players will need to take steps
oun-tering ea
h other throughout the game. Normally a player
an
hoose between4

wide varieties of units to
ounter out the opponents units. This would normally
reate a stalemate for two armies �ghting. If however the one side has a

essto a unit whi
h
ounters most or all of the opponents units this would destroythe balan
e of power, thus making the unit too e�e
tive. By
reating a unitwhi
h is overpowered in this way players
ould ensure a higher
han
e of vi
torythan normal by using this unit extensively. When games
ontains su
h units itbe
omes unbalan
ed and require unit balan
ing. The unit balan
e
an be
om-promised by several fa
tors as ea
h attribute needs to be balan
ed out againstother units i.e. the more
omplex the game the harder to balan
e.The real idea behind unit balan
ing is not to have a units strength on a linearmodel, but let attributes like speed, length and a

ura
y
reate units suited forspe
ial situations.Unit balan
ing is one of the greatest
hallenges for developers and is often anongoing pro
ess even after release. Games today whi
h base their playerbase onan online environment have the ability to release updates when needed. Mostlythe developers will release a game whi
h is unbalan
ed unintendedly, and onlythe testing done by players when playing the game will �nd the issues whi
hneed attention. Some developers has adopted the theory that there is no testinglike releasing the game to a massive audien
e.Next we will introdu
e one of the most
lassi
 games in the genre as anexample of how a game GUI
ould be
reated. The example we have
hosenis Blizzard Entertainment's Star
raft in
luding the expansion pa
k - Star
raft:Brood War. This game has been
hosen be
ause it is a well-known2 and typi
alexample within the genre, and be
ause both authors of this paper are pro�
ientin this game.Most RTS games have extremely similar user interfa
es. Several designs withunique abilities and setups have
ome up but invariably
ontain the two most
ommon
omponents � a main display or fo
us panel whi
h fo
uses on a limitedpart of the battle�eld and displays ni
e and detailed graphi
s of the a
tion,and a smaller minimap whi
h shows the entire map but only
onveys littleinformation. Add to this any number of status- or
ontrol panels. These are alltools for the player to enhan
e his
ontrol and provide important information.Figure 1.1 shows a s
reenshot from Star
raft. As usual, the GUI is split intodi�erent
omponents, ea
h providing the player with information and options.Covering most of the s
reen is the fo
us panel.The player
an sele
t units displayed here by dragging a box around themusing the mouse. The player
an now give orders to this sele
tion. The exa
t wayto give orders di�ers between games. In star
raft, right-
li
king on the ground,for example, will
ause the
urrently sele
ted units to walk to the spe
i�edlo
ation.The minimap is lo
ated on the bottom left
orner3. The minimap serves as2Star
raft is for example extremely popular in South Korea, where publi

ompetitions areregularly televised and famous players are sponsored.[5℄3The bright dots on in the minimap is the players base while most of the map is unexplored� bla
k. Noti
e the re
tangle on the minimap showing where the fo
us panel is
entered.Another detail is the large re
tangle in the minimap whi
h indi
ates that the minimap doesn't5

Figure 1.1: S
reenshot from Star
raft. The vora
ious Zerg swarm isoverrunning a Terran settlement.a primary overview for the player to swit
h his fo
us on the battle�eld. Theminimap usually shows the player's own for
es in green and opponents for
esin red. In this way an enemy massing for
es or approa
hing your territory willresult in red markers on the minimap. The minimap will never be the player'smain sour
e for information as the information it provides is always sparse and
an even be misleading.The lower middle panel provides information about the
urrently sele
tedobje
ts on the battle�eld. When a player has his fo
us on a spe
i�
 unit orobje
t all relevant information
on
erning the obje
t will be displayed here. Thisis the most dire
t information the player
an get from the game as it will oftendisplay a single unit's statisti
s like �repower, range, speed and health status.In the referred s
reenshot a bunker is sele
ted showing its
urrent health statusand an amount of marines o

upying it.Finally, the lower right panel
ontains
ontrols that are available for the
urrent unit sele
tion. Sin
e the
urrent sele
tion is a bunker, whi
h is immobile,it only has one
ontrol button (though it normally has more): pressing it will
ause the marines inside to leave.The user interfa
e in Star
raft is a standard example for the genre. Thesimple GUI handles most situations very well and this setup is used by mostRTS games today. Most new players to an RTS game have a tenden
y to usethe fo
us panel as the only sour
e for information while wat
hing the minimapis in reality extremely important, for example allowing the player to spot enemyatta
ks earlier.stret
h to �ll the entire panel as it does in newer releases.6

1.2 Why JWars?This se
tion introdu
es JWars and why the authors believe this is worthy of aproje
t. First we shall
onsider some �aws or features absent from
ontemporarygames, then we shall see how these might be remedied.We have
hosen this proje
t with a parti
ular purpose in mind � to
reate agame whi
h
ombines the realisti
 ta
ti
al elements of turn-based ta
ti
al gamesand the fast pa
e of real-time strategy games. Where the turn-based gamesnever stress the opponent and give him arbitrarily long time to make a de
ision,they rely on realisti
 features and
ompli
ated
ombat systems. These elementshave not been seen in any mainstream real-time games yet, as RTS game enginesrely on faster pa
ed gameplay on smaller maps thus ex
luding realisti
 distan
esand other game
ontent. This
on
ept in itself is not exa
tly new, but shortlyin Se
tion 1.2.2 it will be
ome
lear what separates JWars from the hithertoexisting games.In developing JWars we want �rst prove that the
ombination of the gametypes is not unrealisti
. This is done by developing the ne
essary API pa
kagesthat are supposed to allow other developers to
ontinue our work, sin
e we willsurely not be able to �nish an entire game of
ommer
ial quality ourselves withinthe time limit of this proje
t.1.2.1 Flaws in
ontemporary real-time gamesThere are some areas in whi
h the real-time strategy genre has not evolved mu
hover the years. Some of these are:
• Individual units typi
ally behave unintelligently unless the player takes
are to
ontrol ea
h (or very small groups) of them personally. For exam-ple, if an enemy approa
hes a group of friendly units then half the groupmight atta
k and be lured into an ambush whereas the other half staysidle. Also it is frequently observed that anti-tank weaponry will be au-tomati
ally dire
ted at infantry even though enemy armour is nearby aswell.
• As the game progresses,
omplexity grows greatly as units are produ
ed,and the player
annot hope to
ontrol for
es with su
h attention to detail.This dire
tly bene�ts the player who is qui
kest with a mouse or keyboard,and not the player with superior strategi
 ability. Control, rather thanstrategy, thus be
omes the primary point of
on
ern during gameplay.
• While not ne
essarily a drawba
k, most games use hit points (this is dis-
ussed in Se
tion 8.1) to represent a unit's health. When damaged, somehit points are dedu
ted until the hit point
ount rea
hes 0 at whi
h pointthe unit in question dies. Thus most games are deterministi
 in nature,or
ontain only negligible random fa
tors in
ombat.7

1.2.2 Military hierar
hyMany of the drawba
ks pointed out above
an be eliminated by introdu
ing atree-based means of
ontrolling units. Su
h a system is in reality a requirement ofany working military as we
an
learly see in the world today, and it is therfore
urious that no attempt has yet been done to in
orporate su
h a system inreal-time strategy games.Aside from easing the
ontrol of large for
es for the player, it is possible toprovide better AI support using this system. By using a tree hierar
hy in thegame, a simple AI
an be assigned to every military formation �leader�, su
h thatthis AI is responsible for
ontrolling the immediate subordinate formations. The�at unit stru
ture in most real-time strategy games allows for little organizedintera
tion through unit AI, but by expli
itly embra
ing a military stru
ture,multiple platoons and
ompanies
an work together,
ontrolled by automated
ommanders.The AI-spe
i�
 possibilities implied by this system are almost endless, yetbearing in mind the time ne
essary to develop su
h a system we
an hardlyhope to a
hieve any impressive results in this �eld sin
e the entire game has tobe built from s
rat
h. What we
an do, however, is to provide API
omponentsthat demonstrate the appli
ability of this model, and therefore opens the wayfor future development of the AI.The in
reased
ontrollability obtained by using a tree-based hierar
hy al-lows players to
ontrol nearly arbitrarily large for
es. Consequently it
an beexpe
ted that fo
us on ta
ti
s will be
ome relatively more important.1.3 OverviewThe software presented in this report
an roughly be diveded in two se
tions: theJWars game (or just JWars) and the JWars API, or appli
ation programminginterfa
e, whi
h are both written in the Java programming language. The gameis in reality a thin shell of spe
ialized
ode �
omprising user interfa
e and
ontrol � plus the game
ontent, whi
h works on top of the API pa
kages thatare responsible for handling more
omplex problems.The JWars API
onsists of several modules whi
h
an be used separatelyor with a minimum of
ross-pa
kage dependen
ies. The following
hapters willdes
ribe ea
h of these modules in turn, but in order to a
hieve an overview, weshall list the main modules brie�y below. Chapter 2 is devoted to des
ribingtheir high-level intera
tion in the game. The important API modules are largelyfeature
omplete.The game itself represents a genuine e�ort of
reating a quality pie
e ofsoftware and does not only serve as a means of demonstrating and testing thepa
kages. However game development is time
onsuming and normally involvesmu
h larger teams of programmers and designers. Therefore in its present statethe game, while fully playable, in
ludes only the most important features, andhas not yet been balan
ed for �serious� play. Most of the required work on the8

game is of relatively trivial nature and does not hold any te
hni
al problemsworth mentioning.1.3.1 Features of JWarsThe game is a fully playable two-dimensional top-down view real-time strategygame. The game takes pla
e on the eastern front in World War II, and theavailable weapons
orrespond roughly to the situation in the fall of 1943, at theBattle of Kursk. Many ideas are borrowed from advan
ed turn-based ta
ti
algames whi
h are not normally seen in real-time games, making it unique anddi�erent from
ontemporary games. Features in
lude:
• Two teams: the German Wehrma
ht and the Soviet Red Army. Ea
h sidepossesses roughly two battalions worth of tanks and infantry.
• Supports multiplayer over LAN or the internet. Opposing players areexpe
ted to
ontrol the two for
es. Additionally, several players
an share
ontrol of ea
h for
e simultaneously for
ooperative play.
• Opposing for
es automati
ally �re at ea
h other. Combat dynami
s arehighly realisti
, using e.g. real-world tank armour tables.
• Expli
it military hierar
hy allows e�
ient
ontrol of large military forma-tions.
• A large game world allows players time to fo
us on ta
ti
s.
• Beautiful (but simple) randomly generated graphi
s.1.3.2 The JWars API modulesThis is an overview of the generi
 software
omponents that
an be reused inother games.
• World representation. JWars uses a number of abstra
t 2D
oordinatespa
es and provides utilities for
onversions between these. Spe
i�
allymany tile-based maps are required by the di�erent
omponents of JWars.
• Collision dete
tion. The s
aleable tile-based
ollision dete
tor is
apableof dete
ting
ollisions between
ir
ular obje
ts of arbitrary size.
• Path�nding. The path�nder implements an A* algorithm whi
h dynami-
ally expands and updates the sear
h area a

ording to requirements. Thisapproa
h a

omodates obsta
les of arbitrary size and pla
ement, and a
-
omodates large maps without ex
essive memory footprint.
• Spotting system. The spotting system uses a tile-based approa
h whi
h isparti
ularly e�
ient if the map is large
ompared to the visibility radius.9

• Arti�
ial intelligen
e. Every unit and every formation has an AI whi
his responsible for interpreting and
arrying out orders. The present AIimplementations are still very simple, but the framework is designed withextensibility in mind.
• Event handling model. A queueing system provides e�
ient managementof timed exe
ution of game events avoiding unne
essary
ountdown timers.
• Data management. S
ript-like �les
an be used to store game data su
has unit and weapon statisti
s. These are loaded into a data repository andorganized in
ategories whi
h serve as fa
tories for di�erent unit types.
• Server-
lient based networking model. The TCP/IP based networkingmodel supports a
ustomizable set of instru
tions and provides base serverand
lient
lasses for managing player
onne
tions. This model has verylow bandwidth requirements, but requires stri
t logi
al syn
hronizationbetween
lients and server.
• Multiplayer syn
hronization utilities. Syn
hronization on multiple
lientsis done by means of a timer whi
h assures that
lients follow the servertemporally
losely.
• Rendering routine. The display is a
tively rendered using double bu�ering,supplied by an extra ba
kbu�er whi
h used to redu
e the repaint
ount ofstati
 obje
ts su
h as terrain.
• Terrain generator. The terrain generator
reates random
ontinuous mapswhi
h
an be used as e.g. altitude maps.1.3.3 Produ
t requirementsBefore starting the proje
t we had some minimal requirements whi
h would haveto be done within the proje
t's time limit. At the beginning of the proje
t wewrote down the minimal requirements. The minimal requirements were listedbut has been rewritten to this:The game must be playable over the internet by at least 2 players. For game
ontent we must have a working GUI making the player
apable of giving ordersand gathering information. Units must be able to move around in the worldand shall automati
ally begin �ring at opponent units within the �eld of sight.Units must be able to sustain damage as well as being destroyed and be removedfrom the game. The world must provide di�erent terrain types whi
h should beable to have an e�e
t on the units o

upying spa
e within the the given terraintype � like movement speed or visiblity alterations.10

1.4 Reading this reportThe
urrent
hapter � Overview � should hopefully have provided a
lear ideaof whi
h modules we have worked with and what the game is like.The following
hapter � Ar
hite
hture � is meant to provide a
tual insightin the workings of JWars, the way di�erent modules intera
t with ea
h otherand are glued together by the game
ode.The main part of the report follows, and here the di�erent modules will oneafter another be dis
ussed and evaluated in great detail. Note that in most
aseswe have avoided expli
it
ode and language-spe
i�
 information, preferring ahigher level of dis
ussion fo
using on analysis, design and algorithms. The reportshould thus be of interest to game programmers and not only Java programmers.The stru
turing of the report is loosely
hosen su
h that modules with fewdependen
ies (for example networking and world representation) are treated�rst, and the subje
ts progress to su

essively higher levels of abstra
tion andinterdependen
e in the later
hapters. Still, the
hapters should be indepen-dently readable.In the end of the report is the Appendix
ontaining the Game Manual whi
his useful for running and using the appli
ation.

11

Chapter 2Ar
hite
tureIn this
hapter the ar
hite
ture of JWars will be des
ribed, i.e. the way inwhi
h the di�erent
omponents are made to intera
t. It should be outlined thatthe des
riptions in this
hapter are kept brief. There are far more operationsunder the hood that noted here, but it would be too
umbersome to des
ribethe less important routines. This
hapter will only mention the most importantsteps. The subsequent
hapters will then go into greater depth des
ribing howthe individual
omponents are designed.2.1 Conne
tion and initializationAs the program is started, a small GUI is presented whi
h allows the user to
reate a server or join an existing one. If the user wants to join a game, thiswill spawn a JWars session whi
h attempts to
onne
t to the spe
i�ed server.Creation of a server will always result in a
lient being spawned lo
ally whi
h
onne
ts to that server so as to allow the server's user to parti
ipate in the game.This
lient is no di�erent from any other
lient (
onne
ting from remote), eventhough it is physi
ally running in the same virtual ma
hine as the server. The
lient thus runs independently of the server, but the server uses some
ommonfun
tionality of the
lient, su
h as the timer and network instru
tion set. Thepra
ti
e of giving the server a

ess to the logi
 of the lo
al
lient also allows theserver to
he
k the validity of orders issued (this has not been implemented, butthis is one reason for
hoosing the design) by the players before relaying thatinformation to the
lients. This redu
es the possibility of
heating.When a
lient session is spawned, the �rst thing done is to
onne
t to thespe
i�ed server whether it is lo
al or remote. This allows the
lient to re
eiveinitialization data from the server, su
h as a random seed and the size of themap to be played1.1For reasons of debugging, the random seed is always 0 in the
urrent implementation, andonly one map will presently be generated, but the order of initialization allows for dynami
alspe
i�
ation of game data. 12

2.1.1 Loading game dataAfter
onne
ting, the game world is generated. This involves a number of steps,namely
reating
oordinate systems and tile representations of terrain, alongwith the
reation of a
ollision dete
tor and an observation environment (whi
his responsible for
he
king whether enemy units
an see ea
h other on the map).Notably this step also involves registering the root unit, whi
h is the an
estorin the tree hierar
hy of all units (see Se
tion 7.1.3) whi
h will later be added tothe world.The following step reads all unit, weapon and formation data from external�les (though this
ould easily be done through the network as well). This kindof data storage is obviously preferable to hard
oding; in fa
t it allows peopleto
hange the game
ontent
ompletely without looking at the sour
e
ode, byentering data in a simple s
ript-like fashion. This information is representedin
ategory obje
ts, whi
h hold data pertaining to spe
i�
 types of units. Forexample, the information of a Panzerkampfwagen IV is read on
e, and thens
ores of panzers
an be spawned using the
ategory as a fa
tory and datastorage.The game presently adds two German and two Soviet battalions to the game,and pla
es them in pre-determined wedge-like formations (this is hard
odedsin
e implementing an entire editor, whi
h is the �normal� way to do this, wouldtake too long) in opposite
orners of the map. The battalions are organized in
ompanies and platoons,
ontaining both tanks, assault guns2 and infantry.The �nal step is to build the main Swing GUI whi
h will be displayed duringthe game. Even though the game is not yet about to start (
lients are still joiningthe server) it is preferable to generate the GUI now, su
h that the GUI is readywhen the game is started.2.1.2 Laun
hing the gameAt this point the entire game setup has been loaded, but the game has notyet started. Rather the person hosting the server will want to wait until aenough
lients have joined (even though this game only has two armies, severalplayers
an
ontrol the same army to in
rease e�
ien
y), and meanwhile a listof the
urrently
onne
ted players is shown, displaying the player names andwhi
h army they
ontrol. This lobby frame is also equipped with a
hat for
onvenien
e.The game starts when the server presses the laun
h button. This will resultin a laun
h instru
tion being sent to all
lients. When re
eived, it will disposeof the lobby frame and start the timer whi
h
ontrols the �ow of time (in thegame). It will also make the main GUI visible. At this point the game is fullyrunning, and will remain in this state forever or until the players quit.2An assault gun is a gun mounted on a tank
hassis but without a traversing turret13

2.2 Flow of
ontrolMost real-time
omputer games run by means of a game loop, i.e. a loop in whi
hea
h iteration
onstitutes an update of the game state and display as qui
klyas possible. JWars, too, runs by
ontinuously applying updates. However, inorder to ensure that the
lients run equally fast, the update rate is instead �xedby the previously mentioned timer. The timer exe
utes those updates fromthe AWT/Swing event dispat
h thread, whi
h means no syn
hronization withthe Swing-managed display is ne
essary. However the timer also provides thepossibility of using its own thread, whi
h might be desirable in non-AWT/Swinggames.The timer attempts to adjust the game �ow to that of the server. If anupdate is
ompleted before it is time to perform the next one, the timer willsleep for the appropriate amount of time before invoking the next update. But ifthe game �ow lags behind that of the server, for example be
ause the
omputeris too slow to perform updates at the required rate, the timer will report its
on
erns by passing parameters to the update routine, whi
h will take note ofthis and attempt to regain lost time by skipping non-vital parts of an update.This brings us to the next point, namely the basi

omponents of su
h an update.One update
onsists two steps.1. The game logi
 is updated. This means that all units are updated, allowingthem to move (using the
ollision dete
tor), turn around, take aim, �reand so on, depending on their destination or target. A
tually this is theresult of the update method of ea
h unit being invoked re
ursively downthe unit tree. The logi
al update will also in
lude various other tasks, su
has polling for network input and input from the keyboard. Importantly,this will also poll the task s
heduling system whi
h stores and managestasks that should be performed after a delay.2. The primary graphi
al display is updated3. This involves redrawing anyparts of the terrain on whi
h there are moving entities (if no moving enti-ties are nearby the terrain is not redrawn sin
e no
hanges have happened),then drawing all the visible entities.2.2.1 Syn
hronizationIn
ase the timer is lagging behind s
hedule, for example due to the lo
al
om-puter not being able to run the game at the required speed, the graphi
al updatewill automati
ally be performed only a few times per se
ond (su
h that the dis-play still appears responsive to the user) while logi
al updates will be performedat the maximum rate possible for the CPU. This means a
omputer will haveto be very slow in order not to be able to play the game. It also means thatif one
omputer is slow, it will not delay the server and the other
lients (a3There is a number of other graphi
al side displays whi
h are not updated
ontinuouslyhere, but instead by regular AWT/Swing repaints.14

problem whi
h is noti
ed immediately in
ertain games su
h as Command &Conquer: Generals), but it will be responsible for regaining the lost time itselfby sa
ri�
ing graphi
al smoothness in the meantime.In order to ensure that
lients do not exe
ute updates too qui
kly su
hthat instru
tions from the server arrive too late (and thus bring the game outof syn
h), the
lient
ontinually re
eives syn
hronization instru
tions from theserver whi
h spe
ify the amount of updates the
lient is allowed to perform. Inthe event that the
lient
annot pro
eed exe
uting updates be
ause it re
eivesno syn
hronization instru
tions from the server, it pauses the timer and waitsfor new instru
tions. As soon as the new instru
tion is re
eived, game updateswill be exe
uted at the maximum possible rate until the game time is
onsistentwith the real time elapsed. This means the game will stay in syn
h during lagspikes (small periodes of ex
eptionally high response times) or even if the playera

identally rips out the
able for a moment.2.2.2 Deterministi
 behaviourFor the moment we shall ignore the a
tivity of players and
on
entrate on thetasks performed deterministi
ally as time progresses. There are some operationswhi
h are not desirable to do from the main update routine, i.e. those thingsthat do not happen all the time. For this reason there exists a frameworkfor s
heduling tasks to be performed after a
ertain delay (su
h a frameworkis not stri
tly ne
essary sin
e anyone
ould use if-senten
es and
ountdownsfrom the main update method, but su
h approa
hes would be
umbersome andine�
ient). Reloading of weapons is managed in this way: when a weapon �res,it s
hedules a reload event whi
h will in turn be exe
uted at the proper time,allowing the weapon to �re again.Another problem is determining whi
h units
an see enemy units. This isrelatively demanding, be
ause large amounts of terrain may have to be traversedto perform su
h
he
ks. An observation environment takes
are of traversingthe relevant terrain e�
iently. For ea
h observer registered in the observationenvironment, su
h a
he
k is performed regularly, and the frequen
y of these
he
ks is
ontrolled � on
e again � by using the event s
heduling framework.The unit AI uses the spotting
he
ks to update targets: whenever a new targetis found whi
h is
loser than the
urrent one, the unit will automati
ally fo
uson destroying the
loser target.When a unit has a target, it will aim its guns towards that target and �rethe guns whenever they are ready. When the target is destroyed, it will a
quirea new target and
ontinue. When a weapon is �red, the game will randomly
al
ulate a hit lo
ation, �nd units near that hit lo
ation and �nally
al
ulatethe damage done to those units. Infantry and tanks a
t di�erently to in
oming�re; infantry units
an take a random amount of
asualties based on the volumeof �re, whereas tanks use a more advan
ed (and realisti
) model, taking intoa

ount armour plate thi
kness and slope (using histori
ally
orre
t values), theability of the weapon to penetrate armour, and several other things. Whena target is destroyed, it will be removed from the vision model and
ollision15

dete
tor, but te
hni
ally it is not entirely removed from the game. It still sitsin the unit tree, though it is now
ounted as a
asualty.Finally there are some updates to the GUI whi
h are performed at regularintervals (using the event s
heduling framework). For example the s
ore boardupdates
asualty and for
e strength tallies as the game progresses, and theminimap is updated regularly.2.2.3 Player input and network instru
tionsThe lo
ation of the main display on the battle�eld is managed through theviewport. When the viewport is moved (there are multiple ways to do this), itwill alert any registered viewport-event listeners, whi
h ensures that the viewis updated
orre
tly. The player
an sele
t units using the mouse, and this ismanaged similarly by alerting a number of registered unit sele
tion listenerswhi
h
an rea
t by updating displays to
onvey information about the newlysele
ted unit. Unit sele
tion and viewport s
rolling are the only non-trivial
lient-side
ontrols.Suppose the player presses a key or uses the mouse. Either this a
tion a�e
tsthe lo
al
lient only � for example, if the a
tion is just s
rolling the viewporta
ross the battle�eld, it
an be resolved lo
ally.If, however, the a
tion issues an order to one of the player's units, it is ne
-essary to send that instru
tion a
ross the network. The appropriate instru
tionwill therefore immediately be sent to the server, whi
h will relay that infor-mation along with a time stamp � information about when exa
tly that ordershould be exe
uted � ba
k to all the
lients. When the
lients re
eive this in-stru
tion it will be enqueued, using the event s
heduling framework, until itsexe
ution time whi
h the server spe
i�ed. Finally, when the time is up, theinstru
tion is interpreted and
arried out (te
hni
ally by invoking one of itsmethods: the instru
tion is responsible for exe
uting itself). This pro
ess isshown s
hemati
ally on Figure 2.2.3.2.2.4 AI, orders and their exe
utionEa
h unit, being either a formation
onsisting of several sub-units (su
h asa
ompany
ontaining several platoons) or a single physi
al entity su
h as avehi
le, is equipped with a simple AI. Whenever a player issues an order toa unit (su
h as a move order), and the networking framework has distributedit
orre
tly on all
lients, the unit's AI will interpret the order and exe
ute ita

ordingly. For example, if the unit is a formation it will pass on a move orderto its sub-units, making sure that the sub-units re
eive di�erent destinationssu
h that they line up in an orderly wedge-like fashion (similar to the initialsetup mentioned in Se
tion 2.1) instead of having all of them try to rea
h thesame point. If the unit is not a formation but instead e.g. a vehi
le it will invokethe path�nder to
al
ulate a feasible path towards the destination (
onsistingof a number of waypoints), then simply register its new destination and beginmoving towards it at every update (as des
ribed in Se
tion 2.2).16

Figure 2.1: Flow
hart illustrating the pro
ess of exe
uting an instru
-tion issued by a player. The player performs an a
tion whi
h results inthe networking
ode writing the appropriate instru
tion identi�er anddata a
ross the network (dashed line). The server adds a time stamp tothe instru
tion and e
hoes it (se
ond dashed line) to all
lients, at whi
hpoint the instru
tion is s
heduled for exe
ution at the spe
i�ed time.While orders
an be given by the player, it is possible for di�erent AIs togive orders to ea
h other. This happens when a formation AI is passing on amovement order to its sub-units, but in a broader perspe
tive (not yet imple-mented fun
tionality) this
an be used to a
hieve sensible intera
tion betweenelements of the same formation, ensuring e.g. that all platoons of a
ompanyatta
k together properly, or that they wait together in an ambush without �ringbefore the time is right.2.2.5 Con
lusionHaving read this, you should understand how the di�erent
omponents in thegame intera
t at a high level. The entire situation is illustrated on Figure2.2. The rest of the report is devoted to explaining the individual
omponents,analysing their requirements and deriving proper designs.

17

Timer

World (update)

Units (update) Unit AI

Unit movement

Rendering

Event scheduling

Firing Fog of war, vision

Networking

Collision detector

Targetting

Player
orders

Player
orders

Synch
instructions

Pathfinder

Update

Figure 2.2: S
hemati
 overview of the �ow of
ontrol. Bla
k ar-rowheads denote that one module a�e
ts the state of another a
tively,whereas white arrowheads denote a �ow of information from one
om-ponent to another (requested by the
omponent towards whi
h the arrowpoints). New information enters the system only via networking. The�ow of information from the world to the rendering
ode en
ompassesall unit positions, in reality this is available through the
ollision dete
-tor. Not in
luded on the graph: �ring
an lead to elimination of unitswhi
h in turn removes them from the
ollision dete
tor and results inthe invo
ation of relevant AI methods.
18

Chapter 3NetworkingWhile real-time strategy games traditionally in
lude single-player
ampaigns,experie
e shows that the su

ess of a game is largely determined by its playabilityin multiplayer. The online playability of a real-time strategy game is thereforevery important, and the networking solution
an have profound impa
t on this1.This
hapter will explore the options available and in turn de
ide on a feasibledesign.3.1 Choosing a network modelThere are several di�erent ar
hite
tures and proto
ols used in multiplayer games,and di�erent genres have di�erent requirements regarding e�
ien
y and re-sponse times. Fundamentally we shall dis
uss two variables: �rst there is theamount of game data whi
h has to be syn
hronized a
ross the network, whileon the other hand there is the network response time, i.e. the ping or laten
y.We
an roughly
ategorize real-time
omputer games by their networkingrequirements:1. Small, fast-pa
ed games su
h as �rst-person shooters. These games requirelow ping but have small amounts of data to syn
hronize (e.g. the positionsand speeds of a few dozen game obje
ts). For example the game Counter-Strike is usually played by around 10-20 people who ea
h
ontrols oneperson, and network laten
y
an qui
kly
ause deaths in the fast-pa
ed�re�ghts.2. Large, slow-pa
ed games su
h as real-time strategy games. There arevery large amounts of data (hundreds or thousands of game obje
ts), butthere are only lax requirements to response times sin
e the player is not
on
erned with su
h low-level
ontrol as above.1Command & Conquer: Generals is regarded by the authors of this text as one of the�nest real-time strategy games ever
on
eived, and yet this game remains largely unplayedonline. Even on a high-speed LAN the game speed will almost grind to a halt with just fourplayers. Our
on
lusion: they
hose the wrong network implementation.19

3. Large, fast-pa
ed games su
h as massively multiplayer online role-playinggames. These require both fast response and involve very large amountsof data, and therefore demand very advan
ed networking
ode. It is wellknown that this takes its toll even on modern games of the genre, butlu
kily this is none of our
on
ern.We are obviously
on
erned only with the se
ond
ategory. We note two waysto keep the game state identi
al a
ross a network: either we
an beam theentire game state
onsisting of every logi
ally signi�
ant game obje
t a
rossthe network with regular intervals. This approa
h obviously only a

omodatesgames of the �rst
ategory be
ause of sheer bandwidth requirements. Another� and to us better � way is to let every
omputer simulate the entire game logi
deterministi
ally in parallel, and only send a
ross the network those instru
tionsthat are issued by the players.This approa
h is promising sin
e it requires next to no bandwidth eventhough thousands of units are on the battle�eld. However it is stri
tly requiredthat all
omptuers on the network are able to perform exa
tly the same simula-tion given the player inputs re
eived from the network, otherwise the game willgo `out of syn
h' and never re
over. The next se
tion will des
ribe this approa
hin detail.3.2 Syn
hronizationWe shall now propose a
omplete solution to managing the �ow of time (in thegame, that is). Suppose until further noti
e that the players have no
ontrolof the game. We de�ne that the game starts at frame 0, or t = 0, in someinitial state whi
h is identi
al on all those
omputers that partake in the game.Now, all the partaking
omputers will perform a logi
al update (whi
h will allowentities to move or �re at ea
h other automati
ally and deterministi
ally, i.e.without the player issuing instru
tions) at regular (and equal a
ross the network)intervals, and when su
h a logi
 update on some
omputer is
ompleted we saythat the frame
ount t is in
reased by one on that
omputer. Thus, as timeprogresses every
omputer will exe
ute further logi
 updates for t = 1, 2, 3 . . .until the game is over, and if the logi
 update routine is
onsistent then the
omputers will all be in the same state at all time.There is no network a
tivity yet sin
e the logi
 update routine is determin-isti
 and therefore requires only lo
al information. Note that the
omputers donot need to exe
ute the same logi
 update at exa
tly the same physi
al time, theonly important thing is the relationship between frame
ount and game state.3.2.1 Intera
tivity: network instru
tionsSuppose now that we will allow a player to a�e
t the game state, whi
h is hardlya deterministi
 endeavour. We will need to send the parti
ular instru
tion thatthis player has issued to all
omputers in the game su
h that they
an exe
ute20

it. Furthermore it is obviously vital that all
omputers exe
ute this instru
tionwhile in the same frame, otherwise they will go out of syn
h forever.Let us say that some
omputer a
ts as a server whi
h keeps tra
k of the frame
ount, while all players are
lients
onne
ted to the server2. The player whowishes to exe
ute an instru
tion then sends that instru
tion to the server. Theserver re
eives this instru
tion while in frame number t0. Now, every
omputeron the network must re
eive this instru
tion and exe
ute it at the same time, sothe server e
hoes the instru
tion to all
lients along with the requirement thatthe instru
tion be exe
uted later at frame number t0 + L, assuming that theinstru
tion will arrive to the other
omputers before they have furhter exe
uted
L updates (we shall refer to L as the laten
y, even though adding the physi
alnetwork response time results in a slightly larger a
tual laten
y). Now, ea
h
lient will re
eive the instru
tion and
an enqueue it for exe
ution in the (t0 +
L)'th logi
 update.3.2.2 Syn
hronization instru
tionsWhat happens if instru
tions arrive late to one player, at time t0 +L+ δ? Thenthat
omputer will no longer be able to exe
ute the instru
tion in time, and thegame is ruined forever. This must not happen, and we shall therefore requirethat the server provides as a guarantee to ea
h
lient that they are allowed toexe
ute updates until some frame
ount. If the server
ontinously sends outsyn
h instru
tions to all
lients stating that they may pro
eed the updatingpro
edure until frame t where t 6 t0 + L, then a
lient
an halt the game �owif it rea
hes time t and not
ontinue until re
eiving a new su
h instru
tion fromthe server. In the meantime any instru
tions that arrive will be enqueued forexe
ution at times later than t, ensuring their eventual exe
ution at the
orre
ttime.A game implementing the ideas presented here will not rely on a
lassi
algame loop whi
h performs updates at the highest possible speed, but insteaduse a timer whi
h updates only at regular intervals. It is still possible to renderat higher frequen
y than the logi
al update rate, using interpolation, see se
tion4.1.4.3.2.3 Con
lusionWe now have a
ompletely syn
hronized model whi
h supports any numberintera
ting players and requires a server. The network a
tivity will be very low,perhaps few instru
tions per se
ond for syn
hronization and a term proportionalto the player a
tivity. Sin
e the server will have to send ea
h instru
tion to nplayers, and n players will send O(n) instru
tions, the bandwidth use will be
O(n2) unless spe
ial
ountermeasures are taken, but real-time strategy games2Servers and
lients are not
ompletely indispensable. Some games employ peer-to-peernetworking where no server is appointed. The
lient-server model provides a
entralizedmanner of handling and validating instru
tions, whi
h is why we
hoose this model.21

are traditionally played by no more than around 12 players, and with the lowper-player bandwidth requirement this remains a

eptable.3.3 The networking APIThe obje
tive of this se
tion is to design a networking pa
kage adhering to therequirements spe
i�ed in the previous se
tion. This will be done in an event-driven manner whi
h exposes a
ontinually updated non-blo
king instru
tionqueue to the programmer who
an therefore easily integrate it in any timerbased or game-loop based implementation.The instru
tions
onsidered in the previous se
tions, both syn
h instru
tionsand
lient instru
tions, obviously require guaranteed delivery in
onsistent order.Both of these properties are ensured by the proto
ol TCP/IP. UDP is anotherproto
ol
ommonly used in games. It is generally used for more fast-pa
ed gamesbe
ause it a
hieves faster response times by sa
ri�
ing among other things theguarantee of delivery: pa
kages are sent almost without overhead, but some ofthem may never arrive, and those that do may do so in any order. The guaranteeof delivery is essential, and along with the lax laten
y requirements this showsbeyond doubt that TCP/IP is a better
hoi
e than UDP for our purposes.The previous se
tion established a
lient-server model, along with the
on-
ept of instru
tions. We shall further introdu
e the proto
ol whi
h is simply a
olle
tion of instru
tions to be used by server as well as
lients. The proto
ol
onsists of all the instru
tions that
an be issued while the game is running,whi
h would in our
ase in
lude e.g. ordering the movement of a parti
ular unittowards a parti
ular lo
ation, ordering a unit to �re at a parti
ular lo
ation, orthe previously mentioned syn
h instru
tions.Now we are in a position to propose the �nal layout of the networking pa
k-age.
• IOHandler. Responsible for sending and re
eiving a parti
ular type ofinstru
tion (for example movement instru
tions). An IOHandler has awrite method, whi
h writes the instru
tion-spe
i�
 data (this
ould be anew movement destination for a unit along with that unit's identity) tothe server. It has an e
ho routine whi
h is invoked on the server when thatserver re
eives the information, su
h that the server may
he
k whether theinstru
tion is valid, thus preventing
ertain
heats. The server will thenmost likely just pass the instru
tion on to all
lients after atta
hing anexe
ution time stamp. Finally the IOHandler has a read routine whi
hwill be invoked when the
lient re
eives the information e
hoed by theserver. The framework will provide input and output streams whi
h theIOHandler
an use in its methods.
• Proto
ol. This is an unmodi�able
olle
tion of IOHandlers whi
h isidenti
al a
ross all
omputers,
lients as well as server. In order to usean IOHandler it must be registered with a Proto
ol before
onne
tionis established. The proto
ol internally asso
iates ea
h IOHandler with a22

unique identi�er whi
h the
lient and server employ to distinguish typesof instru
tions on the network.
• Client. The
lient
an
onne
t to a server at a spe
i�ed IP address andport. The
lient will keep a thread running whi
h listens for networkinput. Whenever input is re
eived, the
lient will
onsult its proto
ol toalert the appropriate IOHandler to handle the instru
tion. Output to theserver is written through the registered IOHandlers.
• Server. The server a

epts
onne
tions from
lients by listening on aparti
ular port. Every
lient whi
h
onne
ts will be registered, and theserver will spawn a thread to listen for input from that
lient whi
h ter-minates when the
lient leaves. Whenever input is re
eived, the proto
olis
onsulted and the appropriate IOHandler is made to handle the input.The IOHandler
an then write any information it likes to all
lients (itwill most likely just pass on the instru
tion).Finally there are server- and
lient event handlers whi
h
an be atta
hed tothe server and
lient respe
tively, whi
h
an exe
ute
ode on
onne
tion, dis-
onne
tion and player events (these are �red in the
ase a player
hanges nameor team).Using IOHandlers is quite easy: the write, read and e
ho methods mustbe implemented through sub
lassing. The framework will automati
ally passreferen
es to relevant input and output streams as parameters to these methods(for example the read method is always provided with an output stream whi
hwrites information dire
tly to the server, and the read method is provided withthe input stream whi
h reads data re
eived from the server), whi
h means theimplementation only has to de
ide whi
h data to write to them.3.3.1 Implementation notesThe binary format used to send instru
tions
onsists of two parts, namely aheader and a body. The body
onsists of the information whi
h an IOHandlerwrites expli
itly, while the header is managed automati
ally. There are twodi�erent headers, depending on whether the information is travelling from a
lient to the server or opposite. In both
ases it is ne
essary to send the identi�erof the IOHandler whi
h is responsible for the instru
tion, su
h that the
orre
tIOHandler
an be fet
hed to handle the instru
tion at the destination. Thisinformation is
urrently written as a byte, though it has be
ome
lear thatbandwidth is of su
h little signi�
an
e that a 32-bit integer might as well beused.When the instru
tion travels from the server to the
lient, an exe
ution-timestamp must be supplied as well su
h that the
lients know how long to enqueuethe instru
tion in order to exe
ute it at the same time as the other
lients.The server will determine this timestamp based on a timer. Spe
i�
ally thetime stamp is equal to the
urrent time, whi
h the server reads from a timer,plus the server laten
y (mentioned in Se
tion 3.2.1) whi
h
an be set when the23

server is
reated and adjusted at any later time. The time stamp is written as a32-bit integer. Thus the instru
tion overhead is a few bytes, plus the overheadindu
ed by the underlying TCP/IP proto
ol. The relatively small amount oftra�
 ne
essary to run the game renders this overhead unimportant.3.3.2 Random numbers and deterministi

odeKeeping games syn
hronized requires some
are while running the game sim-ulation. If the game uses (pseudo)random numbers, it is obvious that every
lient must be able to generate the same sequen
e of numbers, meaning thatthey should use the same random seed and that su

essive number generationshould be deterministi
 based on the seed. The game world, to be dis
ussedin Chapter 4, exposes a single random number generator whi
h must be usedonly for events that are guaranteed to take pla
e on all
lients. Examples ofoperations that di�er between
lients are rendering. First of all the renderingrate is not �xed like the logi
al update rate, so random graphi
al e�e
ts shouldobviously use a lo
al random number generator instead.It is easy to transfer a random seed a
ross the network at the beginning of thegame (the
lient- and server event handlers are designed for exa
tly su
h pur-poses), su
h that all
lients
an use the same seed, but at this point all randomseeds are still �xed to default values in order to ensure better reprodu
abilityin the event of bugs.It is also obvious that non-deterministi
 me
hanisms su
h as rendering rou-tines should not invoke any method that
an a�e
t the game state. In ourexperien
e it is not di�
ult to distinguish between
ode whi
h is deterministi
and
ode whi
h is not. During the development of JWars, we
an proudlyannoun
e that we have on no o

asion observed a game go out of syn
h unex-pe
tedly.

24

Chapter 4World of JWarsThe JWars world is the entity responsible for handling the game logi
 at thehighest level. The world en
ompasses
oordinate spa
e management,
ollisiondete
tor, vision model, event s
heduling system and many other things whi
hwill be the subje
ts of this and several subsequent
hapters. In this
hapterwe will des
ribe some of the most fundamental properties su
h game �ow and
oordinate system management.4.1 Flow of
ontrol and timingSe
tion 2.2 des
ribed how most games used a game loop, and went on to brie�ydes
ribe the logi
al and graphi
al update me
hanisms. Re
all that JWars runsby means of a timer whi
h performs updates with regular intervals, as opposedto an a
tual game loop. This se
tion explains in greater detail why this timeris bene�
ial and what it does.Note that game is designed su
h that the sele
ted update rate has minimalimpa
t on the game model. If a di�erent update rate is spe
i�ed (this is notyet possible at runtime, but a planned feature), units will still be seen to moveat the same speed a
ross the map, have the same reload time and so on, sin
ethe game generally spe
i�es time intervals in se
onds and
onverts this to frame
ounts internally.4.1.1 Game loop vs. timerA game loop serves to perform game updates at the fastest possible rate. Forevery update, units are moved slightly, e.g. by in
rementing their positions bythe movement speed times how mu
h time elapsed sin
e last update. Also thegraphi
al display is updated, showing the new lo
ations of units. If the updaterate is high, animations will appear smooth and beautiful whereas lower updaterates
an make the game resemble a �slideshow� with movement o

uring inlarge
hunks. As game
omplexity grows, an update will take longer time for25

the
omputer, so units should move farther per update proportionally to thetime whi
h has elapsed. Using su
h a variable update rate ensures the bestpossible use of CPU resour
es.As we have seen in Chapter 3, every
lient must
ondu
t exa
tly the samelogi
al updates, whi
h for
es us to use a �xed update rate instead of a variableone where entities would move based on the lo
al ma
hine's
omputing power.We have sele
ted a frequen
y of 50 Hz, sin
e this is su�
ient for reasonablysmooth animations while not too demanding for slower
omputers. Re
all thatonly the game logi
 needs to be updated with this rate; graphi
al updates
anbe skipped if the lo
al
omputer has trouble keeping up with the �xed updaterate, resulting in less appealing graphi
s but preserving game integrity.4.1.2 The game timerThe timer provided with JWars is designed to syn
hronize the update rate ondi�erent
lients by periodi
ally notifying timer listeners. It thus has similaritieswith the timers provided with the java
ore
lasses, but in fa
t provides more�exibility.The listeners re
eive information about whether the timer is behind s
hedule(e.g. if updates are taking too long) su
h that they
an de
ide to skip unne
es-sary operations. It also expli
itly supplies the frame
ount whi
h is obviouslyimportant to the simulation. After being started, the timer
an be either pausedor suspended. If the timer either paused or suspended, it will no longer performupdates until it is resumed. If it is suspended, then after being resumed it willtry to regain the time in whi
h it has been suspended by exe
uting updates atthe maximum possible rate. This is useful if temporary network trouble requiresthe game to halt temporarily.The timer works on top of a wat
h. A wat
h is any entity whi
h
an providethe
urrent time in millise
onds elapsed after some �xed point1. The timer pollsthe wat
h periodi
ally and adjusts its update rate su
h that it never divergesfrom the wat
h.The timer uses a thread internally. It is possible to spe
ify that the updatesshould take pla
e in the Swing event dispat
h thread (see Se
tion 9.1). In this
ase the timer will wait for the other thread to
omplete its update beforerequesting more updates. In other words the timer thread blo
ks until updateshave been
ompleted; another possibility is to enqueue multiple events afteranother if updating still takes pla
e (the Swing timer will do this), but this doesnot provide the same �exibility: the former approa
h allows the next update totake into a

ount whether too mu
h time was spent during the last update.1The wat
h should generally be some kind of wrapper around the
omputer's system
lo
k.The java
ore API provides System.
urrentTimeMillis and System.nanoTime, where the lat-ter is more pre
ise but only available in newer versions. Programmers
an
hoose the wat
himplementation freely, in
luding third party timers.26

4.1.3 Game performan
e dis
ussionDuring testing, we have observed that slow
omputers
an have trouble keepingup with the required update rate during large battles where many units aremoving. This means the
omputer will stop refreshing the display (ex
ept forsparse updates in
luded to prevent the player from thinking that the game has
rashed), and the
lient will gradually lag farther and farther behind s
hedule.Any re
eived network instru
tions will then be enqueued for a very long timebefore the
lient eventually rea
hes their a
tual exe
ution time, meaning theplayer will barely be able to
ontrol his for
es.This problem
annot be
ompletely avoided: there will always be a
omputerwhi
h is too slow. The problem
an, however, be remedied by optimization.Many of the operations
arried out in the primary game update do not needa temporal resolution of 50 Hz. The �gure of 50 Hz was sele
ted be
ause itallows for smooth animation. Might it be possible to lower the logi
al updaterate without sa
ri�
ing smoothness? As we shall see in the next se
tion, yes.4.1.4 Interpolation during renderingSuppose the logi
al update rate is very low, perhaps one tenth of a se
ond.A unit whi
h is lo
ated at r = (x, y) will in the next frame be lo
ated at
r +dr = (x+dx, y +dy), and the distan
e between these points is so large thatthe graphi
al representation is no longer smooth.However it is possible to perform graphi
al updates with a larger frequen
ythan logi
al updates, while interpolating between the previous and
urrent po-sition depending on how long time has elapsed between the last and the
urrentframe. Thus, if �ve graphi
al updates are performed for ea
h logi
al update,ea
h su

essive graphi
al update
an depi
t the entity at positions r + 1

5
dr,

r + 2

5
dr up to r + dr, and then the animation will retain its smoothness eventhough the internal representation does not. We
an thus use the weightedaverage between the previous position and the
urrent position to derive newintermediate positions, andThis powerful tri
k
an easily redu
e the CPU requirement of the logi
al sim-ulation by 80% of the
urrent amount (e.g. if the logi
al update rate is redu
edfrom 50 Hz to 10 Hz). But things get even better. The variable update ratedis
arded in the last se
tion
an be reintrodu
ed in
onne
tion with rendering,meaning that no parti
ular graphi
al update rate is needed, but instead the rate
an be dynami
ally adjusted a

ording to requirements.At present this optimization has not yet been implemented, but it is plannedfor the near future.4.2 Coordinate spa
esIt is normal for a
omputer game to utilize numerous di�erent
oordinate sys-tems to represent information to the player (e.g. the s
reen
oordinate system),or to represent the game state internally. It is therefore desirable to provide a27

standardized notion of
oordinate systems to be used in the game. This allowsfor
ode reuse and redu
es the possibility of bugs during the numerous
oordi-nate transformations whi
h would, la
king a
entralized
on
ept of
oordinatesystems, have to be
oded manually throughout the game.The basi
 requirements of su
h a system for our purposes
an loosely beformulated already:1. Lo
ations should be represented by
artesian pairs of numbers (i.e. onlytwo-dimensional systems are
onsidered).2. There must be a way to
onvert
oordinates from any
oordinate systemto any other that represents the same spa
e. This might involve s
alingor other transformations.3. There should be tilemaps, whi
h we de�ne as a
oordinate system in whi
hea
h lo
ation spe
i�ed by a pair of integers is asso
iated with exa
tly onetile obje
t, the type of whi
h
an vary depending on the
ir
umstan
es.Tilemaps thus resemble two-dimensional arrays whi
h support
oordinatetransformations.The notion of tilemaps deserves some
omments. While real
oordinate systemsin mathemati
s tend to be
ontinuous, i.e. have in�nitely many points betweenany two di�erent points, sometimes we desire purposely dis
retized represen-tations. A
hess board
an be represented by a 8 × 8 tilemap where ea
h tile
an hold a pie
e. Similarly we shall �nd numerous uses for tilemaps in JWars,in
luding terrain representation and
ollision dete
tion.4.2.1 Coordinate data representationWhile it would be ni
e to represent the world in
ontinuous
oordinates, thisis obviously not possible using a
omputer. We shall have to sele
t a way todis
retize the world into some �nite number of
hunks.Coordinate systems in games
ould
onveivably be implemented in one oftwo distin
t ways, representing positions either by �oating point numbers orintegers. Using �oating point
oordinates generally ensures a higher pre
isionwhen
al
ulating movement of units, while on the negative side it
an be di�-
ult to determine how numeri
ally large
oordinates may be before the �oatingpoint system loses pre
ision. This
an be
ome a problem on very large maps.More importantly, �oating point
oordinates
an be awkward in implementa-tions where tiles are used, sin
e tiles are naturally indexed by integers.Sin
e � as mentioned previously � we shall use systems of tiles for severalpurposes, whi
h
an only be indexed logi
ally by integers, we de
ide to useintegers as the basi
 datatype of world
oordinates.A
oordinate system must be assigned a width and a height, whi
h denotethe number of units a
ross horizontally and verti
ally, respe
tively. We shallrefer to the number width×height as the resolution of the system. Two
oordi-nate systems must have the same width:height ratio in order to represent the28

he
ig

ht
=

5

width=4width=8

he
ig

ht
=

10

scale=2

Figure 4.1: Two
oordinate systems. Axes are similar to those nor-mally used with s
reen
oordinates. The bla
k × in the left system istransformed to the × in the right system, but the inverse transformationyields the grey × in the left system be
ause of integer division.same spa
e. Figure 4.1 shows two
oordinate systems related to ea
h other bya s
aling of 2. A
oordinate in the �ne system is transformed to the
oarseone by integer division, meaning several points in the �ne system
orrespondto the same lo
ation in the
oarse one (like many pixels
ould be part of thesame terrain tile), whereas the inverse transformation is simply a multipli
ation.Note that we have de
ided to use the same axes with whi
h pixels are normallyindexed on the s
reen, but this
hoi
e is somewhat arbitrary. Presently
oor-dinate systems only use s
aling transformations with positive s
ale, but if theneed arises they
an easily be extended to use o�sets or �ip the axes.Note to programmers: if a
oordinate system's width or height is not divisibleby the s
ale of a more
oarse system (for example width=9 and s
ale=2), the
oarse system is extended to in
lude a slightly larger area than the �ne system(
orresponding to width=10). Under normal use this will not be a problemsin
e all well-de�ned lo
ations in both systems
an be transformed ba
k andforth safely, but
arelessness
an still lead to out-of-bounds errors.The drawba
k of using integers instead of �oating points is that movementmust o

ur in
hunks. If, for example, a game runs with 50 updates per se
ond(whi
h happens to be the
urrent framerate in JWars), there is no interme-diate step between a speed of 0 and a speed of 1 unit per frame, resulting ina quantization of speeds whi
h
an produ
e odd e�e
ts in the simulation. Itwould surely be awkward to have a speed of 50 pixels per se
ond as a minimum.Eliminating this problem requires a very large resolution of the primary
oordinate system, su
h that the range of possible movement speeds seems
on-tinuous. For example, suppose the main
oordinate system has a resolution of
221 × 221, whi
h means the map measures around two million dis
rete pointsa
ross. If there are 29 = 512 of these units for ea
h pixel on the main display,and the game runs with a 50 Hz framerate, then the minimum possible non-zero29

speed is 1

10
pixel per se
ond, whi
h is slow enough to depi
t a realisti
-lookingphysi
al simulation.4.2.2 Important
oordinate systemsMany of the following
hapters will introdu
e new
oordinate systems for onepurpose or other. We list here some of the
oordinate systems that have1. Main
oordinate system. This
oordinate system
ontains the logi
al
o-ordinates of every entity and must have very high resolution.2. Pixel
oordinates. This is used for the representation of entities on thes
reen. For example an entity might be 20 pixels large,
orresponding toseveral hundred units in the main
oordinate system.3. Terrain map. This tiled map
ontains large square
hunks of terrain graph-i
s used in rendering. Typi
ally ea
h su
h tile would have a side length ofaround 30 pixels.4. Minimap. Most realtime strategy games use a minimap to represent ageneral overview of the situation, see Se
tion 1.1.2.There
ould be several other su
h maps, for example a
oarse strategi
 mapwhi
h evaluates the for
e strengths in regions for use by the AI or s
oring sys-tem.4.3 TerrainTerrain representation is perhaps the most obvious appli
ation of tilemaps.JWars uses two layers of terrain: there is a basi
 terrain type (su
h as grass,whi
h happens to be the only su
h terrain type yet in
luded) and a vegetationlayer. The terrain is represented as terrain tiles, where ea
h tile must implementa draw method.Terrain tiles also possess an index of forestation, i.e. the density of treegrowth in the tile, whi
h presently a�e
ts the movement speed of units andin
reases the toughness of infantry in those tiles.JWars o�ers the possibility of adding obje
ts that are not organized intotiles, su
h as buildings. These obje
ts are referred to as terrain obje
ts and willbe des
ribed later.Finally the random terrain generator allows
reation of
ontinuous 2D sur-fa
es su
h as height maps by using the diamond-square algorithm. This algo-rithm was used to disperse trees throughout the world but
ould be used togenerate hills and other kinds of terrain.30

4.3.1 Terrain in gamesHaving di�erent types of terrain in an RTS game is important for ta
ti
s. Ter-rain usually o�ers pla
e for
on
ealment and maybe even provide
over for units.In real life
ombat tanks are the masters of open terrain due to their long �ringrange and heavy armour
ombined the la
k of
over for their targets. A tankin a
ity or a forest however does not have the visibility to keep enemies at adistan
e. A single soldier with the right weapon
an disable a tank � if he gets
lose enough. To get
lose to a tank however a single soldier will need
over inthe form of a terrain as forests, tren
hes or buildings. This is a single exampleon the impa
t terrain has on realisti
 simulations. A game
onstru
ted purelyby the developers mind doesn't have to be realisti
 and
an be
onstru
ted tonot penalize terrain, but the JWars game engine however uses realisti

al-
ulations and statisti
s, so terrain will be needed for balan
ing. Otherwise we
ould simply balan
e out tanks by giving all infantry squads a futuristi
 weaponwhi
h would
ounter tanks.Terrain usually takes on two forms. The natural terrain on the battle�eldlike forests, hills and rivers and the more spe
ial terrain features in the form ofobje
ts like buildings, entren
hments or maybe even abstrabt obje
tive markers.This system should be seen as a layer system. First is the ground features andform like hills and trees, on top of this
omes the buildings and units. Ea
hlayer will be generated seperately so the data will be divided as well.The terrain
an have several impa
ts on the gameplay. Hills
an have thee�e
t of blo
king line of sight
on
atenated to LOS as well as slowing downmovements for units going up hill. A standard military strategy is also to havehigher ground in both ranged as well as melee
ombat as e�e
tiveness degradeswhen your target is on the high ground. Also forests
an be implemented toa�e
t gameplay through the loss of visibility and
over. A normal soldier in aforest would have plenty of ways to prote
t his body by standing behind a treeor lying behind a root sti
king up from the ground. All these examples needsome kind of terrain data representation for being implemented, and they
anall have huge e�e
ts on the gameplay and ta
ti
s.4.3.2 Map designWhen
reating terrain in any game there are two distin
t ways of handling themap making whi
h
an either be
ombined or work independently.Pre-made maps. Manually
reate all maps on whi
h to play � possibly in
ludea terrain editing tool for this purpose.Generated maps. Implement a terrain generator whi
h
reates a unique mapfor ea
h game.Use of prede�ned maps
an be ne
essary if it is
riti
al that no player hasterrain advantages. Few RTS games feature randomly generated terrain due tothis obvious dis
repan
y
on
erning the game setup whi
h makes the game un�tfor tournements and other organized events.31

In order for maps to be valid for tournement play they will have to be fairfor all players in all starting lo
ations. Maps
reated randomly will never o�erthe players equal opportunities or the same strategi
 options as a handmademap with a
reative designers tou
h. With a sele
tion of maps to use, manyplayers also
ome to favorise some maps whi
h they ex
el in - these features willbe stripped by using random generators. Many games today rely on designedmaps over generated terrain. Most of these however also in
lude a map editorwhi
h gives players a
han
e to
reate maps themselves.However there are positive things to be said of generated maps as well. Pre-de�ned maps will tend to foster pre-de�ned strategies. The strength of randomterrain generation is that players will have to adapt to the
ir
umstan
es, im-provise and devise new ta
ti
s for every battle.In a game like JWars both options are viable. In this proje
t
reating mapshowever is not high on the priority list, and
reating maps manually wouldrequire a vast amount of time whi
h
ould be spent elsewhere on the proje
t.We therefore de
ided to develop a tool whi
h
ould be used for random terraingeneration using a parti
ular seed2. The fo
us on this tool is not to
reate a
omplete map generator whi
h will give a total map solution but merely anassistant for
reating terrain features su
h as forests and height maps.4.3.3 Random terrain generatorWhat we need is a way to displa
e height values on a two-dimensional grid ina somewhat random order whi
h looks �natural� and not e.g. entirely randomsu
h as noise. We shall use the term height displa
ement map to refer to su
h amap. In real life, a forest will usually be a
luster randomly dispersed around a
enter � natural displa
ement � the same goes for hills. A height displa
ement
an be obtained by using mid-point displa
ement. The mid-point displa
ementmethod works by starting with a straight line, the end points of whi
h are atthe same height, see Figure 4.2. The middle point between the two end pointsis then displa
ed by a random number, for example between 0 and 1. Thereare now three equally spa
ed points forming two line segments, and the nextstep
onsists of again displa
ing the points that are at the middle of ea
h linesegment by new, limited random amounts. Continuing this, we get �rst 3 points,then 5, 9, 17, 33 and so on. In general if we stop after n steps, the line will bedivided into 2n+1 points. As �gure 4.2 shows, this method ensures a
ontinuouslands
ape
urves instead of random jaggy spikes.In theory what is needed is a two-dimensional surfa
e where ea
h point has aheight. This third dimension
an be interpreted to be height displa
ement (ob-viously), vegetation density and any other
on
ept whi
h
an be
hara
terizeda fun
tion R×R 7→ R. Our present problem it is not immediately obvious howthe mid-point displa
ement method
an be used to generate a two-dimensionalgrid.2Using a seed for
reating terrain allows us to
reate random maps but still save promisingseeds whi
h
an be used to re
onstru
t those maps32

Figure 4.2: The mid-line displa
ement used on a one-dimensional mapOne algorithmwhi
h applies mid-displa
ement to generate a two-dimensionalgrid is the diamond-square algorithm, whi
h we have
hosen to implement. Thealgorithm, shown in work on Figure 4.3, is again based on steps - starting withthe large s
ale displa
ements and then with su

essive iterations
reating smallerdispla
ements. The algorithm works by �rst displa
ing the
orners of the grid,
orresponding to the end points in the one-dimensional
ase, and the
enter, torandom initial values. Then the four points at the
entres of the map edges areintrodu
ed, by assigning a height value equal to the average height of the nearestneighbouring points that already exist, plus a small random amount. The edgemid points a
tually have four neighbours if we
onsider the map wrapping, i.e.the leftmost points are neighbours of the rightmost points (thus theoreti
allyresulting in a toroidal topology).The algorithm earns its name be
ause it su

essively displa
es points whi
hare lo
ated on a grid (squares) and in diamond shapes. Implementation-wise westart with two-dimensional grid of �oating point numbers, where the grid sidesmust have a length of one plus a power of two. Now, the algorithm
onsistsof the following steps, illustrated on Figure 4.3 (traversing in this
ase alwaysinvolves setting the a�e
ted points' heights to the average of the neighbours plusa small random amount as mentioned before):1. Set a step value equal to the width of the map.2. Traverse the map using steps of that size (this results in the
orners beingtraversed on the �rst run, as in Figure 4.3a) and the
entral point on the�rst iteration (Figure 4.3b.3. Traverse the map in a diamond pattern using the same step size, Figure4.3
.4. Divide step size by two, and in
rement the origin of the grid by a quarterof the step size for the next iteration (this means traversals otherwisestarting in (0,0) will now start in (step/4, step/4). Go to step 2 unless allpoints have been traversed. 33

Figure 4.3: The diamond square algorithm running on a 5x5 grid untiltermination. If the grid were larger, the �rst steps would be identi
al,but the algorithm would
ontinue by halving the step size and performingthe same operation over and over.
Figure 4.4: This is a 3D model of a diamond-square algorithm runningon a NxN map. It
learly illustrates how jagged maps
ome to look morenatural.This method eventually gets to traverse the entire grid. Figure 4.3d and e showthe se
ond iteration. An example 3D model of a generated map is seen on Figure4.4. Two-dimensional map representations generated by our implementation areseen in Figure 4.5.In the
urrent version of JWars, the growth of trees is de
iding by inter-preting a generated �height� map as a tree density.In the terrain generator uses a
lass is
alled a FloatBuffer to store thetwo-dimensional grid. It wraps array of �oats and it is on this array that weperform the diamond-square algorithm. The �oat bu�er has several fun
tionsthat
an be used to modify generated maps:1.
utOff : takes a �oat as argument. All elements in the array get the �oatvalue subtra
ted from them. If the new value is below zero we round ito� to zero. This is used for
reating the forests � at many lo
ations theforest density should be exa
tly 0, and this is a
hieved by �attening themap with
utOff.2. smoothify : evens out the terrain more by traversing all non-boundaryelements and setting them to the average of the elements neighbours. Weuse this fun
tion several times on the map used for
reating the forestationlevels.3. s
aleToFit : Takes a minimum and a maximum value as arguments.S
ales and translates all the values in the bu�er by the same amounts,34

(a) (b)Figure 4.5: These are two maps randomly generated by the terraingenerator. It is not immediately noti
able but both maps are periodi
,i.e. their edges wrap.su
h that the smallest and largest values are as spe
i�ed. This methodguarantees that the �oat bu�er does not
ontain elements larger or smallerthan the maximum or minimum.The height generator algorithm and the �oat bu�er
onstitute a powerful toolwhen used together.4.3.4 Terrain obje
tsAfter having all the natural terrain have
reated we
an add the se
ond layer ofterrain features to the world. These are
alled terrain obje
ts. Terrain obje
ts
an take the form of forti�
ations, buildings impassable mountain peeks, roadsor even lakes.For
reating terrain obje
ts we impemented the blueprint
lass. Blueprintsare used in JWars as blueprints in the building industry. A blueprint
ontainsall te
hni
al data
on
erning a spe
i�
 obje
ts, and when you have a blueprintyou
an make a building as spe
i�ed by the blueprint anywhere - even buildseveral buildings based on the same blueprint. The blueprint
ontains all rele-vant data for an obje
t ex
ept the lo
ation and an angle. At this moment allblueprints and terrain obje
ts are
reated in the Stru
tureFa
tory
lass whi
h
ontains methods for generating obje
ts and disperse them on the battle�eld.For
reating a blueprint it will need a shape and some
ollision properties.The shape is
reated by
onsisting of
oordinates in an array, where ea
h
oordi-nate designates a
orner on the obje
t, while the
ollision properties are handledlike on an unit � it
an be massive or not. For upholding the ideals of JWarsthe blueprint
an have any shape and size. The
oordinates are pla
ed in anabstra
t
oordinate system
entered on the blueprints
enter (0,0). Along with35

the
oordinate array the blueprint
reates the
ollision properties a

ording tothe developers wish. For
reating a terrain obje
t we feed the
onstru
tor withan image3, a blueprint, an angle, and the lo
ation within the world. After theterrain obje
t has been
reated we
an add it to the world by registrering it inthe dete
tor.For making buildings usable by the path�nder we
reate a path�nding node,and atta
h it to ea
h
orner of the obje
t. The path�nding nodes are only
reated for the path�nder usage. All polygon obje
ts will be treated as
onvexhulls by the path�nder even though they might be in the shape as a hourglass.4.3.5 Terrain apperean
eI this se
tion we will dis
uss the appearan
e of terrain JWars. The appearan
eof terrain randomly generated. The terrain
onsists of grass, whi
h serves asthe ground, and ea
h tile has a forestation level whi
h designates the amountof trees in that tile. Ea
h terrain tile
ontains referen
es to two images � onefor the ground and one for the vegetation. Most of the images are shared bymultiple tiles. For example there are sixteen di�erent images of grass to beshared by hundreds, maybe thousands of tiles on a map. The sixteen variationsare used to make the terrain look less monotonous. For ea
h forestation level,six di�erent images are
reated for this purpose.Both grass and forest images are referen
ed within ea
h terrain tile, beingused by the tile's draw method whenever the tile should be rendered to thes
reen. The tile thus knows how to draw itself, and it would therefore be possibleto use terrain tile implementations that do not rely on images along with thosethat do.Creating the terrain map, along with the generi
 grass ba
kground and thedi�erent amounts of forestation is done in the MapFa
tory
lass. Spe
i�
allythe map fa
tory distributes the tiles, using di�erent variations of the images,randomly in a terrain tile double array. Figure 4.6 shows how hard it is to seeany repetitive pattern in the ba
kground. When examining the ba
kground thesame image
an be spotted several times on the s
reen but it will not annoy theplayer or make the ba
kground layer seem �too� generated.We have found a spe
ial
ombination of
olours with an added amount ofrandomness yield a satisfying result - ea
h pixel in a grass image has the fol-lowing pro�le in RGB � the RGB values are (18,96,6) plus random numbers upto (128,72,72). The grass images thus
ontain only noise, and therefore seem to�t beside ea
h other.For
reating the forest graphi
s we use the same prin
iple. Instead of
reatinga single array as with the ba
kground images we need several di�erent images forthe di�erent amount of forestation. The default amount of levels in forestationis 6 and we have
hosen to
reated 6 di�erent images of ea
h level. By movingthe RGB s
ale to the darker greenish area small
ir
les representing trees are3Images
an be atta
hed to obje
ts but at this moment in development we simply �llpolygons with a
olour instead of making images for all buildings.36

Figure 4.6: Terrain graphi
s. Though the terrain
onsists of tiles, 32pixels on ea
h side, this is not
learly visible due to the amount of varyingtile images. Some trees are visible in the right side of the pi
ture.painted onto the image. By �rst
alling a terrain tiles draw fun
tion and thenthe drawVegetation we get all the layers in pla
e.The te
hnique des
ribed here
ould be expanded to support di�erent terraintypes by using the appropiate RGB
odes for ea
h wanted graphi
 set. This ishowever of minor importan
e for the development of the proje
t and is still afeature designated for future implementation.One of the original thoughts was to let the terrain generator
reate a heightmap and in
lude it in game engine. This would have made the game engine morerealisti
 but would also rise a new problem: how do we illustrate it? Height
urves are not implemented in the
urrent version of JWars, but they areplanned for the future. Using 2D graphi
s make illustrating a third dimensionin a map somewhat di�
ult. The solution has been around for some time inreal-life map making where height
urves illustrating terrain di�eren
es wouldbe a viable, but ugly solution.4.4 Event handlingMany if not most real-time games in
lude a game loop, whi
h is a loop in whi
hthe entire model and graphi
al display of the game are updated repeatedly.This normally involves traversing all the dynami
al entities and updating theirpositions, velo
ities and other variables. These updates might in
lude opera-tions su
h as the
reation or removal of entities from the game, whi
h
an bein
onvenient while the list of entities is being traversed. It is therefore desirableto handle updates in one loop, then store the more
ompli
ated operations as37

events to be resolved later, just after the game state has been updated. Thisapproa
h
an prevent bugs and ensure that things are done in a
onsistent order.Fundamentally we shall here refer to an event as something whi
h
an be putin a queue and then exe
uted at some later time. Note that in this model, theevent serves simply as enqueueable exe
utable
ode, whi
h is in
ontrast withthe AWT/Swing event term, where events are short-lived obje
ts that
onveyspe
i�
 information to event listeners.4.4.1 Types of eventsThere are three distin
t event
on
epts whi
h will prove useful.
• Peripheral input. The user
an typi
ally
ontrol the game by mouse,keyboard or typing
ommands into a
onsole. It
an prove troublesome toinvoke the
ode asso
iated with these a
tions immediately: if the playere.g.
hanges the view of the battle�eld while the battle�eld is being drawn,this will result in graphi
al tearing. This should not happen, and this kindof event should therefore be stored and the
orresponding
ode exe
utedonly when graphi
al and logi
al update operations have been �nished.
• Network events. As we shall see in Chapter 3, instru
tions re
eived fromthe network are s
heduled to be performed at spe
i�
 times. Thereforethese instru
tions should be enqueued until that time.
• Delayed events. If weapons are �ring, then their reload progress must betra
ked somehow. This
ould be done by polling ea
h and every singleweapon (of whi
h there are probably hundreds) on
e per update, but ifthey reload equally qui
kly then it is simpler and more e�
ient to insertreload events into a queue su
h that it is su�
ient to poll that queue ofevents on
e per update.4.4.2 Performan
e
onsiderationsWhile the storing of multiple events in the same queue (like in the reloadingexample above)
an eliminate most of the
he
ks otherwise ne
essary, there willstill be an abundan
e of events to be allo
ated in memory and released. It istherefore desirable to save some of the frequently used events su
h that they
anbe used multiple times. Following the earlier example with weapons reloading,it would be expensive to
reate a new reload event every time a weapon �res.It would be more sensible to save the old reload event and enqueue it again thenext time that weapon �res, be
ause the weapon obviously
annot �re beforeits reload event is released from its queue.4.4.3 Queueing systemThe pre
eding dis
ussion leaves us with two primary
on
erns, namely an eventand a queue whi
h
an store events. The event should have an exe
ute routineand it should know the time at whi
h it is supposed to be exe
uted.38

The queue should have an update routine whi
h polls the next event in thequeue for whether it should be exe
uted, then exe
utes it (and possibly anyfollowing events) if the time is right.This is enough to handle the delayed and network-type events as noted before.In the example regarding reload of weapons, it will be ne
essary to use one queuefor ea
h di�erent reload interval. For example, if ri�es
an shoot on
e every 100frames then all ri�e reload events
an be stored in a ri�e reload queue, andall grenade laun
her reload events
an be stored in another queue representinganother reload time.Finally, peripheral input events should generally be handled immediately (i.e.within the same update as it is generated), but this kind of input
ould originatefrom another thread than that in whi
h the game updates are performed. It istherefore ne
essary
ommendable to use a thread-safe approa
h (in java this isdone simply by de
laring the relevant methods syn
hronized).In
on
lusion we now have two spe
ial queues, namely the peripheral input(syn
hronized) queue whi
h exe
utes the events stored in them immediatelywhen polled, networking queue whi
h stores instru
tions re
eived from the net-work until su
h time as they should be exe
uted, and any number of delayed-exe
ution queues that handle weapon reloads and other things whi
h we shallsee in other
hapters, su
h as vision
he
ks and targetting.

39

Chapter 5Collision dete
tionThis
hapter will after an introdu
tion to
ollision dete
tion formulate the designand
apabilities of the JWars
ollision dete
tor. It is designed to handle largenumbers of geometri
ally simple
olliding entities without
onstraints on entitysizes.5.1 Basi
s of
ollision dete
tionThe most important obje
tive of this se
tion is to de
ide on an overall approa
hto an e�
ient and reasonably simple
ollision dete
tor bearing in mind the re-quirents of real-time strategy games. There is by no means an optimal su
h
ollision dete
tor sin
e requirements invariably will di�er greatly with appli
a-tions. We shall further shall restri
t the dis
ussion to two-dimensional
ollisiondete
tion seeing as JWars does not need three dimensions.In a real-time strategy game there is generally a large amount of units,possibly more than a thousand. It is therefore of the utmost importan
e thatthe
ollision dete
tor s
ales well with the number of units in the game.5.1.1 Divide and
onquer approa
hLet n be the number of units present in some environment. In order to
he
kwhether some of these overlap it is possible to
he
k for ea
h unit whether thisunit overlaps any of the other units, and we will assume the existen
e of somearbitrary
he
king routine whi
h
an perform su
h a unit-to-unit
omparisonto see whether they
ollide. While the amount of su
h
he
ks
an easily beredu
ed, for example noting that the
he
k of unit i against unit j will produ
ethe same result as the
he
k of unit j against unit i, this method invariablyresults in O(n2)
he
ks being performed. This approa
h is �ne if there are veryfew units, but this is obviously not the
ase in a normal real-time strategy game.The amount of
he
ks
an, however, be redu
ed by registering units in lim-ited subdomains of the world and only
he
king units in the same subdomain40

aganst ea
h other (for now assuming that units in di�erent subdomains
an-not interse
t). Suppose, for example, that the world is split into q parts ea
h
ontaining n

q
units. Then the total amount of
he
ks, being before n2, will beonly number of
he
ks ≈ q

(

n

q

)2

= n2/q.It is evident that within ea
h subdomain the
omplexity is still O(n2), butde
reasing the size of the subdomains
an easily eliminate by far the most
he
ks, parti
ularly if the division is made so small that only few units
anphysi
ally �t into the domains. The applied approa
h thus employs prin
iplesof a divide-and-
onquer method (see [2, pp. 28-33℄), though it is not expli
itlyre
ursive.The best
ase s
enario where all units are in di�erent tiles runs in O(n) timesin
e no
ross-
he
king takes pla
e. The worst
ase s
enario, where all units arein the same tile is extremely unlikely, be
ause only a handful of units should �tphysi
ally into a tile.5.1.2 Tile registration strategyThis approa
h still needs some modi�
ations in order to work. Spe
i�
ally,units may
on
eivably overlap multiple subdomains, ne
essitating
he
ks of unitsagainst other units in nearby subdomains. Assuming square subdomains willprove both easy and e�
ient, and we shall therefore do so. Consider a grid
onsisting of w × h elements, or tiles, de�ning these subdomains. We shalldes
ribe two ways to pro
eed.1. Single-tile registration. Register ea
h unit in the tile T whi
h
ontainsits somehow-de�ned geometri
al
enter. In order to
he
k one unit it isne
essary to perform
he
ks against every unit registered in either T orone of the adja
ent tiles. Thus every unit must be
he
ked against the
ontents of nine tiles. This approa
h is simple be
ause a unit only has tobe registered in one tile, yet mu
h less e�
ient than the optimisti

aseabove and requires that the units span no more than one tile size (in whi
h
ase they
ould overlap units in tiles even farther away).2. Multiple-tile registration. Register the unit in every tile whi
h it tou
hes(in pra
ti
e, every tile whi
h its bounding box overlaps). Che
king a unitnow involves
he
king it against every other unit registered in any one ofthose tiles it tou
hes. This means that a unit whose bounding box is nolarger than a tile
an interse
t a maximum of four tiles. Units of arbitrarysize
an
over any amount of tiles and therefore degrade performan
e,but the
ollision dete
tion will obviously not fail � also in most real-timegames the units are of approximately equal size and for the vast majoritythis approa
h will be su�
ient. 41

Figure 5.1: The
ollision grid visualized. The number of units regis-tered in ea
h tile is listed inside the tile. This is an in-game s
reenshot;the debug grid
an be enabled by passing -d as a runtime parameter.For the JWars
ollision dete
tor we have
hosen the se
ond approa
h, whi
his illustrated on Figure 5.1.2, primarily be
ause it does not restri
t unit size toany parti
ular s
ale. This approa
h will also likely be more e�
ient sin
e it inmost
ases will require less than half the number of tiles to be visited (as noted,
4 tiles would be a bad
ase in this model whereas the former model
onsistentlyrequires
he
king 9 tiles). However there is one possible problem, namely thattwo units whi
h o

upy two of the same tiles will (unless
arefully optimizedout) be
he
ked against ea
h other in both of those tiles1.5.1.3 Shapes and sizes of
olliding entitiesThe best-
ase time of su
h a tiled
ollision dete
tor is O(n)
orresponding tothe
ase where all units are in separate tiles. The tiles should be sized su
hthat only a few units (of a size
ommonly found in the game)
an �t into ea
h,but they should not be so small that every unit will invariably be registered inmultiple tiles. Every time a unit moves the tiles in whi
h it is registered willhave to be updated, whi
h be
omes time
onsuming eventually.As an example, this model should easily a

ommodate a battle�eld withmany tanks (around 6m in size) and at the same time provide support for a fewwarships (around 100 − 300 metres). If ne
essary, it is possible to improve themodel by allowing variably-sized tiles, su
h that the tiles are made larger at sea1The present implementation does not optimize this, sin
e this
an hardly degrade e�
ien
y
onsiderably. 42

than at land, for example. This approa
h will, however, not be implementedsin
e su
h extreme di�eren
es in s
ales are very un
ommon in the genre.Having
overed the methods ne
essary to minimize the number of
he
ks, itis time to brie�y mention the
he
king routine itself. It is obvious that a large-s
ale game
an not realisti
ally provide
ollision dete
tion between arbitrarily
omplex shapes. In the realtime strategy genre units are
ommonly modelled as
ir
ular or square, sin
e a larger degree of detail would hardly be noti
able on therelevant s
ale. We have therefore de
ided to provide only
ollision dete
tion for
ir
ular units. However the
ollision dete
tor does provide an es
ape me
hanismensuring that units
an implement a
ertain method to provide any
ustom-shape
ollision dete
tion. Using
ir
ular shapes provides the bene�t of simpli
ity ande�
ien
y, and is su�
ient for most basi
 entities. However there are presentlystati
 obje
ts (see Se
tion 4.3.4 on terrain obje
ts) whi
h are polygonal and
anbe very large, and they make use of this es
ape me
hanism.5.2 Design of the
ollision dete
torThe
ollision dete
tor manages a basi
 kind of entity whi
h we shall refer to asa
ollider. The most basi
 properties of a
ollider are its lo
ation (x, y) and theradius r of its bounding
ir
le (it has a few more properties whi
h are irrelevantto this se
tion but will be mentioned later). Whether or not a
ollision has beendete
ted is determined solely by these properties.5.2.1 The
he
king routineThe entire
he
king routine for a single
ollider whi
h wishes to move to a
ertainlo
ation now reads:1. Determine whi
h tiles the
ollider will overlap in its new position2. Traverse these tiles, and for ea
h other
ollider found here, perform thefollowing steps.(a) Che
k whether the bounding
ir
le of the moving
ollider interse
tsthe bounding
ir
le of the other
ollider.(b) If the
ir
les interse
t, invoke user-de�ned
he
king routine.(
) If the shapes interse
t, invoke user-de�ned
ollision handling routineon the moving unit. The moving
ollider will not be moved to itsdesired position, and the
he
king routine is terminated.3. If at no point above the
he
king routine has been terminated, the moving
ollider will have its position updated to its desired lo
ation. The
ollisiontiles overlapped by the
ollider in question will be updated a

ordingly.This routine works well in the realtime strategy genre when the primary fun
-tion of
ollision dete
tion is to prevent entities from overlapping. There is no43

parti
ular way of handling a
ollision other than
an
elling the movement re-quest (unless the user spe
i�es this manually in the handling routine), and thisapproa
h would therefore be bad if realisti
 physi
s (
onservation of momentumor elasti

ollisions, for example) were desired. These things are not parti
ularlyrelevant in the realtime strategy genre where the behaviour of a single unit isnot
losely monitored.5.2.2 The
ollision gridIn order to represent the
ollision grid, the
ollision dete
tor uses the map util-ity pa
kage whi
h is des
ribed in se
tion 4.2. It fundamentally requires two
oordinate systems: a main
oordinate system (the x,y and r properties of
ol-liders are presumed given in this system) and a more
oarse
ollision grid. Thelatter is a tile map
onsisting of
ollision tiles, where a
ollision tile is
apableof storing a list of
olliders.Registration of a unit in the
ollision grid uses the
oordinates and radiusof the
ollider to derive a bounding box, whi
h is easily
ompared � throughthe
oordinate transform provided by the map pa
kage � to the grid elementsof the
ollision map. The
he
king routine des
ribed in the previous se
tion iseasily implemented by traversing the tiles thus overlapped by the
ollider, thenand for ea
h tile
omparing the radii of present
olliders.The a
tual
he
king routine,
he
k, takes a
ollider and a desired lo
ation
(x, y) as parameters and returns whether the spe
i�ed lo
ation is legal (i.e. doesnot overlap with any other
ollider registered in the
ollision grid).The
ollision dete
tor further has a move method whi
h takes similar argu-ments, and whi
h will also move the spe
i�ed entity instead of only performinga
he
k.5.2.3 Further featuresFinally a few utilities of the
ollision dete
tor should be mentioned.First, some entities may naturally be able to move past another while othersare not. For example, infantry units
onsisting of multiple men would be able toenter a building whi
h would be impassable by larger obje
ts su
h as vehi
les.Also infantry squads would be able to walk through ea
h other, whereas aninfantry unit would not be able to move past a tank (whi
h is massive), andtwo tanks would not be able to drive through ea
h other. Therefore the
ollidershould also spe
ify a boolean whi
h determines whether the obje
t is massive.If either of two
olliding
olliders is massive, then the
ollision dete
tors
he
kwill return false. Thus infantry squads
an easily be made to pass through ea
hother or buildings (all non-massive entities).Finally it is sometimes desirable to �
heat�, i.e. not perform stri
t
ollisiondete
tion in order to make the gameplay smoother. For example if it is desiredthat a new unit should enter the map, but there is no spa
e at the desiredlo
ation, it might be best to disable the
ollision dete
tor and allow that unitto overlap others until su
h time as the unit no longer overlaps them (when44

they or the unit have moved). Colliders may therefore be de
lared as ghosts, inwhi
h
ase the
ollision dete
tor
ompletely ignores them until they are de
larednon-ghosts.Regarding implementation, these two properties, whether
olliders are mas-sive or ghosts, are
onveniently en
apsulated in a set of
ollision propertieswhi
h every
ollider must have. The
ollision properties may be retro�tted inlater versions to support an abstra
t notion of height (a �2.5 D� approa
h wherea two-dimensional world is arti�
ially equipped with a few layers representingdi�erent heights) or other
on
epts that
an desirably be modi�ed.The
on
ept of
olliders is
ontained programmati
ally in the interfa
e Collider,su
h that any
lass
an implement it.There is one more fun
tion that
an advantageously be in
luded with the
ollision dete
tor, even though it does not relate dire
tly to
ollision dete
tion:Se
tion 9.3 des
ribes how entities are rendered to the main JWars display. Inorder to lo
alize the entities that are a
tually present on the display, it is desir-able to traverse the tiles used by the
ollision dete
tor. The
ollision dete
torshould therefore also have a

ess to the terrain map. When an entity is moved,the
ollision dete
tor is in this
ontext responsible for dirtifying the a�e
tedterrain tiles, meaning that those tiles should be redrawn during next graphi-
al update. This pro
ess, traversing the overlapped terrain tiles, is
ompletelyequivalent to that of traversing
ollision tiles. With this in mind, ea
h
ollidermust also possess a sprite, the
on
ept of whi
h is des
ribed later in Se
tion 9.3.The
ollision dete
tor thus tra
ks the movement of sprites on the s
reen, su
hthat redrawing
an be skipped in regions where no movement takes pla
e.5.2.4 E�
ien
y and optimizationAt an update speed of 50 Hz, the present implementation of the JWars game
an on the authors' test systems support approximately 1000 simultaneouslymoving units before lagging behind in logi
al framerate. It is, however, possibleto run a logi
al framerate of e.g. 10 Hz (see Se
tion 4.1.4) and perform interpola-tion to ensure graphi
al smoothness between logi
 updates (thus using a highergraphi
al than logi
al update rate). Using su
h an approa
h the performan
e
ould be enhan
ed 10-fold, and would allow the
ollision dete
tor to handle atleast 10, 000 moving entities on our test system, but this �gure
an be redu
edif
ustom geometries are used or if other parts of the logi
 are
omputationallyheavy.5.2.5 Using the
ollision dete
torThe programmati
al interfa
e of the
ollision dete
tor is very simple and
an be
on
isely des
ribed in only few terms:
• The
ollision dete
tor is instantiated by supplying three
oordinate sys-tems, namely the high-resolution main
oordinate system of Se
tion 4.2,a tile map of
ollision tiles and a terrain map (Se
tion 4.3).45

• An entity, te
hni
ally anything whi
h implements the Collider interfa
e,
an be added by
alling the register method, passing a referen
e to the
ollider in question as parameter.
• If an entity is to be moved, the move method should be
alled, spe
ifyingthe relevant entity and its proposed new lo
ation. This method will, asdes
ribed above,
he
k the validity of the new lo
ation for the entity andmove the entity a

ordingly. If a
ollision is dete
ted,
ollision handlingmethods on the
olliders in question will be invoked as required. Finallythis method returns whether the move was su

essful.
• An entity
an be removed from the
ollision dete
tor by
alling the removemethod.If for some reason the lo
ations of entities are
hanged without notifying the
ollision dete
tor, this may result in that entity being registered in in
orre
t tiles.Thus that unit might overlap other units without a
ollision being reported. Thisissue
an be remedied by
overtly en
apsulating the positions of entities withinthe
ollision property su
h that it is impossible to tinker with it from outside;at present we have not deemed this pre
aution ne
essary.5.3 Con
lusionThis
hapter has introdu
ed the JWars
ollision dete
tor, and sele
ted a tile-based approa
h to ensure that the dete
tor a

omodates large amounts of enti-ties e�
iently.It works by registering entities in appropriate tiles using axially alignedbounding boxes. Collision
he
ks are done using the radii of the entities, mean-ing that all units are
onsidered
ir
ular. However an es
ape method is providedthat allows arbitrary geometry.Performan
e-wise the
ollision dete
tor is optimized for large amounts ofunits ea
h with simple geometry, but even if
omplex geometries are used the
ombined use of bounding boxes and bounding
ir
les is likely to eliminate mostof the expensive
he
ks.

46

Chapter 6Path�ndingThe JWars path�nder is a modi�
ation of the well-known A* algorithm, whi
his spe
ialized to handle large and open maps.Path�nding is an essential part of any real-time strategy game as it enablesthe player to
ontrol units without wondering if they make it to the sele
teddestination or not. Requiring the player to �nd the suited paths for all his untisis out the question, as it would be
ome infeasible for any human when the unit
ount rea
hes a large enough number. The best solution is to let the
omputer
al
ulate a path for the unit through the world, whi
h would satisfy the player.The best way is not ne
essarily the fastest, sin
e it
an, for example, be moredangerous to walk on a road when enemies are nearby. It is probably better tosele
t the geographi
ally shortest, whi
h may lead through rough terrain, butthis behaviour is more predi
table for the human player.6.1 Path�nding in general and in JWarsMoving units in RTS games require a path�nding algorithm to navigate aroundimpassable obsta
les. Most game path�nders today extend the normal `single-sour
e shortest path problem' solution to in
orporate unit-to-unit relations,whi
h make units
apable of intera
ting in order to navigate around ea
h otherdynami
ally. For this proje
t we need a path�nder to work on the world ofJWars, while it should still be a viable solution in other world representations.Given the world representation in JWars the path�nder will likely be used onlarge maps, and with no restri
tions on terrain obje
ts shape and size: it willhave to be very adaptive.When moving units in the world of JWars a navigational problem ariseswhen �nding the shortest paths between to points. There exists a range of solu-tions when �nding the shortest path between to points, these solutions howeverhave di�erent requirements for the map in whi
h to navigate.Many
ontemporary RTS games solve the problem by using a tilesystem.When using a tilebased path�nder the world is stru
tured in to tiles and units,47

buildings or other entities take up spa
e by having the ability to o

upy tiles.The map used for path�nding designates tiles with either �used� or �free� asmarkers when s
anning through the map with an algoritm1. This approa
hhas several advantages, like high and
onsistent speed, while it requires a map-stru
ture supporting this to sear
h in. As des
ribed in Se
tion 4.3, we wishbuildings and other terrain obje
ts to have a
ertain amount of �exibility (forexample, small buildings should not have their shape determined by an in�exiblegrid), thus having minimal restri
tions on shape and size. We therefore
hooseto allow polygonal terrain obje
ts, and thus relying solely on a tile stru
ture tosimplify the problem is no longer feasible.For JWars a di�erent approa
h must therefore be used. In order to devisean algorithm we look at the basi
 path�nding problem � an obje
t is blo
kingyour path. The shortest way around an obje
t is to walk around it, either leftor right. Using this idea the algorithm should �walk� (or shoot) in a straight linefrom the starting point towards the destination point until it meets an obsta
le.It will then examine the obsta
le and generate paths left and right around theobsta
le, then shoot again from ea
h side of the obsta
le. Note that when usingpolygonal obje
ts, it will be optimal to walk along the obsta
le's line segmentsuntil rea
hing the
orner from whi
h the destination is again �visible�:
orners
an be used as intermediate waypoints. Eventually it should either rea
h itstarget or de
ide that the target is unrea
hable.6.1.1 The algorithmWe will here as a general overview summarize the workings of the derived algo-rithm. More detailed, but di�
ult, observations will be postponed to the nextse
tions, along with a full des
ription.While running, the algorithm maintains a list of potential waypoints (ornodes)
alled the open list, whi
h works as a priority queue. The priority queuekeeps tra
k of the nodes immediately rea
hable by the algorithm and sorts themusing a heuristi
 evaluation in order to estimate whi
h way will most likely bethe fastest; this will allow the algorithm to guess the
orre
t way without havingto try all
ombinations of left and right whi
h
ould take a long time if it has towalk around many buildings. The example in Figure 6.1.1 shows the algorithmat work in a simple setup. The list of nodes is updated and sorted after ea
hiteration in the algorithm, and nodes whi
h have been a

epted as waypointsare removed from the list (they are no longer potential waypoints).Let us go through the steps taken by the algorithm:1. See Figure 6.1(a). The algorithm is about to shoot from s to t. Having notyet started, the open list
ontains one element, being the starting point s.1Although these are not open sour
e games, meaning that we
annot know for sure, severalobservations support this assertion. For example, buildings
an typi
ally be pla
ed only indis
rete lo
ations, and in some games units in
lose
lusters (notably zerglings in Star
raft)are
learly pla
ed a

ording to a grid. 48

s

t

Open list s(a) About to start. s

t

Open list q p

p

q

(b) An obsta
le blo
ks theway; either walk towards q orp. s

t

Open list

p

q

t p(
) q is slightly shorter.Figure 6.1: A simple path�nding problem.2. On its way the algorithm dis
overs an obsta
le. It determines the �left-most� and �rightmost� points q and p as seen from the starting lo
ation.Having stepped onto the starting lo
ation, s is removed from the open listwhile p and q are now potential waypoints. The algorithm �guesses� thatthe distan
e s-q-t is smaller than s-p-t and therefore it sorts the open listwith q before p, meaning that it will
he
k the most promising path �rst.This is shown on Figure 6.1(b).3. Now q is removed from the open list, as the algorithm shoots from thatlo
ation. Note that p remains in the queue in
ase another obsta
le isdis
overed whi
h makes the
urrent path longer than expe
ted. Howeverno other obsta
le is found, and thus t is rea
hed and added to the openlist whi
h now reads (p,t). The algorithm sorts the list, determining thatthe distan
e travelled (s-q-t) plus the remaning distan
e (0) is still smallerthan s-p-t, then sorts the list whi
h now reads (t,p), see Figure 6.1(
).4. The algorithm �nally terminates when t is removed from the open list.This largely explains how our algorithm works. However there are still un
er-tainties, su
h as the exa
t strategy used to �guess� whi
h distan
e is the shortest.This shall be
ome
lear in the next se
tions.Logi
ally this method favours sparsely populated areas sin
e fewer obje
tswould
reate fewer obsta
les and result in more straight lines. A path�nderbased on a grid system (where the individual tiles serve as nodes) would havesmaller sear
h areas if lots of buildings are o

upying spa
e, thus leaving less freespa
e to be sear
hed through. Our path�nder will have the opposite problem:in large, sparse areas there are few nodes, but a labyrinth would be a mess torepresent be
ause of the s
ores of
orners: our
hosen algorithm is spe
i�
allydesigned to represent large, outdoors areas.49

6.1.2 Data stru
tureMost people pro�
ient within the path�nding area
hoose to run their algorithmson graphs. A good example of an algorithm using graphs is the A* algorithmwhi
h is a shortest path graph algorithm. For �nding a shortest path usinggraphs for data representation, history has shown that the A* algorithm is aviable
hoi
e.In any situation we will need a way to represent possible future waypointsof a moving obje
t as �xed points so e.g. a move order
an be broken downinto multiple segments represented as a graph. Given a graph represented asfollows:
G = (V, E).

V is a list or other representation of all the verti
es (or nodes) in the graph.
E is a representation of the edges in the graph. An edge is best seen as a linkbetween two verti
es - meaning that you
an go from vertex v1 to vertex v2 ifthey are
onne
ted by the edge e(v1, v2). We shall also introdu
e the weight ofan edge,
orresponding to the amount of time (or the
ost) it takes to traverseit, whi
h is given by a weight fun
tion w : E 7→ [0, infinity].Given a graph with a
hosen data stru
ture there are several possibilites tosolve the single-sour
e shortest path problem from vertex A to B. Most of thesealgorithms are based on sele
tive expansion of the sear
h area, as these have thebest running times with the fewest verti
es visited � like the A* algorithm.The path�nding in JWars has some requirements to the algorithm whi
hwe must take into a

ount before �nally
hoosing a solution. The most pressingissue is to handle the dynami
 and rather limitless implementation of units andother obje
ts in the world (re
all that the
ollision dete
tor, Chapter 5, allowsarbitrarily sized units and obsta
les). We have
hosen a very open approa
hwhi
h imposes only limited restri
tions on unit and building lo
ation, size andgeometry, whi
h however
ompli
ates the �nal form of a path�nding solution.Any building or unit
an be pla
ed anywhere on the almost
ontinuos map andwill thus not e.g. �ll out a prede�ned amount of tiles in the world. In orderto perform path�nding we need a

ess to the units and obsta
les pla
ed in theworld. Therefore the most obvious data to use for path�nding are the a
tualobje
ts stored in the
ollision dete
tor, Chapter 5.If we are to use the obje
t data some rules have to be de�ned, or the amountof di�erent s
enarios is limitless. An e�e
tive yet relatively simple way to thisis, as mentioned in the pre
eding example, to represent obje
ts as polygons.More spe
i�
ally it proves ne
essary to allow only
onvex hulls. Convex hullshave many properties whi
h make the basi
s of handling and
al
ulating a loteasier. If we do not establish ground rules like this the more e

entri
 obje
tswill be impossible to handle.In this proje
t it is the data representation and requirements for the worldmodelling whi
h for
es us away from the normal path�nding implementations.For this game we will have to
ome up with a rather unique path�nding solution.50

As stated above the best data for these
al
ulations are the terrain obje
ts sin
ethey alone
ontain the relevant data. A solution to a path�nder using only theterrain obje
ts
an be as simple as walk towards the goal, if you en
ounter anobsta
le walk around it and
ontinue towards the original goal. On this basis wehave developed a path�nder whi
h is based on the A* algorithm and employsa heuristi
 estimation of the distan
e from any node to the goal. The JWars-path�nder is meant for 2D purposes only and in this
ase a straight line towardsthe goal will result in the most optimisti
 evaluation a node
an get.6.2 ImplementationFor using the path�nder some unique
lasses have been implemented. Thepath�nder is designed to work on obje
ts of the
lass TerrainObje
t. Allterrain obje
ts have a list of path�nding nodes whi
h the path�nder uses asverti
es. In order to work on the path�nding nodes using the A* algorithm,the vertex must possess several attributes. These attributes are as follows: areferen
e to the an
estor of the vertex (i.e. the previous node in the path)and three integer values whi
h we
all f ,g and h. The three integers are allmeasurements of distan
e. The variable f holds the distan
e travelled duringthe algorithm to the
urrent node. g holds a heuristi
 evaluation (or guess) ofthe distan
e to the goal from the
urrent vertex, and h is the sum of f and g.The attributes of the path�nding node are essential for understanding the morete
hni
al des
ription of the path�nder.The implementation we have
hosen for the path�nding is to transform thedynami
/open implementation of the JWars-world to a graph-system on whi
hwe
an perform a sear
h algorithm. For a

omplishing this we have implementeda dynami
 graph with the following rules and de�nitions.For every path needing to be found we start with the given graph for the
urrent map G = (V, E). V
onsists of all
orners of stati
 obje
ts �
onvexhulls � on the map. This data is stored in the
ollion map. E is an empty list.2The start and goal lo
ations are
onsidered verti
es3 whi
h are spe
i�ed forea
h run of the algoritm.6.2.1 Expanding and sear
hingThe algorithm is started by
alling the method findPath with an end
oor-dinate and the unit for whi
h a path should be found. As explained later thepath�nder returns unique solutions to spe
i�
 settings. Calling the method withtwo di�erently sized units
an yield two di�erent results. This will be des
ribedto depth later in this
hapter.2If it were to be a pre-de�ned list for E it should
onsist of all possible routes betweenany verti
es on the map. This amount of data would be hard to handle and if the amount ofstati
 obje
ts were large enough it would require a lot of memory spa
e.3The path�nder
ontains a spe
i�

lass for this purpose
alled Target. This
lass extendsthe the PathFindingNode
lass and
an also be registrered in the
ollision dete
tor.51

Given the start
oordinates as the unit's
urrent lo
ation and the end
oor-dinates as argument to the method, we
an
reate the start vertex and add itto the priority queue. The path�nder uses the standard loop from A*, whi
hmeans it expands the sear
h area from the �rst element of the priority queue;it will therefore be for
ed to sele
t the start node for the �rst iteration. In astandard implementation of A* the priority queue will be referred to as the openlist.Taking into a

ount that all distan
es travelled are straight lines, we
analways be sure that we have the shortest possible path between any two givennodes if we use the �relax�-
on
ept as in [2, p. 586℄ when des
ribing Dijkstra'salgorithm. A path�nding node's g-s
ore is simply
al
ulated as the distan
efrom the
urrent node to the goal lo
ation. The g-potential will ensure that anode having travelled less than others and having the possible result of gettingdire
tly to the end node will be next in the priority queue. This approa
h meanwe
an safely terminate the algorithm upon rea
hing the goal lo
ation andhave the shortest path possible without further extending the sear
h area. Forextending the sear
h area we let the algorithm draw a line between two nodesand
he
k the line for
ollisions. This is done using the expand fun
tion in thepath�nder. Having the loop sele
ting a new node to expand by ea
h iterationwe will now explain the expand fun
tion and how this works in the world ofJWars. When expanding a node we seek a
tivate nodes whi
h
an be rea
hedin a straight line from the
urrent node. We do not seek all possible nodes,merely those who will prove bene�
ial for further sear
hing. When expanding anode we expand it towards another node - this being either the target node orthe
orner of an obje
t. The expand fun
tion is used for expanding the sear
harea of the algorithm as it adds newly dis
overed nodes to the priority queue. Ifthe path between two nodes is not blo
ked by any obje
t, we
an safely add thetarget node to the priority queue, as we
an guarantee a dire
t path betweenthe two nodes exist. If an obje
t is blo
king the route between the two nodes,we try to �nd a way around the obje
t by
alling the expand re
ursively.The expand method determines how to expand the sear
h tree, by �ndingobsta
les and re
ursively sear
hing the paths left or right around them. Writtenin pseudo
ode, reads:expand(sour
e, destination, unit){[use Bresenham's algorithm℄tileList = getTileList(sour
e, destination)obsta
leList = getObsta
les(tileList)for ea
h obsta
le in obsta
leList{ if(path might interse
t obsta
le){ angle = angle from sour
e to destinationminAngle = angle from sour
e to obsta
le's leftmost
ornermaxAngle = angle from sour
e to obsta
le's rightmost
orner52

if(minAngle < angle < maxAngle){ expand(sour
e, leftmost
orner of obsta
le, unit)expand(sour
e, rightmost
orner of obsta
le, unit)}}}} If we hit the wanted path�ndingnode while �nding min and max valuesthe node will be added to the priority queue and is then a
tivated for futureexpansion a

ording to the heuristi
 evaluation.The re
ursive
all to the expand fun
tion enables the fun
tion to a
tivateseveral edges leaving one node thus a
tivating all relevant edges for leaving the
urrent node. A single node expanded
ould follow Figure 6.2Every time a position (path�ndingnode) is grey, Figure 6.2, it has beenadded to the priority queue by the expand fun
tion. When the expand fun
tionsu

esfully makes
onta
t with the targetted node we update the target nodewith the relevant data for the A* algorithm to run as intended. The updatemethod will reevaluate the three values needed for sorting and evaluating nodesin the list so we
an expand further a

ording to the heuristi
 evaluation. Finallyit will set the an
estor of the given node to the node from whi
h we
ame. Intheory no edges are represented in E. When a node is expanded we get a setof edges based on the
urrent path�nding problem. The expand fun
tion isessential for this path�nder as it is the major di�eren
e between our path�nderand a more
onvenitonal path�nder with de�ned edges for ea
h verti
e.In JWars the
lass PathFindingNode has been implemented solely for thepurpose of path�nding and has all the needed attributes for being handledas a verti
e. A path�nding nodes settings is
al
ulated from the blueprintwhi
h determines the obje
ts size, shape and positioning. A very importantfeature of a path�ndingnode is the ability have a stati

oordinate and a dynami

oordinate. This ability is ne

essary for the path�nder to �nd a path based onthe Moveable's radius. When
reating a PathFindingNode a ve
tor is
al
ulatedbased on the two adja
ent
orners in the obje
t
reating an indent dire
tion.When multyplying this indent dire
tion with the unit radius we get an indentedlo
ation. This lo
ation is the dynami

oordinate whi
h will be
al
ulated in ea
hrun through the path�nder for all relevant nodes. In order to lo
ate obsta
lesin a line between two points, the path�nder uses a spe
ially endowed tilemap
alled a LineDrawCapableMap.The LineDrawCapableMap
omes with a method whi
h utilises Bresenham'sline drawing algorithm to �nd a list of tiles based between two points on the map.A LineDrawCapableMap
an be
onstru
ted on top of an ordinary tilemap,providing the line drawing
apability to a tilemap whi
h originally
ould noto�er this fun
tionality. Spe
i�
ally we want to endow the
ollision map (seeChapter 5) with the ability, sin
e this is an obvious way of �nding obsta
les on53

(a) By �rst expanding towards the targetobje
t A is found to blo
k the path (b) When expanding towards the
ornersof A, one
all is su

esfull and
an addA's
orner to the priority queue while theother �nds obje
t B to blo
k

(
) With B blo
king the sear
hed route to-wards A's se
ond
orner we need to estab-lish routes towards B's
orners. (d) Both expands towards Bs
orners aresu

essive and they are added to the pri-ority queue.Figure 6.2: A single iteration in the loop of the path�nder. The expandfun
tion
alls it self repeatedly so all needed nodes are found.
54

the path. From the LineDrawCapable map a list will be returned
onsisting ofCollisionTile's from the
ollision map. The line drawn between the two points
an be ordered in any thi
kness (measured in
ollision tiles) required for unitslarger than the standard
ollision tile. Using the list of
ollision tiles we havea

ess to all registrered obje
ts in the va
inity of the sear
hed path.When
he
king a building for
ollision we take several steps before
on
ludingthat a
ollision will o

ur. The free positioning and shape of obje
ts makes asimpel point-to-line distan
e worth
al
ulating. This will ensure that buildingswith no
han
e of interfering with the sear
hed path will be ex
luded from the
he
k early on. The se
ond step is to
al
ulate all angles to the the indentedlo
ations in the
urrent obje
t. Cal
ulating the largest and smallest angle we
an perform a
he
k wether the line is between these two angles. If we dete
ta
ollision with the obje
t, we enfor
e the rule about all obje
ts being
onvexhulls for path�nding issues. If we need to go around the obje
t we referen
esto the largest and smallest angle to the obje
t. Now we simply expand towardsthese nodes as stated in the pseudo
ode for the expand fun
tion.By using the dynami
 expand dun
tion we have a new setup and all nodes
ould produ
e a new set of edges everytime we use the path�nder. We do notstore the individual edges but merely a
tivate those dis
overed by the algorithmupon expanding a node. Using this approa
h we expand the graph a

ordinglyto the A* and update the nodes found by the expand fun
tion. 4 The operationthat makes this algorithm stand out is the expand fun
tion whi
h a
tivatesverti
es/edges while sear
hing for the path.An important aspe
t of the
hosen solution is that it is only dependant onthe game implementation of the
ollision dete
tor. If a developer wants to usethis path�nder it is fairly easy to
onvert to a di�erent setup - a
onversionwould need a fun
tion
apable of dete
ting a
ollision between a game obje
tand a straight line from point A to B.When running the algorithm we have some settings whi
h is restored afterea
h usage. Initial settings:
• All nodes are initialized with h = g = ∞.
• The list of verti
es to expand - the open list - is initialized empty.6.3 Final designThe algorithm is designed for terrain with a sparse obje
t population. Withfewer obje
ts we get a shorter runtime as the
han
e of hitting an obje
t blo
kingthe sear
hed path diminishes. When there is fewer obje
ts the path�nder has toexamine and get around it will redu
e the runtime signi�
antly as the expandfuntion
an be
alled re
ursively. This is the exa
t opposite when using theearlier mentioned path�nders based on a grid layout for the graph. In a gridwhere a
ertain amount of spa
e taken by obje
ts the graph will be diminished4A more formal word for the update method is to relax the edges adja
ent to the node �in this
ase we update the nodes found by the expand fun
tion55

Figure 6.3: The illustration shows the path�nder tra
king around thelarge obje
t on its way to the target zone. The fastest route however is toignore the large obje
ts and go straight for the smaller building, around,and then for the goal.and making the path�nder runtime shorter. This make the path�nder in JWarssomewhat spe
ialized as it favourites a
ertain type of terrain but will stillfun
tion on densely obje
t populated terrain.The expand fun
tion su�ers one fatal error. It
an fail in �nding all thene

essary edges leaving it. An example of this situation is shown in Figure 6.3.It is
learly that a
quiring the nodes on the smaller building would be thefastest route to the target X . The path taking the moveable
loser to the obje
thowever, �ts a standard ta
ti
al manouvre, where
overs means safety fromenemy �re. In the real world obje
ts on the battle�eld would be used by unitsto hide their positions or make up defenable position. One other error whi
h
an be for
ed by a programmer is
reate a single stru
ture from multiple
onvexhulls. We have already stated that in order to have non-�awed data obje
ts mustbe
onvex hulls. If a programmer
hose to make
reate a 'U' formed building
onsisting of 3 re
tangles, the path�nder would not return a path to the target,merely a path inside the 'U' where it would remain stationary.The �aw in the expand fun
tion
ould be �xed by adding in a do/while-loopin the update fun
tion or a similar �tting pla
e.
urrent = this;do(if(expand(this,
urrent.an
estor)){ 56

this.update(
urrent.an
estor, goal);}else{
urrent =
urrent.an
estor; })while{
urrent != start }Pla
ing this pseudo
ode in the implementation would make the path�nder
he
k all nodes leading to node whi
h we just found. It would
ut some
ornersand make the implementation �nal but have not been in
luded in this �nalrelease.Some path�nders have been expanded to fore
ast other units walk patterns,and to take these into their own
al
ulations when sear
hing for a path. Thispossibility do not arise in a world whi
h is not grid-based sin
e the possibiltyto �rent� map spa
e is not available. Unfortunately this option will never beavailable to a path�nder based solely on the terrain obje
ts themselves. Inthe real world however it does make sense not to let all allies know whereyou are all the time. This general rule should apply to all RTS games aimingfor realism. For solving the issue with units sharing knowledge and optimisingpaths another type of data would be needed. Implementing a system for units to
ommuni
ate and plan their movements so
ially
an be implemented. Currentlythe walkAround method in the MoveableAI
lass makes up for
ollisions. Thismethod should be extended to take unit-to-unit
ommuni
ation into a

ountfor smarter move patterns on the small s
ale. We have experien
ed some issues
on
erning two di�erent systems both
apable of giving orders to units as theyhave a tenden
y to work against ea
h other.

57

Chapter 7Dynami
al game obje
tsUntil now we have des
ribed several
omplex modules, notably the
ollisiondete
tor and path�nder. This
hapter will des
ribe the a
tual inhabitants ofthis world, how they are organized, whi
h variables they must have and theirbehaviour.7.1 Unit organizationA
entral
on
ept of all strategy games is the basi

ontrollable unit, rangingfrom individual men and vehi
les in some games to division-s
ale (as in theCivilization series). The
on
ept of units in JWars di�ers fundamentally fromthe
orresponding
on
epts in other realtime strategy games, borrowing featuresfrom turn-based strategy games and real-world military hierar
hies. This
hap-ter will provide reasons for and des
ription of the JWars unit organization andits advantages. The ideas presented below
onstitute the most important singlereason for the existen
e of JWars, distinguishing it from all strategy gamesknown by the authors, and this is therefore the most likely feature to makeJWars �famous� if su
h a thing should happen.7.1.1 Real-world military organizationAll modern militaries are remarkably similar in their organizational stru
ture.More or less
onsistently, the armed for
es are divided into several armies whi
hare su

essively divided into
orps, divisions, brigades, battalions,
ompanies,platoons and individual vehi
les or squads of infantry. Commanding o�
ers areassigned on ea
h of these levels, and the organizational stru
ture allows largeamounts of for
es to be
ontrolled as a single entities. The high-level entities aregenerally referred to as formations whereas the lower-level ones (whi
h
omprisee.g. purely infantry) are
alled units.In most
ases, ea
h unit
omprises three or four units of the next smallertype. For example a battalion might
ontain four infantry
ompanies plus sup-58

porting anti-tank or mortar units. Infantry
ompanies usually
onsist of threeinfantry platoons and possible further support. A platoon
an
onsist of three10-man infantry squads, ea
h man being armed with a ri�e ex
ept for a lightma
hine gunner and an anti-tank team.Generally it is pra
ti
al for the
ommanding o�
er at a parti
ular level oforganization to dire
tly
ontrol units up to two levels down in the hierar
hy.Thus a divisional
ommander exerts dire
t
ontrol of a number of brigades, andto a limited degree the battalions. The individual formations and battalionsare assumed
apable of
ontrolling their own
omponents. It is obviously notpra
ti
al for a
ommander at a very high level to
ontrol vast amounts of singletanks.7.1.2 Military
ommand in
omputer gamesThe
ategory of
omputer games in whi
h the player
ontrols a large militaryfor
e with the obje
tive of defeating a similar for
e in battle
an be divided intotwo primary groups: real-time and turn-based strategy (or ta
ti
al) games. Inany
ase the player usually has a for
e whi
h
onsists of units.Some turn-based games, su
h as the Steel Panthers series, attempt to a
hievevery high degrees of realism, in
luding realisti
 weapon spe
i�
ations, provide astru
turing of units into a true military hierar
hy, and sometimes these gamesin
lude s
enarios that a

urately depi
t the orders of battle (the unit stru
tureand equipment) of the histori
ally involved formations. In Steel Panthers, forexample, the player has unlimited time to
ontrol every single entity no matterthe size of the entire army. For very large battles, the player who spends themost time is likely to win. While the units may be organized into platoonsand
ompanies, the player still has to
ontrol the for
es at the single-vehi
leor single-squad level, and platoons are thought of as abstra
t entities and nota
tually units.In real-time games the situation is di�erent. First and foremost, the degree ofrealism is rarely very high, with tanks being able to shoot less than 100 metresand nu
lear weapons frequently being a native part of the battle�eld. Asidefrom the ahistori
al anti
s, the
ontrollability of for
es be
omes very importantbe
ause the player
annot take arbitrarily long time to issue orders. Generallythe units are not organized at all, meaning that the player has dire
t
ontrolof every unit. This means that as the game grows in
omplexity,
ontrollingthe units be
omes ever more demanding, and the player who is fastest withthe mouse frequently wins out due to the better ability to pull wounded unitsout of harm's way, bring reinfor
ements forward qui
kly, and possibly manageresour
es at the same time.To fa
ilitate somewhat e�
ient
ontrol, real-time games generally allow theplayer to drag a sele
tion box on the battle�eld with the mouse to obtain mo-mentary
ontrol of whi
hever units are inside the box, and every order issuedwill apply to this sele
tion. Another feature is to organize units into
ontrolgroups, su
h that the player
an use hot keys to sele
t i.e. a group of aeroplaneseven though they are not near ea
h other (and therefore di�
ult to drag a box59

Figure 7.1: Example of a unit tree. Only the nodes with downwardpointing arrowheads are expanded. This is part of a s
reenshot fromJWars.around). Control groups
an be e�e
tive, but it
an be di�
ult to managethem parti
ularly if new units are produ
ed
ontinuously, sin
e they have to bemanually in
luded in the groups.7.1.3 Tree-based unit representationMany proponents of turn-based games s
o� at the stress and dependen
e onqui
k mouse a
tion in real-time games, using ni
knames su
h as real-time
li
kfests, while many real-time players �nd turn-based games boring.JWars proposes the use of an expli
it military hierar
hy to help
ontrolfor
es of arbitrary size in real time qui
kly and e�
iently, redu
ing the need forqui
k mouse a
tions. Sin
e the for
es
an be almost arbitrarily large, the gameworld might as well be expanded past that of most games. This will furthermitigate the importan
e of fast mouse a
tion, sin
e the time s
ales involvedin most operations will in
rease. On the other hand, the redu
ed relian
e onmouse a
tion in
reases the relative importan
e of ta
ti
al thinking, whi
h willhopefully appeal to both turn-based and real-time players alike.There is one possible drawba
k of this model, namely that the stru
turing ofunits may not be as the player wants, and that the expli
it tree stru
ture la
ksthe �exibility to use units individually. Nonetheless the stru
ture is identi
alto that of real military units, whi
h makes it a marketable feature regardless of
ontrollability.Figure 7.1 shows an example of a military hierar
hy in the
urrent version ofJWars. This battalion
onsists of 116 individual entities (vehi
les or separateinfantry squads),
omprising 344 infantrymen and 36 tanks or assault guns.It has now been established that all
ontrollable entities in JWars should60

be organized into a military hierar
hy. This is the
ornerstone of the entirephilosophy of JWars: the player should not need to distinguish between
on-trolling single vehi
les or larger units su
h as
ompanies. To help enfor
e thisprin
iple, the
on
ept of a unit, whi
h in previous games has always referred tosingle physi
al entities (su
h as tanks) shall in the JWars
ontext refer to any
ontrollable entity.With this in mind we have de�ned a base
lass of
ontrollable entities
alledUnit, whi
h has the two sub
lasses Moveable and Formation, where the formerrepresents a
tual physi
al entities su
h as vehi
les while the latter represents anabstra
t
on
ept su
h as a
ompany or platoon, and
an
ontain any numberof sub-units (su
h as platoons or vehi
les, themselves being either subforma-tions or physi
al entities). Formations and moveables are dire
tly
ontrollable,presenting the same interfa
e to the user.The game world
ontains a single unit whi
h serves as the root of the hi-erar
hy. Entities
an be added to the world, meaning that they are added assub-units of the root unit. There are presently two teams in JWars, Germanyand the Soviet Union. The teams are examples of formations themselves. Ea
hteam
ontains two battalions, and ea
h battalion is
omposed of several di�erentinfantry and tank
ompanies.7.1.4 Network distinguishability of unitsThe usage of a root and the unit tree give us
onvenient referen
es between unitsand their sub-units. Suppose we want to send a
ommand a
ross the networkapplying to a parti
ular unit. We must be able to pi
k out the
orrespondingunits on all
lients in the game. A unit is uniquely identi�ed by its positionin the unit tree, whi
h makes it unne
essary to devise another datastru
ture inorder to distinguish units over a network.This relationship has been implemented with a system whi
h we
all a unittree ID. Ea
h unit in the game has a unique ID stored in a single integer whi
henables us to send orders over the network regarding spe
i�
 subtrees. Whenan order is given a unit ID a

ompanies it, and the network ensures that whenexe
uted the relevant unit ID is used. The ID tagging is ordered by a singleinteger split into 6 layers of 5 bits. Ea
h 5-bit layer designates whi
h sub-formation to
hoose from the
urrent formation � starting from the root. Thismeans that the limitations on the unit tree is maximum 311 sub-formations anda maximum total of 6 layers. It
ould be argued that a using a long wouldsupport larger for
es yield a more �exible unit tree, but this transformation hasnot been done yet.7.2 Game data managementThis se
tion des
ribes the data management strategy used in JWars. [1, p.55℄ de�nes a data-driven system as �...an ar
hite
tural design
hara
terized by a1If the
urrent layer reads �0� we have rea
hed the wanted formation61

separation of data and
ode�. Su
h an approa
h is useful for numerous reasons.First of all, trivial matters su
h as
hanging the range of a
annon hardly warrantre
ompilation of the sour
e
ode. It is preferable that the game
ontent
an be
hanged without even knowing the
ode, su
h that di�erent people
an take
are of programming and game
ontent.This will also make it possible for players to modify the game to providetheir own units and weapons. For example,War
raft III is highly re
on�gurableand there exist large sub-
ommunities of War
raft III players that play
ustommodi�
ations of the game2.JWars in
ludes a loading routine whi
h reads game data from external �les,then
onverts the data into
ategories whi
h are fa
tories for
reating variousgame obje
ts.a7.2.1 Inheritan
e versus data-based game obje
t
lassi�-
ationJWars
ontains several di�erent types of units, su
h as tanks and infantrysquads. Further there are di�erent types of tanks, su
h as PzKpfw IV and T-34. We note two basi
 ways of dealing with su
h variations, inheritan
e andpurely data-based
lassi�
ation.Common lessons in obje
t oriented programming des
ribe how the abstra
t
lass Animal
ould have an abstra
t sub
lass Fishwhi
h
ould have non-abstra
tsub
lasses su
h as An
hovy or Lamprey. It would be possible to use a purelyinheritan
e-based hierar
hy, meaning that there should be a
lass
alled PzKpfwIV.But even so there were made variations of this tank. Does this warrant yet an-other level in the inheritan
e hierar
hy?On the other hand one
ould use only one kind of unit, then provide alarge amount of data to
ategorize the unit. For example type=infantry. Theproblem is that if �ying units are introdu
ed, then every ground unit mustsomehow state that it
annot �y. This
an be
ome very
umbersome.The natural solution is to use inheritan
e3 only in those
ases where fun
-tionality di�ers greatly. For example, sin
e infantry squads do not have a turretwhi
h
an turn around, it makes sense to use a Tank
lass whi
h has one, whereasthe other
lasses need not. The inheritan
e relationship between di�erent typesof units in JWars is seen in Figure 7.2.7.2.2 Category modelModelling a tank requires a
ertain amount of data. For example it has amovement speed, turning speed, a
annon, any number (usually two or three)of ma
hine guns, front armour thi
kness, side armour thi
kness and the list goeson. It would be in
onvenient for the programmer to supply all this data every2Notably there are
ountless variations of �Tower Defense� maps where the players build de-fensive towers to defeat on
oming
omputer-
ontrolled hordes, and the widely played �Defenseof the An
ients� modi�
ation.3Languages whi
h do not support inheritan
e
an use delegation instead62

Unit

MoveableFormation

VehicleInfantrySquad

Tank AssaultGunFigure 7.2: Di�erent unit
lasses by inheritan
e hierar
hy.time a tank needs to be
reated, espe
ially if hundreds of tanks are
reated, andparti
ularly be
ause most of these tanks are identi
al anyway.One solution is to use the fa
tory pattern, i.e. a software
omponent whi
h
an
reate any number of units of some type. Suppose every type of unit hasits own fa
tory,
alled a
ategory. The
ategory has to
ontain all the data onwhi
h the units of that type rely, but the
ategory does not have to provideany other fun
tionality than that of
reating units. By letting units have dire
ta

ess to their
ategory and its data, they need not store the data expli
itlythemselves. The
ategories thus serve as both fa
tories and data repositoriesfor the unit type they represent.To re
apitulate, every unit type, that is, every
on�guration of infantry squadand every model of vehi
le is represented by a unique
ategory obje
t : there is aT-34
ategory for the T-34 tank, a Ri�e squad
ategory for the Ri�e squad andso on.Note that when inheritan
e or delegation is used to distinguish types of unitssu
h as infantry and tanks, their respe
tive
ategories must be able to make thisdistin
tion too; it follows that
ategories should be organized in a similar andparallel inheritan
e hierar
hy, see Figure 7.3.It is not just physi
al entities (su
h as tanks) whi
h bene�t from using
ate-gories. Categories are used to
lassify all
omplex in-game
omponents, in
lud-ing tank hulls, tank turrets (it was not un
ommon for di�erent turrets to bemounted on the same hull type) and weapons. A tank
ategory, for instan
e,holds referen
es to its hull, turret and weapon
ategories. Aside from enablinglogi
al stru
turing of data, this allows an SU-85 tank destroyer (whi
h histori-
ally used the T-34 tank's
hassis) to use the hull armour data of a T-34 tank.Also many of the infantry squads in the game use the same ri�es, ma
hine gunsand grenades. 63

Figure 7.3: Parallel inheritan
e hierar
hy of unit
lasses in JWarsand
ategory
lasses. The fully inked arrows denote inheritan
e rela-tionship, while the dashed lines denote
orresponden
e between a
lassof unit and a
lass of
ategory.7.2.3 Content loading by
ategoriesJWars provides a data manager whi
h serves as a
entral data repository.As promised earlier, game
ontent is read from external �les. The
entraldata manager
an
onveniently be used to parse data�les
ontaining game data,and
ategories
an be
reated dynami
ally from data obtained in this way. Thedata�les are stored in a
ustom, human-readable format, see Tables 7.1 and 7.2whi
h show examples of data�le entries.When the data manager loads a �le, it parses the words in the �le (separatedby whitespa
e) in sequen
e. First it reads the
ategory type identi�er (�weapon�or �tank� in the above examples) and uses the type identi�er to determine the
orre
t
ategory
lass (e.g. WeaponCategory or TankCategory). Then the datamanager invokes the
orresponding
ategory
onstru
tor whi
h is responsiblefor parsing the remaining text from a parti
ular data�le entry. Noti
e that oneof the top entries in ea
h data�le entry is an identi�er. When the data managerhas loaded a
ategory, the
ategory is stored in a di
tionary, using the identi�eras a key. The
ategory
an then be a

essed from the data manager by providingthat identi�er.Table 7.2, whi
h de�nes the PzKpfw-IV tank
ategory, holds a list of weapons.The weapon names given in the list are the identi�ers of weapon
ategories.Thus, as the PzKpfw-IV
ategory loads, it
an retrieve the spe
i�ed weapon
ategories from the data manager through the weapon identi�ers, and get holdof the weapon
ategories.When �nally a PzKpfw-IV tank is
reated, the PzKpfw-IV
ategory
an useits list of weapon
ategories to
reate the
orresponding weapons for the tank.The military hierar
hy is similarly
reated by means of formation
ategories.Formation
ategories hold referen
es to sub-unit
ategories (so a
ompany
at-egory
ould hold a list of platoon
ategories, whi
h
ould hold a list of infantrysquad
ategories). When the formation
ategory is used to
reate a formation,it will automati
ally result in the
reation of the sub-units too. For example,
reating an infantry
ompany will result in the
reation of the four infantryplatoons of whi
h the infantry
ompany
onsists. The
reation of ea
h platooninvolves the
reation of the relevant infantry squads, whi
h again involves the64

Category

UnitCategory WeaponCategory

FormationCategory MoveableCategory

TankCategoryInfantryCategory AssaultGunCategory

Sturmgeschuetz
SU-85

T-34
PzKpfw-IV
Tiger
KV-1

Infantry squad
SMG squad
Panzerfaust team

75mm Kwk40 L48
76mm F-34 Gun
Karabiner 98k
Molotov cocktail

Battalion
Rifle company
Rifle platoon

Figure 7.4: Categories. The
ontinuous boxes indi
ate
ategory
lasseswhereas the dotted boxes list examples of a
tual
ategory obje
ts of the
orresponding
lass. Arrows indi
ate inheritan
e.
reation of weapons for ea
h squad.7.2.4 Con
lusionWe have now developed a system to manage game
ontent by editing text �les,i.e. without having to know or tou
h the
ode. External data �les de�ne weapontypes, infantry squads of di�erent sizes using di�erent weapons, and tanks whi
h
an be
reated from a
entral data repository whi
h is loaded at runtime. Thegame already in
ludes �ve kinds of infantry squads, four kinds of tanks and twoassault guns. The standard formations, su
h as platoons and
ompanies, intowhi
h the for
es are organized are de�ned in a similar manner.7.3 Unit AIThis se
tion is devoted to the unit AI framework. In this
ontext, AI meansrelatively simple
odes for organized behaviour as opposed to e.g.
omplex andunpredi
table behaviour whi
h may be desired in other games.7.3.1 Hierar
hi
al stru
tureMost realtime strategy games in
lude two kinds of AI: �rst there is a simpleAI whi
h
ontrols the low-level behaviour of the individual units. This AI is65

Type & identi�er weapon 75mmkwkFull name "75mm Kwk40 L48"Firing range 1.2 kmE�e
tive range 500 mReload time 8.1 sFirepower data ap 120 16Explosion type mediumexplosionSplash radius 5 mTable 7.1: The data�le entry de�ning the weapon
ategory
orrespond-ing to a German 75mm Kampfwagenkanone (tank gun). The right
ol-umn
ontains the a
tual lines in the data�le, while the left
olumn isonly for des
ription. The �repower data
omprises ammo type (armourpier
ing), armour penetration (in millimetres) and �kill index� (e�e
-tiveness against infantry).
Type & identi�er tank pzivFull name "PzKpfw-IV"Radius 3.8 mSpeed 24 km/hTurn rate 1.4 /sBegin weapon list beginMain gun 75mmkwkMa
hine gun mg34Ma
hine gun mg34End weapon list endHull type pzivhullTurret type pzivturretTable 7.2: Data�le entry de�ning the German Panzer IV tank. Theentries in the weapon list are identi�ers of weapons. Noti
e the identi�erof the tank gun from Table 7.1. The other guns and the hull and turrettypes are also identi�ers of
ategories. These in
lude �lenames of imageswhi
h are used to display the
omponents.

66

responsible for automati
ally doing tasks whi
h are trivial, su
h as �ring atenemies within range or, if the unit is a resour
e gatherer, gather resour
esfrom the next adja
ent pat
h if the
urrent pat
h is depleted su
h that theplayer needs not bother keeping tra
k of this. The other kind of AI is theseparate AI player whi
h
ontrols an entire army, and whi
h is in
ompatiblewith the interferen
e of a human player. This AI is responsible for larger ta
ti
aloperations su
h as massing an army or responding to an atta
k.In JWars, as we shall see, there is no su
h
lear distin
tion between di�erentkinds of AI. Be
ause of the hierar
hi
al organization it is possible to assign anAI to ea
h node in the unit tree, meaning that while every single unit does havean AI of limited
omplexity to
ontrol its trivial a
tions, like in the above
ase,the platoon leader has another AI whi
h is responsible for issuing orders to ea
hof the three or four squads simultaneously, and the
ompany leader similarly isresponsible for
ontrolling the three or four platoons. It is evident that thismodel
an in prin
iple be extended to arbitrarily high levels of organization,meaning that it will easily be equivalent to the se
ond variety of AI mentionedabove: the entire army
ould e�
iently be
ontrolled by AI provided that theAI elements in the hierar
hy are
apable of performing their tasks individually.There are numerous bene�ts of su
h a model, the most important of whi
hwe shall list here.
• Ta
ti
ally, if one unit is atta
ked the entire platoon or
ompany will beable to respond. In
lassi
al realtime strategy games this would result ina few units atta
king while the rest were standing behind doing nothing.Thus, this promotes sensible group behaviour whi
h has been la
king inthis genre sin
e its birth.
• It is easy for a human player to
ooperate with the AI. For example it issensible to let the AI manage all a
tivity on platoon and single-unit levelwhile the player takes
are of
ompany- and battalion-level operations.This will relieve the player of the heavy burden of mi
romanagement whi
hfrequently de
ides the game otherwise (as asserted in se
tion 1.2.1). Thus,more fo
us
an be dire
ted on strategy and ta
ti
s instead of managingthe
ontrols.
• The
ontrols may, as we shall see below, be stru
tured in su
h a wayas to abstra
t the
ontrol from the
on
rete level in the hierar
hy. Thismeans the player needs not bother whether
ontrolling an entire
ompanyor a single squad: dispat
h of orders to an entire
ompany will invoke the
ompany AI to interpret these orders in terms of platoon operations. Ea
hplatoon AI will further interpret these orders and have the individual units
arry out the instru
tions appropriately.
• A formation-level AI
an
hoose how to interpret an order to improve e�-
ien
y. For example the player might order a platoon to atta
k an enemytank, but the platoon AI might know that ri�es are not e�
ient againstthe tank armour. Therefore it might
on
eivably
hoose to employ only67

the platoon anti-tank se
tion against the tank while the remaining platoonmembers
ontinue e.g. suppressing enemy infantry. These
onsiderationsare easy for a human player, but
annot be employed on a large s
ale sin
ethe human
annot see the entire battle�eld simultaneously. On
e againthis eases mi
romanagement.There are, however, possible drawba
ks of the system.The worst danger of employing su
h an AI stru
ture is probably that the AImight do things that are unpredi
table to or
on�i
ting with the human player.Care must be taken to ensure that human orders are not interfered with, andthat the behaviour is predi
table to humans4.From a game design perspe
tive it might also be boring if the automatizationis too e�
ient, leaving the player with nothing to do. This problem, of
ourse,
an be eliminated simply by disabling
ertain levels of automatization. It is alsounlikely that the AI at higher levels of organization
an ever outwit a human
ommander, making sure that human intera
tion is still required.7.3.2 Design
onsiderationsIt was stated above that the
ontrol of single entities versus large formations
ould be abstra
ted su
h that the player did not need to bother about the s
aleof operations. If this prin
iple is to be honoured, the user interfa
e must allowsimilar
ontrols at every level of organization. At the software designing levelthis may be parallelled by providing a
ommon interfa
e to be implemented bydi�erent AI
lasses. It should be possible to give move orders, atta
k orders andso on, and ea
h of these should have its implementation
hanged depending onthe
ontext, i.e. whether the order is issued to a formation or a single entity.It is therefore reasonable to propose that every unit, whether it is an ab-stra
t formation or a physi
al entity, should possess an AI, and this AI shouldexpose an interfa
e whi
h allows a standardized set of instru
tions. However theimplementation of these instru
tions should be left open, su
h that the di�erentkinds of units
an freely interpret them appropriately.It further proves useful to have di�erent types of AI spe
ialized in di�erentroles. The
ode whi
h manages movement not ne
essarily have mu
h in
ommonwith that whi
h manages shooting. Therefore it
an be an advantage to holdsu
h fun
tionality separate. Spe
i�
ally, this will result in a MobileAI and anAtta
kAI, ea
h of whi
h provides the
orresponding fun
tionality. Sin
e unitsmust provide the fun
tionality of both, the logi
al solution is to assign ea
h unita UnitAI whi
h
onforms to the spe
i�
ations of MobileAI as well as Atta
kAI.This design is obviously well-suited in an environment whi
h allows poly-morphism and inheritan
e, and for this reason the use of Java interfa
es areideal for the
ore AI
lassi�
ations.4Classi
al examples of this problem are when resour
e gatherers deplete resour
es andautomati
ally start harvesting from pat
hes too
lose to the enemy, or when the player issuesa movement order and the unit moves the �wrong� way into the line of �re be
ause thepath�nder has determined that this way is faster.68

7.3.3 AI layering stru
tureAlong with the AI interfa
es that spe
ify the AI
apabilities, some simple im-plementations exist whi
h
an take
are of spe
i�
 roles. The following examplewill illustrate the usefulness of this prin
iple.The MobileAI interfa
e spe
i�es an orderMove method whi
h is supposedto make the relevant unit move to a spe
i�ed lo
ation. Also similar movementorders
an be appended or prepended to a queue of su
h orders. There is astandard implementation, MovementQueueAI whi
h takes
are of all this queuemanagement. Suppose now that a path�nder should be used to break the moveorder into straight-line segments leading around some obsta
les. This fun
-tionality
an be provided by wrapping the MovementQueueAI and providing aPathFindingAI with an orderMove method whi
h invokes the path�nder, thenenqueues the way points by using the underlying MovementQueueAI. The player,however, does not need to know that the AI responsible for path�nding a
tuallywraps an AI responsible for enqueueing movement orders. The only informationwhi
h is important is that the AI provides the movement fun
tionality.In a
ompletely unrelated matter, the Basi
Atta
ker whi
h is an imple-mentation of Atta
kAI is responsible for keeping tra
k of a target and whetheror not to shoot. The implementations whi
h provide movement and targettingfun
tionality
an now be reused together. The AI of a physi
al entity su
has a tank (
alled a Moveable) is an implementation of UnitAI whi
h wraps aMobileAI and a Basi
Atta
ker. Thus the behaviour of a tank is di
tated byinter
hangeable AI �building blo
ks� that
an be expanded as required.This example is of
ourse dependent on the layout whi
h we have happenedto
hoose for the AI API, and this might not be what another developer wants.Nonetheless the design shows a �exibility whi
h allows almost arbitrary ex-tensions. In
on
lusion, units have a parti
ular AI interfa
e whi
h is exposesatta
king and movement fun
tionality, and the AI framework relies on delega-tion to various spe
i�
 implementations to provide this fun
tionality. Interfa
esare used for polymorphism.7.3.4 Future AI workIt is no se
ret that the limited work whi
h has gone into the AI implementationsin JWars are not going to revolutionize the real-time strategy genre. Howeverthe unique tree-organization allows for mu
h more
omplex and intelligent be-haviour whi
h
an be implemented in the future. This se
tion will mention someof the more promising improvements whi
h
an be done.
• Aggression modes. In some
ases it is desirable that units �re at everynearby enemy. But otherwise this might not be a good idea. If a re
on-naissan
e patrol opens �re on the enemy troops they are observing, theywill most likely be spotted and killed. If an infantry squad is waiting foran unsuspe
ting tank to
ome
lose enough to throw a grenade down theopen hat
h, then it is most unwise to open �re at a range of two hundredmetres. Thus, a good AI must know when to �re and when not to. When69

the squad opens �re it is important that the remaining squads of the pla-toon, or the entire
ompany, open �re as well. It therefore makes sense tomake e.g. a
ompany AI responsible for starting su
h an ambush, thoughit requires that the AI supports, for example, an ambush state.
• Battle�eld-awareness. A
ommon problem in
ontemporary real-time strat-egy games is that an airstrike is ordered on an enemy fa
tory somewhere.While under way the planes are atta
ked by unseen anti-air
raft batteriesand shot down. In this
ase it would be bene�
ial to
all o� the atta
kentirely. But if there is only one anti-air
raft empla
ement, and if theatta
k involves twenty planes,
alling o� would be silly. Assigning an AIto the entire atta
k wing would easily provide a means of evaluating andhandling su
h threats.
• Morale-dependent AI. While under �re, people
an pani
 and retreat. Thiskind of AI
ould refuse to perform o�ensive a
ts if pani
 sets in. On
eagain this
an be done by repla
ing the AI implementation temporarily.

70

Chapter 8Combat dynami
sThis
hapter deals with the
ombat model provided with JWars. The
ombatmodel en
ompasses di�erent modules pertaining to weapons and automati
 �r-ing routines, armour and damage. Following that, the vision model, whi
h isrelevant for automati
 targetting will be dis
ussed.8.1 Firing and damageMost real-time strategy games use remarkably similar
ombat models. Unitswill �re automati
ally at enemy units when the enemy units
ome into range,wait for their weapons to reload and
ontinue �ring until they or the enemiesdie (or until they re
eive new orders and disengage).Every time a unit �res, it may or may not hit its target (in many games theywill even always hit the target), and do damage to the target and possibly thesurrounding units based on the weapon used and the type of target.The
anoni
al way of representing damage and the health of an entity is touse hit points. A unit has a
ertain number of hit points, and every time itgets hit by a weapon, a number of hit points based on the weapon type, target,lu
k or other fa
tors, gets subtra
ted. If a unit rea
hes 0 hit points it dies. Thehealth state of a unit is typi
ally represented graphi
ally by the
hara
teristi
green health bar, whi
h be
omes shorter and
hanges
olour to yellow and redas things go downhill.This is a very simple basis model whi
h is used in most games. We
anmention War
raft I-III, Star
raft, Dune II, all Command & Conquer games,and the list goes on.For JWars, however, we have something more ambitious in mind. Realitydoes not deal in hit points. If a shell hits a tank, one of two things happen:either the shell boun
es o� the armour doing no or very little a
tual damage,or else the shell penetrates the armour and will likely
ause horrible damage.It does not take 7 hits or 5 hits like in the hit point model, but
ould take anynumber of hits. If the tank is su�
iently heavily armoured, no amount of hits71

from that
annon will destroy it1.Su
h realisti
 models have been used in the Steel Panthers series of turn-based strategy games. Our approa
h shall borrow some true and tested ideasfrom this highly realisti
 series of games.8.1.1 Combat rule setThe
ombat rule set is the basis for the implementation. This does not meanevery implementation has to use this rule set � this is only the default.
• There are two primary types of entities: vehi
les and infantry squads.
• Some vehi
les are tanks, whi
h have a hull and a turret whi
h
an tra-verse, whereas others are assault guns whi
h have a hull and an in�exiblesuperstru
ture with a
annon. Hull and turret or superstru
ture ea
hpossess an armour table, whi
h lists the thi
kness of steel armour in mil-limetres and the angle of armour plating. This information is borrowedfrom Tas
henbu
h der Panzer 1945-54 [4℄ and sometimes Steel Panthers:World at War [6℄.
• Infantry squads have a strength, i.e. a number of men.
• Ea
h entity
an have any number of weapons.
• A weapon has a maximum range, an a

ura
y, a �repower (determining itse�
ien
y against infantry), an armour penetration value (in millimetresof steel, numbers are borrowed from Steel Panthers: World at War [6℄), anammunition type and a reload time. A Weapon
an �re at a lo
ation butis not guaranteed to hit. Weapons
an deal splash damage, i.e.
ollateraldamage to units near the impa
t lo
ation.
• Whenever an infantry squad is hit or nearly hit by a weapon, people maydie depending on lu
k, impa
t distan
e, weapon �repower and possiblyother fa
tors.
• Whenever a vehi
le is hit dire
tly by a weapon, it might be destroyedbased on the weapon's armour penetration ability, the vehi
le's armourthi
kness and the angle of in
iden
e.
• Enemy units will automati
ally �re at ea
h other if within range.We intend to expand the ruleset in the future, to support
rewed weapons (e.g.infantry-operated anti-tank guns or FlaK), o�board artillery whi
h
an
ondu
tindire
t bombardments of any part of the battle�eld and aeroplanes whi
h areo�board most of the time but
an make bombing runs.1Anthony Beevor[3, pp. 90-91℄ notes a parti
ular o

asion on whi
h German panzers �redmany shells at an immobilized Soviet KV-1 heavy tank. Finally the Soviet
rewmen emergedto surrender, badly shaken, but unhurt. 72

8.1.2 �Weapon vs. armour�, or �armour vs. weapon�?There is a tri
ky matter of evaluating di�erent ammunition types versus di�erentarmour types whi
h warrants a dis
ussion of the way su
h
he
ks are handled.This se
tion will dis
uss real-life weapons systems in order to determine themost sensible way of handling shell impa
ts.Suppose a shell hits a tank. We will want to
ompare the steel penetration ofthe weapon with the thi
kness of the armour. If the shell uses kineti
 energy asa means of penetrating the armour (e.g.
ommon armour pier
ing ammunition)then its ability to penetrate armour should be redu
ed with impa
t speed andthus travelling range. If the shell uses only explosive power (su
h as HEAT,high-explosive anti-tank whi
h is
ommonly used in infantry anti-tank weaponssu
h as the bazooka, Panzers
hre
k and Panzerfaust), then its steel penetrationis
ompletely independent of impa
t speed.The
ommon way of handling su
h a problem in obje
t oriented languagesis to equip ea
h weapon with a di�erent method for
al
ulating damage to steelarmour. The problem is that several types of armour
an also exist, whi
h meansthe weapon will have to distinguish manually between target types anyway. Seebelow: should the implementation be provided by weapon or armour?armour.
al
ulateDamage(weapon)//Allows armour
lass to sele
t implementationweapon.
al
ulateDamage(armour)//Allows weapon
lass to sele
t implementationWe have de
ided that the
omplexity of armour is generally greater thanthat of weapons, and that the implementation should therefore be left to thearmour
lass.For example, diverse defensive te
hnologies range from no armour (infantry)to steel and spa
ed armour. The previously mentioned HEAT ammunition usesa
uriously shaped warhead to a
hieve a dire
ted explosion, forming a jet ofmolten metal[7℄ whi
h
an travel a
ertain distan
e largely una�e
ted by thetype of armour it penetrates. This
an be negated by mounting a thin layerof armour on vehi
les some distan
e away from the armour, meaning that thejet will disperse before rea
hing the inner armour layer. This is
alled spa
edarmour. Figure 8.1 shows a Soviet T-34 tank equipped with a mesh to detonatesu
h warheads prematurely. A more modern te
hnology
alled explosive rea
tivearmour or ERA uses explosive
harges as part of the tank armour to obstru
tthe jet, nullifying its penetrative
apabilities[8℄.Thus we de
ide that weapons must be
hara
terized by a sele
t few param-eters, whereas armour has the bene�t of possessing the method whi
h de
ideswhat happens on impa
t, given the weapon parametres. This allows armoursystems arbitrary
omplexity (they
an provide any implementation) whereasweapons have to express their e�
ien
y in terms of a pre-determined set ofparameters. In order to distinguish di�erent types of weapons (whi
h is stillne
essary), a few standard types are hard
oded: high-explosive, armour pier
-ing, HEAT and bullets. Bullet type weapons are
onsidered spe
ial: unlike the73

Figure 8.1: Soviet T-34 tank with wire mesh for prote
tion against thePanzerfaust anti-tank weapon.[9℄other types, they are
onsidered to �re volleys
onsisting of several shots (su
has from a ma
hine gun or a whole squad �ring several ri�es). Also, if the �rstweapon de
lared on an infantry squad has the bullet type, then it is
onsid-ered issued to every member of the squad, meaning it will have its �repowermultiplied a

ording to the number of men. The other ammunition types haveno expli
it meaning, but when
al
ulating damage, the armour
an distinguishthese types on an if-else basis.8.1.3 Stru
ture of the weapons APIThere are four
on
epts whi
h are introdu
ed in order to properly separate the
ode.
• Weapon. A weapon has a
ategory (see Se
tion 7.2) whi
h stores its
a-pabilities, and a state, being either loaded or not. The weapon has a �reroutine whi
h ultimately might result in people getting killed (no humanswere harmed during the making of this routine).
• WeaponModel. The weapon model serves as an interfa
e between the set ofweapons belonging to a unit and the
ode whi
h attempts to
ontrol theunit's more aggressive anti
s. The weapon model
an be used to emulatethe weapon set independently of the a
tual weapons, whi
h allows theweapon
ode to be substituted without breaking e.g. the unit AI.
• ArmourModel. Responsible for handling the (nearby) impa
t due to the�ring of a weapon. Present implementations in
lude two armour models,being infantry- and vehi
le-spe
i�
, respe
tively.74

• Damageable. Responsible for handling any damage
aused when the ar-mour model reports that it
ould not withstand the punishment. Presentlythis only serves to alert a unit of when it is destroyed, but is supposed totake
are of destroyed radios, �re
ontrol, suspension, engine et
. if someday those
on
epts are implemented.8.1.4 Firing routineThe �ring routine
orresponding to a parti
ular weapon takes the sour
e lo
a-tion and the target lo
ation in the main
oordinate system as parameters, andvalidates by
he
king whether the weapon is loaded and within �ring range of thedestination. It is desirable, though not presently implemented, that dire
t-�reweapons (as opposed to indire
t-�re weapons whi
h are used for bombardments)should also
on�rm that they are within line of sight of the target (line of sightis dis
ussed later, in Se
tion 8.2.6).If �ring is possible, the a
tual impa
t lo
ation is
al
ulated, whi
h
an bedi�erent from the target lo
ation. If the weapon type is �bullet�, meaning thatit �res a volley of proje
tiles (su
h as in the
ase of ma
hine guns), then the hitlo
ation is always exa
tly the targetted lo
ation, sin
e this is where the bulletswill hit on average. Bullets are then assumed to hit randomly in a �
loud�and not exa
tly on the
entral point. Non-bullet weapons have their impa
tlo
ation determined based on lu
k and the �e�e
tive range� of the weapon, butother fa
tors may be in
luded later.Finally, the set of all entities within the weapon's splash range of the impa
tlo
ation is determined by using a utility method provided by the
ollision dete
-tor (Chapter 5) whi
h returns a set of
olliders that are within a spe
i�ed radiusfrom a spe
i�ed lo
ation. All units in this set are
onsidered �hit�, though theymay not re
eive any damage.For ea
h unit whi
h has been hit, the armour model belonging to that unithas its reportImpa
t method invoked, and this method de
ides what happensto the unit in question.8.1.5 Impa
t handling by armourThere are presently two types of armour model: infantry and vehi
le. As men-tioned previously, the armour model determines what happens to a unit whenhit. The infantry armour model
al
ulates a number of
asualties based on lu
k,the impa
t distan
e and the �repower of the weapon in question. The presentimplementation serves its purpose but
an use adjustments for play balan
e.The vehi
le armour model is somewhat more
ompli
ated. Vehi
le armouris spe
i�ed by
ategories (the
on
ept of whi
h is introdu
ed in Se
tion 7.2). Avehi
le is
onsidered divided into three se
tions: the front, the sides (assumingsymmetry) and the rear. For ea
h of these se
tions there is an armour thi
knessin millimetres, plus the armour angle (sloped armour is important in tank war-fare and is therefore in
luded in the model). Tanks, also having an armouredturret, have a similar set of numbers for that, see Figure 8.1.5.75

Figure 8.2: Armour statisti
s for a T-34 tank. This is part of a s
reen-shot from the game.The vehi
le armour model �rst
al
ulates whi
h se
tion has been hit. Thisis based on the travelling angle of the shell �red,
ompared to the orientation ofthe vehi
le. For example if the shell is �red from dire
tly in front of the vehi
lethen it will hit the front armour with
ertainty, but generally the probabilityof hitting a parti
ular se
tion of the vehi
le is determined (see Figure 8.1.5) byproje
ting the relevant se
tions of the vehi
le on the normal plane of the impa
tdire
tion, and the ratio of probabilities is equal to the ratio of proje
tion lengths.The armour penetration value of the weapon is
ompared to the armourthi
kness at the hit lo
ation, taking into a

ount the impa
t angle on the armourplating. For example, if the shell hits at an almost-parallel angle it will have topenetrate many times the length ne
essary if it hits at a perpendi
ular angle.More pre
isely, the e�e
tive thi
kness is equal to the a
tual thi
kness dividedby the
osine of the impa
t angle on the armour, further divided by the
osineof the armour slope (i.e. the angle between the armour plating and verti
al).If the armour penetration is still larger than this e�e
tive armour thi
kness,the tank is destroyed.8.1.6 Con
lusionWe have now explained how weapons �re and how armour models handle theimpa
t from weapons. Weapons are de�ned by a limited number of variablessu
h as armour penetration, range, reload time and an abstra
t notion of typewhi
h distinguishes bullets, high explosives and armour pier
ing ammunition.Armour models, being more
ompli
ated,
ontain the
ode for handling impa
ts.8.2 VisionThe last se
tion des
ribed how weapons and armour work. But there remainsthe problem of de
iding when to use them. We have mentioned earlier thatopposing for
es should shoot at ea
h other automati
ally on
e the opponentshave been dis
overed. 76

Impact direction

Projection

F

S

N
orm

al

Tank hullFigure 8.3: Side hit or front hit? The proje
tion S of the tank sideon the normal of the impa
t dire
tion is about equal in length to theproje
tion F of the front, so the probability of hitting the side is about50 %.We have also promised to implement a kind of fog of war, a
ommon notionof RTS games meaning that units should not be able to see ea
h other at alltime. This se
tion will derive a framework for handling visibility of units toopposing units.8.2.1 Vision in gamesAs mentioned, the
on
ept of not being able to see all enemy units is
alled fogof war in referen
e to the smoke
aused by e.g. artillery bombardments. Insome old games su
h as Dune 2 and Command & Conquer, the entire map isbla
ked out by the beginning of the battle, and the player has to explore themap in order to lo
ate the enemy. In the two mentioned games, terrain that hasbeen explored on
e will forever stay visible along with any enemy units in thoseareas. Newer games generally allow the player only to see the immediate areassurrounding friendly units, i.e. as soon as the units move away, the enemy unitsin that area are on
e again obs
ured. In most
ases (War
raft III, Star
raft,Total Annihilation et
.) there is a maximum vision range, whi
h lets a unitobserve a
ir
ular neighbourhood of their lo
ation, ex
ept for obstru
tions ofthe terrain su
h as hills or buildings whi
h
an blo
k the view. The maximumvision range is usually less than the size of the main battle�eld display, forexample around 50 metres.Bearing in mind the realisti
 approa
h of JWars we wish a model of visionwhi
h
an support mu
h larger ranges, namely hundreds or thousands of metres.This is still shorter than realisti
 spotting ranges, yet
onsiderably longer thanin
ontemporary games. Furthermore it should be possible for terrain obje
tsto blo
k line of sight. Finally, we propose that units should be able to hideeven though they are well within dire
t line of sight. It is in reality easy forinfantrymen to hide in bushes or high grass (whi
h are not expli
it game obje
ts77

but rather types of
ontinuous terrain, thus not dire
tly blo
king sight), andthis possibility should be in
luded in any realisti
 wargame2. Thus, there isno guarantee that the player's for
es
an see an enemy ambush, even thoughthe ambush is te
hni
ally within line of sight. This �fuzzy� model of vision is
ommon in turn-based strategy games su
h as the Steel Panthers series.While not yet suggesting a �nal way to perform this kind of
he
k, theprobability of spotting an enemy unit should be larger if the unit is
lose, moving,large or
lad in bright red
lothes. It is also possible.The problem of determining whi
h units are visible to others
an be ta
kledin a number of di�erent ways, whi
h will be dis
ussed in the following se
tionsalong with their pros and
ons. We shall refer to entities
apable of seeing andbeing seen as observers. With two teams in the game, an observer
an be inone of two states: it is either visible or not visible to the opponent. Observerswhi
h are not visible to the opponent should obviously not be drawn to thatopponent's s
reen, and his for
es should not shoot at an observer unless it isvisible.8.2.2 Approa
h 1: dire
t observer-observer
he
kingSuppose that given two observers, there exists a method for
he
king whetherone
an see the other (e.g. returning true or false after taking into a

ount alot of fa
tors). The most obvious way of implementing vision is to
ontinuously
he
k for every observer whether it
an see every other observer. This is ex-tremely ine�
ient be
ause the number of
he
ks in
reases with the square ofthe number of units. A
tually this is exa
tly the same problem we en
ounteredwhen designing the
ollision dete
tor in Chapter 5. It is obvious that a similarsolution
an therefore be applied: dividing the map into tiles. If there is somemaximal vision range, then a vision
he
k is only needed if two observers arewithin that range of ea
h other, and if the size of a tile is
omparable to thevision range, then it is su�
ient to sear
h only the neighbouring tiles for otherobservers when
he
king visibility for a parti
ular observer.Using this method with whi
h we are already familiar, the problem
an besolved
leanly and e�
iently, provided that the range of vision is relatively short.Unfortunately this may not be the
ase. In real life the visibility extends manykilometres. Only if the map is mu
h larger than the visibility does this approa
hyield a signi�
ant in
rease in performan
e � otherwise we will have to
he
k theentire map or very large parts of the map anyway. It is parti
ularly bad in largebattles when many (n) observers are within vision range of ea
h other, thereforerequiring O(n2)
he
ks.It is
lear that the large distan
es involved are our primary problem. How-ever there is an important optimization whi
h
an be performed only be
auseof the large distan
es. Over short distan
es, it is very important that observersrespond immediately to spotting an enemy. This is be
ause whoever shoots �rst2The la
k of vision from World War II-era tanks is of parti
ular importan
e here: infantryunits
ould hide only a few metres away and atta
k advan
ing tanks using molotov
o
ktails,hoping that the volatile �uid would pour into the tank engines.78

will likely win. Movement over larger distan
es takes a long time, and
ombatis less he
ti
. Sin
e observation
he
ks generally involve large distan
es, it
anthus be expe
ted that the time s
ale on whi
h observers will be spotted anddisappear is relatively large, i.e. several se
onds. Therefore it is not ne
essaryto
he
k whi
h observers
an see ea
h other every frame. It is su�
ient to
he
kon
e in a while, possibly on
e per se
ond or even less. Doing this
an de
reasethe amount of time taken by an order of magnitude or more.8.2.3 Approa
h 2: observer-terrain
he
kingWe have, however,
onsidered an alternative approa
h whi
h holds some advan-tages and disadvantages. In most RTS games, units are visible if the terrain onwhi
h they stand is visible. Suppose an observer moves. It would be possible toregister all the terrain visible to the unit in its new position (this would requirea tilemap with a very �ne resolution if observers should be able to hide behindbuildings, et
.). Any enemy observers within the visible area are then madevisible. This means the
omplexity of the entire spotting fun
tionality for nobservers is redu
ed to O(n), sin
e work has to be done only when observersare moving, and every observer has to do the same amount of work (registersurrounding tiles as visible).As mentioned, a very �ne tilemap is required for this approa
h. With largevision ranges this be
omes a problem be
ause of the sheer amount of tiles it isne
essary to traverse, namely O(r2) where r is the observation radius.We have sele
ted the �rst approa
h be
ause it
an be implemented rapidlydue to its similarity with the
ollision dete
tor, be
ause of its relatively highe�
ien
y in most
ases (ex
ept when very large for
es are massed), and be
ausewith the suggested optimization it is not likely to be be
ome a bottlene
k.8.2.4 The spotting routineTo re
apitulate, we have sele
ted an approa
h to vision
he
king where all ob-servers should regularly
he
k whi
h other observers they
an see. A full vision
he
k, i.e.
he
king for all observers whether whi
h other observers they
ansee, will
onsist of a number of separate steps.For ea
h observer O, do the following:1. Traverse all tiles within vision range of the
urrent observer O.2. For ea
h of those tiles, traverse all observers within it.3. For ea
h other observer Õ found, if that observer is within the �xed maxi-mum vision range of O, perform an observer-observer vision
he
k betweenthe
urrent observer O and the other observer Õ.The pro
ess is illustrated in Figure 8.4.The exa
t implementation of the observer-observer vision
he
k is � as wementioned previously � left open. The parti
ular implementation used in the79

Figure 8.4: The spotting routine. The
urrent observer is surroundedby a dashed
ir
le, the radius of whi
h is equal to the maximum visionrange. The algorithm will traverse the four tiles that overlap the
ir
leand expend no time
he
king the rest of the map. These four tiles
ontaineight observers aside from the
urrent one, four of whi
h are outside thevision range. The remaining four observers (ex
luding the
urrent one)that are inside the vision range are subje
ted to an a
tual observer-observer
he
k.
80

Collision dete
tor Observation environmentCollision map Observation mapCollision tile Observation tileCollider ObserverCollision properties Observer modelTable 8.1: Equivalent terms of
ollision dete
tion and observation han-dling.present version of the game is very simple: the observer-observer
ollision
he
ksimply returns true, i.e. an observer is visible to the enemy if and only if it iswithin the maximum vision range (whi
h happens to be around 300 metres).The game therefore uses a simple �
ir
ular vision� approa
h.If an enemy observer leaves the line of sight it should be
ome invisible again.This is a trivial matter if the observer knows when it was last spotted by anenemy � in that
ase it
an regularly
he
k whether the time elapsed sin
e itwas last spotted is greater than some pre-de�ned relaxation time, then be
omeinvisible as ne
essary. The relaxation time is presently around 5 se
onds, thoughthe exa
t value is of little importan
e as long as it is longer than the intervalbetween spotting
he
ks.8.2.5 Final designSin
e visibility is handled almost the same way as
ollision dete
tion, it
anhardly be surprising that a very similar design has been employed. Table 8.1shows an overview of the terms we use in the
ontext of observation, along withthe
orresponding term from
ollision dete
tion.An observation environment serves as a
entralized manager, hosting the ob-servation map whi
h
onsists of observation tiles. The observation environment
an register Observers whi
h have a lo
ation and have the observer-observer
he
k routine. Observer is te
hni
ally a Java interfa
e, meaning the implemen-tation of is left open (perhaps infantry squads, having maybe 10 men whi
h
anlook in di�erent dire
tions, would like an implementation di�erent from that ofa tank, where the
rew
an see only through a small opening unless they openthe top hat
h). Ea
h registered observer is asso
iated with a parti
ular observermodel, holding inforamtion whi
h is used �under the hood� (su
h as the time atwhi
h the observer was last spotted).Note: there are a few di�eren
es between the
ollision dete
tor and visionhandling. Whereas the
ollision dete
tor will register a
ollider in all the tilesthat overlap the
ollider, the size of the tiles used in this se
tion are very large
ompared to the a
tual observers, so there is no advantage in registering anobserver in more than one tile at a time. Thus, observers are only registered inthe tile at whi
h their
enter is lo
ated.There is another subtle di�eren
e: internally, the
ollision dete
tor uses anarray-based list implementation to represent the
olliders registered in ea
h tile.81

Removing elements requires that the entries with indi
es larger than that of theremoved
ollider be
opied to o

upy lower indi
es in order to prevent �holes� inthe array. For n
olliders this takes O(n) time on average. This is e�
ient onlyfor very small lists, and indeed
ollision tiles are not expe
ted to
ontain many
olliders at a time. The important di�eren
e here is that the observation tilesare very large and
an
ontain hundreds of elements. Thus we have de
ided touse a linked-list implementation whi
h allows addition and removal in
onstant(O(1)) time, sa
ri�
ing random a

ess whi
h is worthless for our purposes. Theobserver model serves as a reusable link for the linked list, thus eliminating theoverhead of
reating link obje
ts dynami
ally.8.2.6 Evaluation and dis
ussionAfter having tested the vision system in a
tion with more than 400 observers inone battle, we have not seen any measurable impa
t on game performan
e. We
on
lude that the sele
ted approa
h is e�
ient enough for the simple
ir
ularvision model used presently and probably (though this has not been tested)somewhat more
ompli
ated vision models as well.It is desirable to improve the observer-observer
he
k to the realism stan-dards proposed earlier in Se
tion 8.2.1. This takes long time to do well, and doesnot involve any te
hni
al problems of
omptutationally interesting nature, whi
his why we have de
ided not to implement it yet. The implementation shouldtake into a

ount range, the type of unit (infantry
an hide more easily thantanks), the speed of the unit (it is easy to spot moving entities), the amount ofvegetation in the terrain, and it should in
orporate a line-of-sight (LOS)
he
ksu
h that e.g. buildings or trees
an blo
k the �eld of vision. Regarding theLOS
he
k, this
an easily be implemented sin
e the path�nder (Chapter 6)has already implemented the Bresenham line drawing algorithm and used it totraverse the
ollision map for obsta
les. This
ode
an be dire
tly reused to �ndobsta
les to LOS.

82

Chapter 9Graphi
sWhile graphi
al beauty is not one of the primary obje
tives of JWars, therendering system is designed with some
are for performan
e and pra
ti
al us-ability. The system relies on Java2D and the Swing framework, as these shallprove reasonably e�
ient for our purposes, not to mention the
onvenien
e thatthey are in
luded with the Sun Java Runtime Environment.There are numerous alternative graphi
s libraries whi
h
ould likewise havebeen used, ranging from the low-level OpenGL wrapper, JOGL[10℄, to s
ene-graph implementations su
h as Java3D[11℄, Xith3D[12℄ and the game libraryLWJGL[13℄. In the following we shall dis
uss a number of rendering strate-gies with the intent of applying them with AWT/Swing. However, importantly,these terms do not apply only to this framework; they are general prin
iplesused in rendering in many di�erent
ontexts.9.1 A
tive versus passive renderingAs mentioned in Se
tion 1.1.2, the user interfa
e of real-time strategy gamesnormally
onsists of a
entered main display whi
h displays the battle�eld andthe animated a
tion. Surrounding this display is typi
ally an overview map anda number of status panels whi
h are not animated, or
ontain relatively littlegraphi
ally heavy
ontent.The main battle�eld display will require
ontinuous redrawing due to thedynami
al nature of its
ontent, and the rendering operations are expe
ted to be
omplex and demanding for the
omputer. Widget toolkits su
h as AWT/Swingare not designed for this kind of rendering, and it will be ne
essary to manage therendering manually: the main display will use a
tive rendering, i.e. it will drawdire
tly to the s
reen when requested, and requests will be issued
ontinuously.Note that most real-time
omputer games issue su
h requests at the max-imum possible frequen
y to ensure the best smoothness of animations. This
an be done from a rendering loop. We have de
ided to use a less aggressiveapproa
h and render only on
e every time the logi
 is updated; this will o

ur83

at a 50 Hz rate, whi
h proves su�
iently smooth for a 2D game where mostentities move reasonably slowly. However in fast-pa
ed 3D games this is barely
onsidered su�
ient by skilled players1.On the other hand, sin
e the surrounding panels are not generally animated,these
omponents are ideally represented by Swing widgets using the normalpassive rendering, where repaints are s
heduled as required and taken
are ofwhen the
omputer �feels like it�. Sin
e the panels are going to display datawhi
h depends on the internal game state and
ontain buttons whi
h might a�e
tthat state, and sin
e AWT/Swing appli
ations run largely from a parti
ularthread, namely the so-
alled Event Dispat
h Thread, it will be ne
essary eitherto syn
hronize the intera
tion between the user interfa
e and the model, or toexe
ute all relevant
ode in the Event Dispat
h Thread. Therefore the entiregame logi
 runs from this thread, but this is of little importan
e to the remainingparts of the program.9.2 Double bu�eringDouble bu�ering refers to a te
hnique whi
h
an be used to improve the per-
eived performan
e of an appli
ation. A naïve implementation of a renderingloop would simply
lear the rendering surfa
e, then perform the drawing op-erations and terminate. This will most likely
ause the s
reen to �i
ker. Theexplanation is that the drawing operations take so long time that the user no-ti
es the s
reen being temporarily empty. Double bu�ering uses two drawingsurfa
es: a on-s
reen bu�er whi
h is displayed, and an o�-s
reen bu�er whi
hresides somewhere in the
omputer (or hopefully the graphi
s adapter) memory.A graphi
al update
ould
onsist of
learing the o�-s
reen bu�er and performingall the rendering operations onto it. Then the o�-s
reen bu�er is drawn (or blit-ted, a parti
ular te
hnique used for rendering images) onto the on-s
reen bu�er,making the
hanges visible in one sweep. The blitting
an even be syn
hronizedwith the refresh rate of the s
reen, though we shall not go into detail with this.There are other te
hniques asso
iated with double bu�ering, for examplepage �ipping whi
h inter
hanges the o�-s
reen and on-s
reen bu�ers simply byswit
hing a pointer. There are approa
hes that use even more bu�ers, althoughthis is hardly of interest here.Swing appli
ations are automati
ally double bu�ered. Only the main dis-play, whi
h is a
tively rendered (and whi
h therefore does not use the Swingrepainting me
hanisms)
annot automati
ally be double bu�ered. Implement-ing proper double bu�ering would require the allo
ation of the aforementionedbu�ers, preferably in video memory. Fortunately this is not ne
essary in ourparti
ular
ase be
ause AWT happens to provide a Canvas
lass whi
h
an haveits own BufferStrategy2. Double bu�ering is hen
e of little pra
ti
al
on
ern,1It is
ommonly known that televisions use mu
h lower framerates. Smoothness is in this
ase a
hieved be
ause the frames are blurred and perhaps interla
ed.2A Swing-
ompetent reader might noti
e that the JFrame
an likewise use su
h aBufferStrategy. But doing so would a�e
t the passively rendered panels in the GUI as84

though it remains important to any rendering system.9.3 Battle�eld rendering and layersAs it has previously been explained, the primary display shows some subset ofthe battle�eld, the
ontent of the viewport, in high detail. There are severaltypes of graphi
s whi
h are to be displayed here, and it will prove advantageousto organize them in layers.1. First, there is the ground terrain. As des
ribed in Se
tion 4.3, the terrainis represented by a tile map of terrain tiles,
alled the terrain map, andea
h su
h tile is
apable of drawing itself to the s
reen (provided an AWTgraphi
s
ontext). Not all of the tiles need to be drawn � see Se
tion 9.4.2. The next step is to draw all the ground units, e.g. tanks and infantry. Sin
eit is
umbersome to traverse all existing entities and determine whetherthey are inside the view, the
ollision dete
tor
omes in handy:
onvertingthe viewport bounds to
ollision grid
oordinates allows the traversal ofonly those
ollision tiles that overlap the viewport, and thus
leanly pro-vides all the entities to be rendered. Ea
h entity, being a so-
alled sprite3,is responsible for painting itself given its s
reen
oordinates.3. Having painted the ground and the entities on the ground, the next levelis vegetation (whi
h is presumed to be taller than those entities). Ea
hterrain tile is
apable of drawing its vegetation to the s
reen, and this willoverlap any units present4.4. When
annons are �ring, there should be explosion animations to desig-nate the lo
ations of impa
t. These should be visible to the player (even ifphysi
ally situated below trees) sin
e they provide valuable information.There might be ro
kets or aeroplanes �ying through the air. All thesethings (although neither ro
kets or planes exist in JWars yet)
an allbe rendered together. While airborne proje
tiles should theoreti
ally berendered ordered by their altitude, this would be troublesome, and evenwhen aeroplanes are implemented in JWars, there will hardly be su�-
iently many of them so
lose together as to warrant su
h an ordering.5. Finally it might be desirable to display information su
h as text in themain display. When a unit is sele
ted, a green line indi
ates its dire
tionof travel, whereas a red line indi
ates its target. These e�e
ts whi
h arewell. Only the Canvas o�ers the desired
ontrol over the rendering pro
ess.3Sprites are single, �at graphi
al
omponents su
h as images or animations, several of whi
h
an be drawn together in a
ontext. In two dimensions it is di�
ult to
reate something whi
his not a sprite. In three dimensional games, however, sprites
an be used for e.g. smoke whi
hhas no need for a 3D stru
ture.4When an entity stops moving it will be drawn on top of the trees. This makes sure thatthe entity
annot go �missing� in the woods, whi
h would be a serious moment of irritationfor the player. Interestingly, this feature was originally a glit
h in the rendering routine.85

not physi
al entities serve to enhan
e the ability of the player to
ontrolthe for
es. Their purpose is to
onvey information to the player withoutotherwise obstru
ting the battle�eld view. We shall refer to this kind ofe�e
ts as the Head-up display or HUD. This type of display is
ommonlyused in military aeroplanes and
omputer games.Some of these layers will mostly have stationary
ontent, su
h as the ground andtrees, the display of whi
h should be updated only when viewport is relo
ated.Others will have dynami

ontent, su
h as explosions and moving entities. Thefollowing se
tion will provide a solution to rendering these layers e�
ientlytaking into a

ount their di�eren
es.9.4 Optimization of the rendering routineObviously, a battle�eld display in whi
h no movement o

urs needs not expendany resour
es rendering. However if a
ar is driving a
ross the s
reen, the areaimmediately around the
ar will need to be updated as it moves. The terraindirti�
ation system is designed to take
are of this, ensuring that minimal timeis used to needlessly render terrain.Whenever an entity moves, the
ollision dete
tor is responsible for traversingthe area and
he
king whether the entity
ollides with others. Suppose everyterrain tile in the terrain map
an be in one of two states, either dirty or not.The
ollision dete
tor
an then traverse the terrain tiles overlapped by the spritebelonging to that entity, and set the state of these terrain tiles to dirty, signifyingthat the tiles need to be redrawn. This will allow the painting routine to �lterout those tiles that are dirty and paint them, ignoring the rest. After havingbeen painted, the tiles are no longer
onsidered dirty.There is one problem with this approa
h: while it will a

ommodate the �rstthree layers, the dynami
al
ontent su
h as the HUD
annot be rendered in thisway, be
ause the
ollision dete
tor does not (and should not) know about this.This will result in the terrain not being repainted while the HUD
hanges, thusleaving graphi
al artifa
ts on the display.Our solution is to render the �rst three layers onto a se
ondary o�-s
reenbu�er (whi
h needs only relatively little repainting work). The se
ondary o�-s
reen bu�er is � every frame � then rendered onto the primary o�-s
reen bu�erwhi
h we introdu
ed in Se
tion 9.2. Finally the remaining layers, whi
h gener-ally need
omplete repainting for every update, are rendered onto the primaryo�-s
reen bu�er, the
ontent of whi
h is �nally blitted to the s
reen.While the introdu
tion of this extra step takes some time, it still yields mu
hbetter performan
e. Drawing an image (su
h as the se
ondary o�-s
reen bu�erbeing drawn onto the primary one) is a very fast pro
ess, whereas the remainingin-game graphi
s, involving rotations and possibly transparen
y, are mu
h moretime
onsuming. Modern
omputers are
apable of rendering images (withoute.g. rotation) hundreds, possibly thousands of times per se
ond depending onresolution, and normally this pro
ess takes pla
e in the graphi
s adapter andtherefore requires no a
tual CPU a
tivity.86

Figure 9.1: The rendering routine. Di�erent steps are indi
ated bynumbers. Steps 4 and 7 are very fast on modern
omputers and are notlikely to have signi�
ant impa
t on performan
e.Finally, let us summarize the
omplete rendering routine.1. Render any dirty terrain within the viewport to the se
ondary o�-s
reenbu�er.2. Render any dirty entities within the viewport to the se
ondary o�-s
reenbu�er.3. Render the vegetation of any dirty terrain within the viewport to these
ondary o�-s
reen bu�er.4. Render the se
ondary o�-s
reen bu�er to the primary o�-s
reen bu�er.5. Render any animated e�e
ts onto the primary o�-s
reen bu�er.6. Render the HUD onto the primary o�-s
reen bu�er.7. Render the o�-s
reen bu�er onto the s
reen.Figure 9.1 shows a visualization of these steps.9.5 Con
lusionIn this
hapter we have derived a double bu�ered a
tive rendering routine fortwo-dimensional top-down view game graphi
s. The routine saves time by usinga third bu�er to keep tra
k of the areas on the s
reen in whi
h no movemento

urs.
87

Chapter 10Game improvements10.1 Future workHere we will list areas designated for future improvements by the developersand known bugs in the version of JWars following this report. Here is a list offeatures and areas planned by the developers1. Terrain heights in the world. Hills should be implemented as fast as pos-sible for ta
ti
al gameplay2. Line-of-sight should form dire
t
ontrols of forestation and other terrainobsta
les for ta
ti
al gameplay3. O�board artillery4. Fix
urrent onboard artillery to something usefull5. Air bombardement and AA guns should be implented6. Di�erent formation patterns and GUI to support them � instead of thearrow formation7. Moving formations would make all sub-formations move with the samespeed8. Enable replays � save all registrered orders in a list9. Enable more terrain as sand, water and jungle10. Night/Daylight
ombat mode11. Better sele
tion of targets by the AI88

10.2 Known issuesThis is a list of known bugs in the
urrent implementation.1. When ordering formations to move it is possible to
ause an IndexOutOfBoundsEx
eptionby moving large formations near the maps edges � some units will get or-ders outside the map. This
an be
orre
ted by translating o�-boardlo
ations to sensible lo
ations in the relevant
ode, or by simply removingunits that leave the map. We
onsider this a bug in the
ode whi
h usesthe
ollision dete
tor, and not the
ollision dete
tor itself.2. When moving a unit away from a terrain obje
t while within the same
ollision tile the path�nder thinks the terrain obje
t lies in the path of theunit and will return invalid move orders (no ex
eptions).3. Units do not reset their targets properly when the targets move out ofvision range. The unit keeps �ring at the now invisible target.4. The path�nder presently
annot use mobile entities as obsta
les. A rudi-mentary system whi
h handles
ollisions between units on an AI level willgive move orders along with the path�nder �
on�i
t. This is solved byexpanding the path�nder to work on moving entities so only one authorityis needed for moving units.

89

Chapter 11Con
lusionThe purpose of this proje
t was to
reate a real-time strategy game whi
h bor-rowed elements from turn-based strategy games and implemented a realisti
military hierar
hy allowing better
ontrol along with a level of AI group
oor-dination whi
h is potentially unmat
hed among games of the genre. The hier-ar
hi
al stru
ture has not been used before. The AI framework makes heavyuse of polymorphism and delegation to provide the possibility of dynami
ally
hanging AI behaviour that
an be made to adapt to
hanging ta
ti
al
ir
um-stan
es. The
urrent implementations of AI are only rudimentary and do nota
tually intera
t, but the framework ensures that relevant AI
ode is invokedwhen appropriate.The most important API pa
kages that are ne
essary for su
h a game arefully fun
tioning ex
ept for minor bugs. The modules are designed spe
i�
allyfor large game worlds and have proven e�
ient, even without extensive opti-mizations, in handling hundreds of units engaged in battle at the same timeduring network play. Collision dete
tion and vision management use tiles tolo
alize entities and redu
e algorithm
omplexity while retaining �exibility, al-lowing units of arbitrary size. Spe
ial
are is taken to allow programmers toimplement
ustom
ode for handling
ollisions and
ustom visibility
he
ks whilethe framework
an invoke the provided
ode as required.The path�nder employs an approa
h spe
ialized for large maps whi
h gen-erates a sear
h tree dynami
ally, being parti
ularly e�
ient in open areas. This
an redu
e memory
onsumption and in
rease e�
ien
y for large game worlds
ompared to
onventional approa
hes using in�exible high-resolution grids.The
ombat system is highly generi
, and while the present implementationsstill need game balan
ing, the system uses parti
ularly realisti
 armour andweapon representations su
h as in many advan
ed turn-based wargames, thusattempting to
reate a hybrid genre.Most game data is loaded from external �les using simple s
ript-like syntaxwhi
h
an be modi�ed by people without knowing the sour
e
ode. This modelis ideal for normal game development where
oders and game designers workseparately. 90

A two-dimensional rendering system has been developed to e�
iently man-age tile-based maps by avoiding unne
essary repaints through the use of separateo�-s
reen bu�ers.The networking
ode is based on a
lient/server ar
hite
ture and requiresvery small bandwidth. The game has been tested on Sun Solaris 10, Mi
rosoftWindows XP and Ubuntu Linux 6.06.The goals de�ned for the proje
t have thus been rea
hed, ex
ept for a singlefeature we have not had time to implement. JWars regretfully la
ks the notionof terrain height.

91

Bibliography[1℄ Sean Riley, Game Programming with Python (Charles River Media, 2004.ISBN 1-58450-258-4)[2℄ T.H. Cormen et al., Introdu
tion to Algorithms, 2nd Edition (M
Graw-HillBook Company, 2001. ISBN 0-262-03293-7)[3℄ Antony Beevor, Stalingrad (Penguin Books, 1999. ISBN 0-14-024985-0)[4℄ Senger u. Etterlin, Tas
henbu
h der Panzer 1943-1954 (J.F. LehmannsVerlag Mün
hen, 1954.)[5℄ Wikipedia entry on professional Star
raft
ompetition.http://en.wikipedia.org/wiki/StarCraft_professional_
ompetition[6℄ Steel Panthers: World at War by Matrix Games.http://www.matrixgames.
om/[7℄ Wikipedia entry on shaped
harge ammunition.http://en.wikipedia.org/wiki/HEAT[8℄ Wikipedia entry on explosive rea
tive armour.http://en.wikipedia.org/wiki/Explosive_rea
tive_armour[9℄ Wikipedia entry on the T-34 tank.http://en.wikipedia.org/wiki/T-34[10℄ JOGL � Java OpenGL bindings.https://jogl.dev.java.net/[11℄ Java3D, s
enegraph based 3D API.https://java3d.dev.java.net/[12℄ Xith3D, s
enegraph based 3D API.http://xith.org/[13℄ LWJGL, Light-Weight Java Game Library.http://lwjgl.org/ 92

Appendix AGame manualBefore running the JWars program there are some requirements whi
h mustbe met by the
omputer. We haven't tested the appli
ation on slower
omputersystems, but we know that the following requirements are su�
ient.- Java Runtime Environment 1.5.0- 1200 MHz- At least 50 MB free RAM (in
l. virtual ma
hine)- One network port (7777 by default) must be available to run the programin multiplayerA.1 Running the programTo run the program you will ned the jwars.jar �le whi
h
an be downloaded forfree athttp://www.student.dtu.dk/~s021864This is the homepage of Ask Hjorth Larsen, one of the developers. The home-page will have the newest stable version ready for download at all times.Having a Java Runtime Environment installed, the game
an be run bydouble
li
king on the .jar �le in Mi
rosoftWindows or by using a similar fun
tionin other operating systems. Starting the program this way will run JWarswith the default settings. By using a
ommand prompt it is possible to run theprogram using parameters whi
h
hanges s
reen size, looks and other optionsusing the
ommandjava -jar jwars.jar <parameters>in the library
ontaining the jwars.jar �le. The parameter string
onsists of asingle dash followed by a number of letters. Here is the full list of availableparameters of the
urrent version: 93

Figure A.1: The JWars laun
her.- o : Enable OpenGL pipeline. This greatly improves performan
e, butdoes not work on all graphi
s adapters.- f : Run in full-s
reen mode.- h : Print this help and exit- m : Use Motif look-and-feel- n : Use native look-and-feel- d : Draw debug
ollision grid- a : Bad ATI driver mode (disable window de
orations)- v : Print version information and exitFor example, the
ommandjava -jar jwars.jar -ofmwill run JWars using the OpenGL pipeline in full-s
reen mode with the Motiflook-and-feel.On starting the program the JWars laun
her will appear, see Figure A.1.The laun
her is a tool for setting up a game in multiplayer by either
reatinga server or joining a server spe
ifying an IP address. The default entry in theIP �eld is lo
alhost whi
h will attempt to join a server
reated on the lo
alma
hine (this is useful for testing network support when only having a

ess toone
omputer). In order to join games over the internet simply enter the IPaddress of the
reator in the IP �eld and push join. If su

esfull you will jointhe game at the wanted ip address if not an error message will be displayed. Itis not possible to
onne
t to a server who runs another version of JWars.If a new game is wanted simply press `Create Server'. Creating a server willexpand the JWars Laun
her to a lobby where all
urrently
onne
ted playerswill be displayed. The lobby
an be used for ex
hanging messages in order toset up teams or to simple
orrespondan
e, see Figure A.2.In the lobby all
onne
ted players will be listed in the left side. The gamesupports any number of players but only two teams. A player
an sele
t histeam by left-
li
king on his name. By doing this the team will
hange to theopposite �ag. When joining the default name will be Manstein and team will be94

Figure A.2: The game lobby. Manstein and Rokossovsky are
hattingbefore a friendly game of JWars.Germanny. The name
an be
hanged by right
li
king on a players own name- in this
ase a text box will pop up and ask for the new name.The game
reator
an start the game at anytime by pushing the Laun
hbutton. When laun
hing the laun
her itself will
lose and the game GUI will beopened in a window.A.2 In-game
ontrolNow we will des
ribe the JWars GUI and how to use it. First we will fo
uson the di�erent panels and how to use them for getting information and thenhow to manage the units under your
ontrol. Most of the players intera
tionwill done by the mouse. The keyboard o�ers
ertain a
tions but JWars
an beplayed without using the keyboard.A.2.1 Using the panelsWhen the game is running the GUI will o�er the player all ne
essary tools forgathering information and
ontrolling the units, see Figure A.3. In order toget an overview of the
urrent positions and for
es, look at the minimap pla
edin the bottom left
orner of the s
reen. To manoeuver around on the minimapsimply left
li
k somewhere on it and the fo
us will move to that lo
ation. Usingthe mouse on the minimap to move the main s
reen in the game is an e�
ientway to
y
le around the battle�eld.Holding down an arrow key will make the main view s
roll in the arrow key'sdire
tion. The minimap will show all known unit lo
ation in
olor
ode (red forrussian army and blue for german army). Forests are dark green. The enemy is95

Figure A.3: The battle is raging between the Russian and Germanfor
es.most likely not visible from your start lo
ation, so there should be only eitherred or blue for
es visible presently.The lower right
orner
ontains a
ommand line. Messages typed here willbe sent to all players in the game, unless they start with a slash
hara
ter, inwhi
h
ase they will be interpreted as
ommands. Here is a list of the usable
ommands.
• /
ommands : Writes a list of di�erent
ommands for the
ommand line.
• /time : Prints the
urrent time.
• /
ountunits : Prints the total number of sele
ted units or, if no units aresele
ted, prints the total number of units in the
urrent game.
• /lateness : Prints the number of millise
onds whi
h the game is
urrentlybehind s
hedule (under normal
ir
umstan
es this should be no greaterthan 20).
• /exit or /quit : Quits JWars
• /
lear : Clears all text from the
onsole96

The upper left panel
ontains the ORBAT, or order of battle, whi
h is a listof the available units on ea
h team. Cli
k on a parti
ular unit in the tree tosele
t it. The tree view will automati
ally expand nodes to provide informationabout the sele
tion. Units that are killed will have their names written in red.Cli
king on the `S
ore' tab will show the
urrent for
e strengths and
asual-ties in terms of vehi
les and infantry.The bottom middle panel
ontains information about the
urrently sele
tedunit, or is empty if no unit is sele
ted.If the sele
ted unit is a formation, this panel will list its sub-units. If thesele
ted unit is a single entity it will list the weapons of that entity. Cli
king ona weapon in the list will write the weapon data to the
onsole. If the sele
tedunit is an infantry squad, this panel will also show the number of men. If it is atank it will also show the armour thi
kness and angles on di�erent parts of thetank.A.2.2 Marking and moving unitsWhen a player wishes to move units the relevant unit must be sele
ted �rst.There are several di�erent ways of sele
ting units where ea
h
an ful�ll a
ertainneed for a situation.The simplest way to sele
t an unit is by left-
li
king with the mouse on itin the main display. In doing this the unit under the
ursor will be sele
ted asthe only unit. Double
li
king on the unit will sele
t that unit's superformation,i.e. its platoon. Triple
li
king will sele
t its
ompany, and quadruple-
li
kingsele
ts the entire battalion. It is not possible to sele
t formations larger than abattalion.There are several ways to sele
t the super-formation of a unit besides
li
kingmultiple times on a unit. While having a unit sele
ted, rolling the mouse s
rollwheel upwards will su

essively sele
t larger super-formations.Pushing the ba
kspa
e button has the same e�e
t as mouse wheel up. Ea
hadditional order to mark the superior formation will move the sele
tion one stepup the
hain of
ommand. This is an unique sele
tion
ommand for JWarsprovided by the spe
ial unit tree. This brings to the next spe
iel entry inJWars.On the left side of the s
reen is the unit tree. The panel is a tree view of theformation stru
ture whi
h
an be expanded and minimized to provide detail oroverview. Cli
king an entry in the unit tree will also sele
t that formation orunit and
enter the view on it.When having sele
ted the wanted formation or unit simply right
li
k oneither the minimap or in the main panel. This will make all the sele
ted unitsmove to the sele
ted spot in formation, i.e. not all standing on the same spot.As units move a
ross the map they may eventually spot enemy units and willopen �re on the enemy if possible. This might result in units dying, beingremoved from the game, possibly in a big explosion. Units that are destroyed
an no longer be seen or
ontrolled.The game does not presently end even if a for
e is de
imated.97

Figure A.4: A green
ir
le around units is a noti�
ation about theplayers
urrent sele
tion of troops. When troops are sele
ted their des-tination
oordinates be
ome green lines on the ground to illustrate their
urrent heading.

98

You
an order the sele
ted units to �re manually at a lo
ation by holdingshift and pressing the left mouse button on the desired lo
ation.If any questions arise when playing, feel free to email either of the developerson emails asklarsen�gmail.
om or mi
hael_fran
ker�hotmail.
om. Ques-tions will either be answered dire
tly or by referen
e to this paper whi
h pageand line number.

99

Appendix BDevelopment planDuring the time developing this proje
t we have had numerous versions of thegame. We have used these earlier versions for
reating a development plan whi
hdemonstrates the di�erent stages the game has been through. In doing this wehave
reated a development timeline. Before the proje
t started we had a listof features we wished to implement in JWars and in the end of this se
tion wewill evaluate this list to the �nal produ
t.In this se
tion we will take the most important aspe
ts of ea
h stage of theproje
t, and supply them with an identi�er, marking the element's status atthat stage of development: �−� denotes the element as un�nished and requiresmore work, �+� means that the element is in an a

eptable state for deliveringbut further development is open and �X� implies that this part of the programis as �nished as it will ever be.The fo
us in the �rst stage of development was having a world in whi
h toplay and test JWars. One of the important features was being able to playthe game online so a server/
lient model had to be running. This is be
ausewe expe
ted syn
hronization to be di�
ult and wanted it to work from thebeginning. Having an early version of the network it would also be possible toadjust the model to later needs. Another important aspe
t of the game to havein a useful state early on is the GUI. No �nal GUI model or look was
hosen atthat time but we still needed it to test the network and world
ode.
− Simple working GUI ready for extension
− A unit representation
− Element of
ontrol � mouse listener
− Networking
ode, Server/Client relationship in
. Timer
+ World buildup � Coordinate systems and tile maps
+ Command line/Chat panel used for debugging100

When the elements above where working in union we had a base to build onand
ould now extend the individual parts of the implementation.The se
ond stage of development
entered around building frameworks. Dur-ing this time some needs be
ame obvious for further development and key areaswere
reated. Espe
ially the
ollision dete
tor took time during this stage.
− Moveable/Formation/Unit framework
− Basi
 AI framework
− Terrain dirty�
ation framework
X Event handling framework
X Collision dete
torAs the game began to take shape updates on
ertain areas was needed. Whilestill extending the game engine the game
ontent began rea
hing a satisfa
torylevel.
+ Extended AI framework � Interfa
e set
+ AI implementation of low level
ollision handling
X Networking improvements (
lient/server event handlers)
X Better support for multiple unit types � data managament
X Support terrain implementation � forestation and obje
ts
X Terrain generator � Height generator tool
X Rendering me
hanism improvements - se
ondary bu�erAt this stage the game was playable and had ful�lled the minimum requirementsstated before the proje
t was started. With multiple types units and an a
tualterrain to play on, the game looked ni
e and simple (with room for improve-ments). At this time we were nearing the date of delivery and the remainingimportant game features would have to be implemented. The features imple-mented during the last and fourth stage are important for any RTS game, andwe fo
used on �nishing these parti
ular features instead of expending time one.g. game
ontent whi
h is less
riti
al.
+ Combat dynami
s
+ Final GUI layout
X Fan
y graphi
s (explosions)
X Path�nderDuring the fourth stage we managed to in
lude most of the wanted featuresfor JWars. There is one feature we hoped for whi
h did not get to implement,and that was the
on
ept of terrain height.101

