JWARS - A Generic Strategy Game in
Java

Midterm project — Informatics and Mathematical Modelling

Authors:
MICHAEL FRANCKER CHRISTENSEN, s031756
Ask HjOrRTH LARSEN, s021864

Supervisor:
PauL FISCHER

August 8, 2006

DTU - Technical University of Denmark
Lyngby

Front page: Soviet T-34 tanks supported by infantry advancing across the Rus-
stan steppes

Abstract

This project documents the development of the real-time strategy game JWARS
which uses a unique hierarchical force structure to improve the player’s abil-
ity to control large forces, plus provides a basis for advanced Al interactions
between units. The game, which is written in Java, includes several API pack-
ages providing collision detection, pathfinding, networking and numerous minor
components. These are designed specifically for handling large, sparse game
worlds and are particularly suited for modelling realistic environments. The re-
port discusses each of the corresponding problems in detail, focusing on analysis
and design while demanding little specific knowledge of the Java programming
language.

The game aims to incorporate the tactically advanced gameplay of turn-
based tactical wargames into a classical real-time setting. The game in its
present state demonstrates the applicability of the underlying framework, which
provides all the basic functionality required by the genre. Development is ex-
pected to continue, adding further game content and complexity.

Contents

Abstract i
Contents ii
List of figures v
List of tables viii
Preface 1
1 Introduction 2
1.1 Introduction to the genre 2
1.1.1 Background oL 2

1.1.2 RTS combat and control 4

1.2 Why JWARS? o 7
1.2.1 Flaws in contemporary real-time games 7

1.2.2 Military hierarchy 8

1.3 Overview e 8
1.3.1 Featuresof JWARS 9

1.3.2 The JWARS APl modules 9

1.3.3 Product requirements L. 10

1.4 Reading thisreport oL 11

2 Architecture 12
2.1 Connection and initialization 12
2.1.1 Loading gamedata 13

2.1.2 Launching the game 13

2.2 Flow of control 14
2.2.1 Synchronization 000 14

2.2.2 Deterministic behaviour 0L 15

2.2.3 Player input and network instructions 16

2.2.4 Al orders and their execution 16

2.25 Conclusion oo o 17

ii

3 Networking

3.1 Choosing a network model L.
3.2 Synchronization oo
3.2.1 Interactivity: network instructions
3.2.2 Synchronization instructions
3.2.3 Conclusion
3.3 The networking APT
3.3.1 Implementation notes
3.3.2 Random numbers and deterministic code

World of JWARS

4.1 Flow of control and timing
4.1.1 Gameloop vs. timer
4.1.2 Thegame timer
4.1.3 Game performance discussion
4.1.4 Interpolation during rendering

4.2 Coordinate spaces
4.2.1 Coordinate data representation
4.2.2 TImportant coordinate systems

4.3 Terrain.
4.3.1 Terrainin games
432 Mapdesign
4.3.3 Random terrain generator
4.3.4 Terrain objects oL
4.3.5 Terrain appereanceo

4.4 Event handling oo Lo
441 Typesofevents
4.4.2 Performance considerations
4.4.3 Queueing system

Collision detection

5.1 Basics of collision detection L.
5.1.1 Divide and conquer approach
5.1.2 Tile registration strategy
5.1.3 Shapes and sizes of colliding entities

5.2 Design of the collision detector
5.2.1 The checking routine L.
5.2.2 Thecollision grid
5.2.3 Further features
5.2.4 Efficiency and optimization
5.2.5 Using the collision detector

5.3 Conclusion L

iii

19
19
20
20
21
21
22
23
24

25
25
25
26
27
27
27
28
30
30
31
31
32
35
36
37
38
38
38

6 Pathfinding
6.1 Pathfinding in general and in JWARS
6.1.1 The algorithm

6.1.2

Data structure

6.2 Implementation

6.2.1

Expanding and searching

6.3 Finaldesign

7 Dynamical game objects
7.1 Unit organization oL

7.1.1 Real-world military organization
7.1.2 Military command in computer games
7.1.3 Tree-based unit representation
7.1.4 Network distinguishability of units
7.2 Game data management oL
7.2.1 Inheritance versus data-based game object classification .
7.2.2 Categorymodelo
7.2.3 Content loading by categories
724 Conclusion
7.3 Unit AT . .. o o
7.3.1 Hierarchical structure
7.3.2 Design considerations oL
7.3.3 Al layering structure
734 Future Alwork

8 Combat dynamics
8.1 Firingand damage L.

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.2 Vision
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6

9 Graphics

Combat ruleset L.
“Weapon vs. armour”; or “armour vs. weapon”?
Structure of the weapons API
Firing routine L.
Impact handling by armour
Conclusion
Visionin games
Approach 1: direct observer-observer checking
Approach 2: observer-terrain checking
The spotting routine
Final design
Evaluation and discussion

9.1 Active versus passive rendering
9.2 Double buffering oo oL
9.3 Battlefield rendering and layers 0L
9.4 Optimization of the rendering routine

iv

47
47
48
50
o1
51
95

58
a8
58
99
60
61
61

62
64
65
65
65
68
69
69

9.5 Conclusion

10 Game improvements
10.1 Future work e
10.2 Known iSsues v v v v i e e e e e e e e e e

11 Conclusion
References
Appendix

A Game manual
A.1 Running the program
A2 In-gamecontrol
A21 Usingthepanels
A.2.2 Marking and moving units L.

B Development plan

88
88
89

90

92

92

List of Figures

1.1

2.1

2.2

4.1

4.2
4.3

4.4

Screenshot from Starcraft. The voracious Zerg swarm is overrun-
ning a Terran settlement.

Flowchart illustrating the process of executing an instruction is-
sued by a player. The player performs an action which results in
the networking code writing the appropriate instruction identi-
fier and data across the network (dashed line). The server adds
a time stamp to the instruction and echoes it (second dashed
line) to all clients, at which point the instruction is scheduled for
execution at the specified time.
Schematic overview of the flow of control. Black arrowheads de-
note that one module affects the state of another actively, whereas
white arrowheads denote a flow of information from one compo-
nent to another (requested by the component towards which the
arrow points). New information enters the system only via net-
working. The flow of information from the world to the rendering
code encompasses all unit positions, in reality this is available
through the collision detector. Not included on the graph: firing
can lead to elimination of units which in turn removes them from
the collision detector and results in the invocation of relevant Al

Two coordinate systems. Axes are similar to those normally used
with screen coordinates. The black x in the left system is trans-
formed to the x in the right system, but the inverse transfor-
mation yields the grey x in the left system because of integer
division.
The mid-line displacement used on a one-dimensional map
The diamond square algorithm running on a 5x5 grid until termi-
nation. If the grid were larger, the first steps would be identical,
but the algorithm would continue by halving the step size and
performing the same operation over and over.
This is a 3D model of a diamond-square algorithm running on a
NxN map. It clearly illustrates how jagged maps come to look
more natural. oL L

vi

4.5

4.6

5.1

6.1
6.2

6.3

7.1

7.2
7.3

7.4

8.1

8.2

8.3

8.4

These are two maps randomly generated by the terrain generator.
It is not immediately noticable but both maps are periodic, i.e.
their edges wrap. L L Lo
Terrain graphics. Though the terrain consists of tiles, 32 pixels on
each side, this is not clearly visible due to the amount of varying
tile images. Some trees are visible in the right side of the picture.

The collision grid visualized. The number of units registered in
each tile is listed inside the tile. This is an in-game screenshot;

the debug grid can be enabled by passing -d as a runtime parameter.

A simple pathfinding problem.
A single iteration in the loop of the pathfinder. The expand
function calls it self repeatedly so all needed nodes are found. . .
The illustration shows the pathfinder tracking around the large
object on its way to the target zone. The fastest route however is
to ignore the large objects and go straight for the smaller building,
around, and then for the goal.

Example of a unit tree. Only the nodes with downward pointing

arrowheads are expanded. This is part of a screenshot from JWARS.

Different unit classes by inheritance hierarchy.
Parallel inheritance hierarchy of unit classes in JWARS and cat-
egory classes. The fully inked arrows denote inheritance rela-
tionship, while the dashed lines denote correspondence between
a class of unit and a class of category.
Categories. The continuous boxes indicate category classes whereas
the dotted boxes list examples of actual category objects of the
corresponding class. Arrows indicate inheritance.

Soviet T-34 tank with wire mesh for protection against the Panz-
erfaust anti-tank weapon.[9] oL
Armour statistics for a T-34 tank. This is part of a screenshot
from the game. L Lo
Side hit or front hit? The projection S of the tank side on the
normal of the impact direction is about equal in length to the
projection F of the front, so the probability of hitting the side is
about 50 %.
The spotting routine. The current observer is surrounded by
a dashed circle, the radius of which is equal to the maximum
vision range. The algorithm will traverse the four tiles that over-
lap the circle and expend no time checking the rest of the map.
These four tiles contain eight observers aside from the current
one, four of which are outside the vision range. The remaining
four observers (excluding the current one) that are inside the
vision range are subjected to an actual observer-observer check. .

vii

35

37

42

49

54

56

60
63

64

65

74

76

7

80

9.1

Al
A2

A3
A4

The rendering routine. Different steps are indicated by numbers.
Steps 4 and 7 are very fast on modern computers and are not
likely to have significant impact on performance.

The JWARSs launcher.,
The game lobby. Manstein and Rokossovsky are chatting before
a friendly game of JWARS.o
The battle is raging between the Russian and German forces.

A green circle around units is a notification about the players
current selection of troops. When troops are selected their desti-
nation coordinates become green lines on the ground to illustrate
their current heading. 0L

viii

List of Tables

7.1

7.2

8.1

The datafile entry defining the weapon category corresponding
to a German 75mm Kampfwagenkanone (tank gun). The right
column contains the actual lines in the datafile, while the left col-
umn is only for description. The firepower data comprises ammo
type (armour piercing), armour penetration (in millimetres) and
“kill index” (effectiveness against infantry).
Datafile entry defining the German Panzer IV tank. The entries
in the weapon list are identifiers of weapons. Notice the identifier
of the tank gun from Table 7.1. The other guns and the hull
and turret types are also identifiers of categories. These include
filenames of images which are used to display the components.

Equivalent terms of collision detection and observation handling.

66

81

Preface

During the development of JWARS many friends have taken the time and trouble
to test the code on many different platforms and hardware. This help has been
of immense value to us, particularly for testing the graphical performance using
different drivers and graphics adaptors, not to mention the performance of the
networking code under less-than-optimal (non-LAN) conditions. In particular
we would like to thank Dennis Dupont Hansen, Kasper Reck, Peder Skafte-
Pedersen and Kenneth Nielsen.

Finally we are very grateful for the help and patience of our supervisor
Paul Fischer with whom we have had numerous technical discussions about the
various software components.

Chapter 1

Introduction

1.1 Introduction to the genre

This section is meant as an introduction to the real-time strategy (from now
on also known as RTS) genre. This section should be seen as history of the
genre as well as a opportunity to understand the general game structure and
the more advanced concepts in the genre. First we will define the RTS genre
and then a quick walkthrough around it’s history. In the end we will point
out the importent features implemented in RTS games over the years. These
features will be importent for our project since our goal is to develop a game
which engine live up to the time’s standard.

1.1.1 Background

JWARS in its present form is in the most technical sense of the words a real-
time tactical game. The term strategy applies to large scales of operations
where logistics and supplies become headaches. JWARS models combat at the
battalion level while excluding base building and resource gathering which are
otherwise normal features in RTS games, and is by some definitions therefore
merely a tactical game. Even so, the scale of operations is ironically larger than
in most real-time strategy games, and we shall therefore amidst the controversy
of genre definitions take the liberty of categorizing JWARS as an RTS.

The RTS genre came about in the 80’s, but was only fully developed and
formally seen as a single unique genre 10 years later with titles as Westwood’s
Dune II and Blizzard’s Warcraft and Warcraft II. For the casual gamer an RTS
game can be recognized by some simple properties which have grown to distinct
the genre:

1. War planning is essential strategy

2. The player has no ‘Next turn’ button, but instead time progresses contin-
uously real-time

Other typical properties:
1. Resource gathering and management

2. Base building and army production. The army consists of units, control-
lable entities which can fight.

3. The player has direct control of his units/buildings
4. The player must defeat the opponent(s) in battle

The RTS genre was developed from the turn-based strategy games genre. One
of the first RTS games, perhaps the most defining game for the genre, is Dune
IT whose developers were inspired by Sid Meier’s Sim City. It should be noted
that while Sim City differs from the standard RTS game, it is also recognized as
a RTS game where the opponent is the game environment itself, and not an Al
or another human player. As such, many diversities have risen in the RTS genre
as game developers become more inventive. Today RTS games are in general
built on a player vs player environment yet providing single player campaigns
consisting of pre-defined scenarios where the player fights the computer.

Most strategy games require the player to understand basic military con-
cepts and most often a paper-rock-scissor approach on unit combat. A unit
can defeat some opposing units, while it in turn will be defeated by a suitable
opponent unit. Often this is combined with gradual unit improvements by de-
velopment in the player’s armoury for the cost of resources and time. Resources
are mentioned as a basic concept in RTS games since economy leads to more
higher military power which in turn leads to higher resource income either by
conquering land or holding strategic resource areas. This has been the basic
approach to strategy games, gather resources, build up military forces, gather
more resources or focusing on cutting off the opponent’s supplies and destroying
enemy resource areas. In this cocktail of choices for the player comes the tacti-
cal manoeuvres and structural placements if possible. Most games today try to
incorporate terrain as a factor in the games and many aspects of real warfare
has come in to play like high ground, bottleneck manoeuvres, entrenchment, and
so on. As the computer game industry grows, so does the amount of time and
money spent on developing new features in strategy games. Many of the more
succesful games found a firm middleground in supporting a lot of features but
not making the game dependent on these. This will allow more simple users
capable of enjoying the game in a relaxed playstyle while the hardcore gamers
can dive into micromanagement! of troops, exploitation of game engines etc.

The average RTS game normally uses the single player campaigns as a linear
story introducing sequentially more advanced units/concepts along the story.
Often a campaign starts with the player only controlling few simple units with
few degrees of freedom for the player as the mission is laid out. As the player

I Micromanagement refers to the player ordering each specific unit around to optimize
their performance - as opposed to macromanagement which involves larger troop movement,
maintaining production and similar issues.

completes missions more units and buildings or concepts will become available -
in this way a new bought product will introduce units slowly and let the player
familiarize himself with the game features in turn, thus not making the game
seem too complicated. In the JWARS project however we will not be including
single player missions as we would rather spend time developing the engine than
setting up specific scenarios.

In the last couple of years RTS games have been improving greatly in one
specific area - graphics. Most of the popular older games relied on 2D graphics
while the 3D environments in first-person-shooters blossomed. Not until Bliz-
zard’s release of Warcraft III: The Frozen Throne did it become a standard
to use 3D engines in RTS games, though earlier games using 3D graphics had
been around for a while without conquering large market shares. Graphics in-
fluenced some games’ popularity, though most is based on gameplay and the
universe in which the game takes place. Almost all newer titles use a 3D engine
with changeable view angles and zoom function, in this project however we rely
on 2D graphics and focus on gameplay and the gameengine itself. This is not
purely something we do to save time: 3D environments can become confusing,
meaning the player’s ability to control his forces suffers.

1.1.2 RTS combat and control

RTS games focus on large scale combat. All actions made by a player are
primarily made with the thought of increasing his force strength. With this in
mind an example of unit balancing and a brief explanation of a GUI will open
some doors for the inexperienced players.

In RTS games the player should be able to choose between a wide selection
of possibilities for combining his forces. This is where unit balance and the
strategy idealism creates synergy and creates the dynamic atmosphere in which
the genre unfolds its true gameplay. The term wunit balance is used to determine
an ordering of how units compare against each other in combat.

In this instance we generalize the concept for better understanding. If we
create an example with 3 different units being measured against each, other for
instance an aeroplane, a tank and an anti-aircraft gun (AA gun), logic would
create simple rules for this setup:

- Plane beats tank
- Tank beats AA gun
- AA gun beats plane

We could attach a force ratio on each instance if we wanted to use a measure-
ment, of how many of one type it would take to defeat the other type. This
looks like a standard rock-paper-scissors setup and a player would never be
able to select a single strategy and be sure to win. By expanding this theory
into containing more different units with strengths and weaknesses the tactical
gameplay is ensured in the game as the players will need to take steps coun-
tering each other throughout the game. Normally a player can choose between

wide varieties of units to counter out the opponents units. This would normally
create a stalemate for two armies fighting. If however the one side has access
to a unit which counters most or all of the opponents units this would destroy
the balance of power, thus making the unit too effective. By creating a unit
which is overpowered in this way players could ensure a higher chance of victory
than normal by using this unit extensively. When games contains such units it
becomes unbalanced and require unit balancing. The unit balance can be com-
promised by several factors as each attribute needs to be balanced out against
other units i.e. the more complex the game the harder to balance.

The real idea behind unit balancing is not to have a units strength on a linear
model, but let attributes like speed, length and accuracy create units suited for
special situations.

Unit balancing is one of the greatest challenges for developers and is often an
ongoing process even after release. Games today which base their playerbase on
an online environment have the ability to release updates when needed. Mostly
the developers will release a game which is unbalanced unintendedly, and only
the testing done by players when playing the game will find the issues which
need attention. Some developers has adopted the theory that there is no testing
like releasing the game to a massive audience.

Next we will introduce one of the most classic games in the genre as an
example of how a game GUI could be created. The example we have chosen
is Blizzard Entertainment’s Starcraft including the expansion pack - Starcraft:
Brood War. This game has been chosen because it is a well-known? and typical
example within the genre, and because both authors of this paper are proficient
in this game.

Most RTS games have extremely similar user interfaces. Several designs with
unique abilities and setups have come up but invariably contain the two most
common components a main display or focus panel which focuses on a limited
part of the battlefield and displays nice and detailed graphics of the action,
and a smaller minimap which shows the entire map but only conveys little
information. Add to this any number of status- or control panels. These are all
tools for the player to enhance his control and provide important information.

Figure 1.1 shows a screenshot from Starcraft. As usual, the GUI is split into
different components, each providing the player with information and options.
Covering most of the screen is the focus panel.

The player can select units displayed here by dragging a box around them
using the mouse. The player can now give orders to this selection. The exact way
to give orders differs between games. In starcraft, right-clicking on the ground,
for example, will cause the currently selected units to walk to the specified
location.

The minimap is located on the bottom left corner®. The minimap serves as

2 Starcraft is for example extremely popular in South Korea, where public competitions are
regularly televised and famous players are sponsored.|5]

3The bright dots on in the minimap is the players base while most of the map is unexplored
— black. Notice the rectangle on the minimap showing where the focus panel is centered.
Another detail is the large rectangle in the minimap which indicates that the minimap doesn’t

Figure 1.1: Screenshot from Starcraft. The voracious Zerg swarm is
overrunning a Terran settlement.

a primary overview for the player to switch his focus on the battlefield. The
minimap usually shows the player’s own forces in green and opponents forces
in red. In this way an enemy massing forces or approaching your territory will
result in red markers on the minimap. The minimap will never be the player’s
main source for information as the information it provides is always sparse and
can even be misleading.

The lower middle panel provides information about the currently selected
objects on the battlefield. When a player has his focus on a specific unit or
object all relevant information concerning the object will be displayed here. This
is the most direct information the player can get from the game as it will often
display a single unit’s statistics like firepower, range, speed and health status.
In the referred screenshot a bunker is selected showing its current health status
and an amount of marines occupying it.

Finally, the lower right panel contains controls that are available for the
current unit selection. Since the current selection is a bunker, which is immobile,
it only has one control button (though it normally has more): pressing it will
cause the marines inside to leave.

The user interface in Starcraft is a standard example for the genre. The
simple GUI handles most situations very well and this setup is used by most
RTS games today. Most new players to an RTS game have a tendency to use
the focus panel as the only source for information while watching the minimap
is in reality extremely important, for example allowing the player to spot enemy
attacks earlier.

stretch to fill the entire panel as it does in newer releases.

1.2 Why JWARS?

This section introduces JWARS and why the authors believe this is worthy of a
project. First we shall consider some flaws or features absent from contemporary
games, then we shall see how these might be remedied.

We have chosen this project with a particular purpose in mind — to create a
game which combines the realistic tactical elements of turn-based tactical games
and the fast pace of real-time strategy games. Where the turn-based games
never stress the opponent and give him arbitrarily long time to make a decision,
they rely on realistic features and complicated combat systems. These elements
have not been seen in any mainstream real-time games yet, as RTS game engines
rely on faster paced gameplay on smaller maps thus excluding realistic distances
and other game content. This concept in itself is not exactly new, but shortly
in Section 1.2.2 it will become clear what separates JWARS from the hitherto
existing games.

In developing JWARS we want first prove that the combination of the game
types is not unrealistic. This is done by developing the necessary API packages
that are supposed to allow other developers to continue our work, since we will
surely not be able to finish an entire game of commercial quality ourselves within
the time limit of this project.

1.2.1 Flaws in contemporary real-time games

There are some areas in which the real-time strategy genre has not evolved much
over the years. Some of these are:

e Individual units typically behave unintelligently unless the player takes
care to control each (or very small groups) of them personally. For exam-
ple, if an enemy approaches a group of friendly units then half the group
might attack and be lured into an ambush whereas the other half stays
idle. Also it is frequently observed that anti-tank weaponry will be au-
tomatically directed at infantry even though enemy armour is nearby as
well.

e As the game progresses, complexity grows greatly as units are produced,
and the player cannot hope to control forces with such attention to detail.
This directly benefits the player who is quickest with a mouse or keyboard,
and not the player with superior strategic ability. Control, rather than
strategy, thus becomes the primary point of concern during gameplay.

e While not necessarily a drawback, most games use hit points (this is dis-
cussed in Section 8.1) to represent a unit’s health. When damaged, some
hit points are deducted until the hit point count reaches 0 at which point
the unit in question dies. Thus most games are deterministic in nature,
or contain only negligible random factors in combat.

1.2.2 Military hierarchy

Many of the drawbacks pointed out above can be eliminated by introducing a
tree-based means of controlling units. Such a system is in reality a requirement of
any working military as we can clearly see in the world today, and it is therfore
curious that no attempt has yet been done to incorporate such a system in
real-time strategy games.

Aside from easing the control of large forces for the player, it is possible to
provide better AI support using this system. By using a tree hierarchy in the
game, a simple Al can be assigned to every military formation “leader”; such that
this AT is responsible for controlling the immediate subordinate formations. The
flat unit structure in most real-time strategy games allows for little organized
interaction through unit AI, but by explicitly embracing a military structure,
multiple platoons and companies can work together, controlled by automated
commanders.

The Al-specific possibilities implied by this system are almost endless, yet
bearing in mind the time necessary to develop such a system we can hardly
hope to achieve any impressive results in this field since the entire game has to
be built from scratch. What we can do, however, is to provide API components
that demonstrate the applicability of this model, and therefore opens the way
for future development of the AL

The increased controllability obtained by using a tree-based hierarchy al-
lows players to control nearly arbitrarily large forces. Consequently it can be
expected that focus on tactics will become relatively more important.

1.3 Overview

The software presented in this report can roughly be diveded in two sections: the
JWAaRS game (or just JWARS) and the JWARS AP or application programming
interface, which are both written in the Java programming language. The game
is in reality a thin shell of specialized code — comprising user interface and
control — plus the game content, which works on top of the API packages that
are responsible for handling more complex problems.

The JWARS API consists of several modules which can be used separately
or with a minimum of cross-package dependencies. The following chapters will
describe each of these modules in turn, but in order to achieve an overview, we
shall list the main modules briefly below. Chapter 2 is devoted to describing
their high-level interaction in the game. The important API modules are largely
feature complete.

The game itself represents a genuine effort of creating a quality piece of
software and does not only serve as a means of demonstrating and testing the
packages. However game development is time consuming and normally involves
much larger teams of programmers and designers. Therefore in its present state
the game, while fully playable, includes only the most important features, and
has not yet been balanced for “serious” play. Most of the required work on the

game is of relatively trivial nature and does not hold any technical problems
worth mentioning.

1.3.1 Features of JWARS

The game is a fully playable two-dimensional top-down view real-time strategy
game. The game takes place on the eastern front in World War II, and the
available weapons correspond roughly to the situation in the fall of 1943, at the
Battle of Kursk. Many ideas are borrowed from advanced turn-based tactical
games which are not normally seen in real-time games, making it unique and
different from contemporary games. Features include:

Two teams: the German Wehrmacht and the Soviet Red Army. Each side
possesses roughly two battalions worth of tanks and infantry.

Supports multiplayer over LAN or the internet. Opposing players are
expected to control the two forces. Additionally, several players can share
control of each force simultaneously for cooperative play.

Opposing forces automatically fire at each other. Combat dynamics are
highly realistic, using e.g. real-world tank armour tables.

Explicit military hierarchy allows efficient control of large military forma-
tions.

A large game world allows players time to focus on tactics.

Beautiful (but simple) randomly generated graphics.

1.3.2 The JWARS API modules

This is an overview of the generic software components that can be reused in
other games.

World representation. JWARS uses a number of abstract 2D coordinate
spaces and provides utilities for conversions between these. Specifically
many tile-based maps are required by the different components of JWARS.

Collision detection. The scaleable tile-based collision detector is capable
of detecting collisions between circular objects of arbitrary size.

Pathfinding. The pathfinder implements an A* algorithm which dynami-
cally expands and updates the search area according to requirements. This
approach accomodates obstacles of arbitrary size and placement, and ac-
comodates large maps without excessive memory footprint.

Spotting system. The spotting system uses a tile-based approach which is
particularly efficient if the map is large compared to the visibility radius.

e Artificial intelligence. Every unit and every formation has an AI which
is responsible for interpreting and carrying out orders. The present Al
implementations are still very simple, but the framework is designed with
extensibility in mind.

e Event handling model. A queueing system provides efficient management
of timed execution of game events avoiding unnecessary countdown timers.

e Data management. Script-like files can be used to store game data such
as unit and weapon statistics. These are loaded into a data repository and
organized in categories which serve as factories for different unit types.

e Server-client based networking model. The TCP/IP based networking
model supports a customizable set of instructions and provides base server
and client classes for managing player connections. This model has very
low bandwidth requirements, but requires strict logical synchronization
between clients and server.

e Multiplayer synchronization utilities. Synchronization on multiple clients
is done by means of a timer which assures that clients follow the server
temporally closely.

e Rendering routine. The display is actively rendered using double buffering,
supplied by an extra backbuffer which used to reduce the repaint count of
static objects such as terrain.

e Terrain generator. The terrain generator creates random continuous maps
which can be used as e.g. altitude maps.

1.3.3 Product requirements

Before starting the project we had some minimal requirements which would have
to be done within the project’s time limit. At the beginning of the project we
wrote down the minimal requirements. The minimal requirements were listed
but has been rewritten to this:

The game must be playable over the internet by at least 2 players. For game
content we must have a working GUI making the player capable of giving orders
and gathering information. Units must be able to move around in the world
and shall automatically begin firing at opponent units within the field of sight.
Units must be able to sustain damage as well as being destroyed and be removed
from the game. The world must provide different terrain types which should be
able to have an effect on the units occupying space within the the given terrain
type like movement speed or visiblity alterations.

10

1.4 Reading this report

The current chapter — Overview — should hopefully have provided a clear idea
of which modules we have worked with and what the game is like.

The following chapter Architechture is meant to provide actual insight
in the workings of JWARS, the way different modules interact with each other
and are glued together by the game code.

The main part of the report follows, and here the different modules will one
after another be discussed and evaluated in great detail. Note that in most cases
we have avoided explicit code and language-specific information, preferring a
higher level of discussion focusing on analysis, design and algorithms. The report
should thus be of interest to game programmers and not only Java programmers.

The structuring of the report is loosely chosen such that modules with few
dependencies (for example networking and world representation) are treated
first, and the subjects progress to successively higher levels of abstraction and
interdependence in the later chapters. Still, the chapters should be indepen-
dently readable.

In the end of the report is the Appendix containing the Game Manual which
is useful for running and using the application.

11

Chapter 2

Architecture

In this chapter the architecture of JWARS will be described, i.e. the way in
which the different components are made to interact. It should be outlined that
the descriptions in this chapter are kept brief. There are far more operations
under the hood that noted here, but it would be too cumbersome to describe
the less important routines. This chapter will only mention the most important
steps. The subsequent chapters will then go into greater depth describing how
the individual components are designed.

2.1 Connection and initialization

As the program is started, a small GUI is presented which allows the user to
create a server or join an existing one. If the user wants to join a game, this
will spawn a JWARS session which attempts to connect to the specified server.

Creation of a server will always result in a client being spawned locally which
connects to that server so as to allow the server’s user to participate in the game.
This client is no different from any other client (connecting from remote), even
though it is physically running in the same virtual machine as the server. The
client thus runs independently of the server, but the server uses some common
functionality of the client, such as the timer and network instruction set. The
practice of giving the server access to the logic of the local client also allows the
server to check the validity of orders issued (this has not been implemented, but
this is one reason for choosing the design) by the players before relaying that
information to the clients. This reduces the possibility of cheating.

When a client session is spawned, the first thing done is to connect to the
specified server whether it is local or remote. This allows the client to receive
initialization data from the server, such as a random seed and the size of the
map to be played®.

1 For reasons of debugging, the random seed is always 0 in the current implementation, and
only one map will presently be generated, but the order of initialization allows for dynamical
specification of game data.

12

2.1.1 Loading game data

After connecting, the game world is generated. This involves a number of steps,
namely creating coordinate systems and tile representations of terrain, along
with the creation of a collision detector and an observation environment (which
is responsible for checking whether enemy units can see each other on the map).
Notably this step also involves registering the root unit, which is the ancestor
in the tree hierarchy of all units (see Section 7.1.3) which will later be added to
the world.

The following step reads all unit, weapon and formation data from external
files (though this could easily be done through the network as well). This kind
of data storage is obviously preferable to hardcoding; in fact it allows people
to change the game content completely without looking at the source code, by
entering data in a simple script-like fashion. This information is represented
in category objects, which hold data pertaining to specific types of units. For
example, the information of a Panzerkampfwagen IV is read once, and then
scores of panzers can be spawned using the category as a factory and data
storage.

The game presently adds two German and two Soviet battalions to the game,
and places them in pre-determined wedge-like formations (this is hardcoded
since implementing an entire editor, which is the “normal” way to do this, would
take too long) in opposite corners of the map. The battalions are organized in
companies and platoons, containing both tanks, assault guns? and infantry.

The final step is to build the main Swing GUI which will be displayed during
the game. Even though the game is not yet about to start (clients are still joining
the server) it is preferable to generate the GUI now, such that the GUI is ready
when the game is started.

2.1.2 Launching the game

At this point the entire game setup has been loaded, but the game has not
yet started. Rather the person hosting the server will want to wait until a
enough clients have joined (even though this game only has two armies, several
players can control the same army to increase efficiency), and meanwhile a list
of the currently connected players is shown, displaying the player names and
which army they control. This lobby frame is also equipped with a chat for

convenience.

The game starts when the server presses the launch button. This will result
in a launch instruction being sent to all clients. When received, it will dispose
of the lobby frame and start the timer which controls the flow of time (in the
game). It will also make the main GUI visible. At this point the game is fully
running, and will remain in this state forever or until the players quit.

2An assault gun is a gun mounted on a tank chassis but without a traversing turret

13

2.2 Flow of control

Most real-time computer games run by means of a game loop, i.e. aloop in which
each iteration constitutes an update of the game state and display as quickly
as possible. JWARS, too, runs by continuously applying updates. However, in
order to ensure that the clients run equally fast, the update rate is instead fixed
by the previously mentioned timer. The timer executes those updates from
the AWT /Swing event dispatch thread, which means no synchronization with
the Swing-managed display is necessary. However the timer also provides the
possibility of using its own thread, which might be desirable in non-AWT /Swing
games.

The timer attempts to adjust the game flow to that of the server. If an
update is completed before it is time to perform the next one, the timer will
sleep for the appropriate amount of time before invoking the next update. But if
the game flow lags behind that of the server, for example because the computer
is too slow to perform updates at the required rate, the timer will report its
concerns by passing parameters to the update routine, which will take note of
this and attempt to regain lost time by skipping non-vital parts of an update.
This brings us to the next point, namely the basic components of such an update.

One update consists two steps.

1. The game logic is updated. This means that all units are updated, allowing
them to move (using the collision detector), turn around, take aim, fire
and so on, depending on their destination or target. Actually this is the
result of the update method of each unit being invoked recursively down
the unit tree. The logical update will also include various other tasks, such
as polling for network input and input from the keyboard. Importantly,
this will also poll the task scheduling system which stores and manages
tasks that should be performed after a delay.

2. The primary graphical display is updated®. This involves redrawing any
parts of the terrain on which there are moving entities (if no moving enti-
ties are nearby the terrain is not redrawn since no changes have happened)
then drawing all the visible entities.

3

2.2.1 Synchronization

In case the timer is lagging behind schedule, for example due to the local com-
puter not being able to run the game at the required speed, the graphical update
will automatically be performed only a few times per second (such that the dis-
play still appears responsive to the user) while logical updates will be performed
at the maximum rate possible for the CPU. This means a computer will have
to be very slow in order not to be able to play the game. It also means that
if one computer is slow, it will not delay the server and the other clients (a

3There is a number of other graphical side displays which are not updated continuously
here, but instead by regular AWT/Swing repaints.

14

problem which is noticed immediately in certain games such as Command &
Conquer: Generals), but it will be responsible for regaining the lost time itself
by sacrificing graphical smoothness in the meantime.

In order to ensure that clients do not execute updates too quickly such
that instructions from the server arrive too late (and thus bring the game out
of synch), the client continually receives synchronization instructions from the
server which specify the amount of updates the client is allowed to perform. In
the event that the client cannot proceed executing updates because it receives
no synchronization instructions from the server, it pauses the timer and waits
for new instructions. As soon as the new instruction is received, game updates
will be executed at the maximum possible rate until the game time is consistent
with the real time elapsed. This means the game will stay in synch during lag
spikes (small periodes of exceptionally high response times) or even if the player
accidentally rips out the cable for a moment.

2.2.2 Deterministic behaviour

For the moment we shall ignore the activity of players and concentrate on the
tasks performed deterministically as time progresses. There are some operations
which are not desirable to do from the main update routine, i.e. those things
that do not happen all the time. For this reason there exists a framework
for scheduling tasks to be performed after a certain delay (such a framework
is not strictly necessary since anyone could use if-sentences and countdowns
from the main update method, but such approaches would be cumbersome and
inefficient). Reloading of weapons is managed in this way: when a weapon fires,
it schedules a reload event which will in turn be executed at the proper time,
allowing the weapon to fire again.

Another problem is determining which units can see enemy units. This is
relatively demanding, because large amounts of terrain may have to be traversed
to perform such checks. An observation environment takes care of traversing
the relevant terrain efficiently. For each observer registered in the observation
environment, such a check is performed regularly, and the frequency of these
checks is controlled once again by using the event scheduling framework.
The unit AT uses the spotting checks to update targets: whenever a new target
is found which is closer than the current one, the unit will automatically focus
on destroying the closer target.

When a unit has a target, it will aim its guns towards that target and fire
the guns whenever they are ready. When the target is destroyed, it will acquire
a new target and continue. When a weapon is fired, the game will randomly
calculate a hit location, find units near that hit location and finally calculate
the damage done to those units. Infantry and tanks act differently to incoming
fire; infantry units can take a random amount of casualties based on the volume
of fire, whereas tanks use a more advanced (and realistic) model, taking into
account armour plate thickness and slope (using historically correct values), the
ability of the weapon to penetrate armour, and several other things. When
a target is destroyed, it will be removed from the vision model and collision

15

detector, but technically it is not entirely removed from the game. It still sits
in the unit tree, though it is now counted as a casualty.

Finally there are some updates to the GUI which are performed at regular
intervals (using the event scheduling framework). For example the score board
updates casualty and force strength tallies as the game progresses, and the
minimap is updated regularly.

2.2.3 Player input and network instructions

The location of the main display on the battlefield is managed through the
viewport. When the viewport is moved (there are multiple ways to do this), it
will alert any registered viewport-event listeners, which ensures that the view
is updated correctly. The player can select units using the mouse, and this is
managed similarly by alerting a number of registered unit selection listeners
which can react by updating displays to convey information about the newly
selected unit. Unit selection and viewport scrolling are the only non-trivial
client-side controls.

Suppose the player presses a key or uses the mouse. Either this action affects
the local client only — for example, if the action is just scrolling the viewport
across the battlefield, it can be resolved locally.

If, however, the action issues an order to one of the player’s units, it is nec-
essary to send that instruction across the network. The appropriate instruction
will therefore immediately be sent to the server, which will relay that infor-
mation along with a time stamp — information about when exactly that order
should be executed back to all the clients. When the clients receive this in-
struction it will be enqueued, using the event scheduling framework, until its
execution time which the server specified. Finally, when the time is up, the
instruction is interpreted and carried out (technically by invoking one of its
methods: the instruction is responsible for executing itself). This process is
shown schematically on Figure 2.2.3.

2.2.4 Al, orders and their execution

Each unit, being either a formation consisting of several sub-units (such as
a company containing several platoons) or a single physical entity such as a
vehicle, is equipped with a simple AI. Whenever a player issues an order to
a unit (such as a move order), and the networking framework has distributed
it correctly on all clients, the unit’s AT will interpret the order and execute it
accordingly. For example, if the unit is a formation it will pass on a move order
to its sub-units, making sure that the sub-units receive different destinations
such that they line up in an orderly wedge-like fashion (similar to the initial
setup mentioned in Section 2.1) instead of having all of them try to reach the
same point. If the unit is not a formation but instead e.g. a vehicle it will invoke
the pathfinder to calculate a feasible path towards the destination (consisting
of a number of waypoints), then simply register its new destination and begin
moving towards it at every update (as described in Section 2.2).

16

User interface » Networking code: write - -= - =-p| Server:echo [=

Instruction echoed including time stamp

Instruction queue —>< Execution of code)

Networking code: read
(all clients)

\ 4

Figure 2.1: Flowchart illustrating the process of executing an instruc-
tion issued by a player. The player performs an action which results in
the networking code writing the appropriate instruction identifier and
data across the network (dashed line). The server adds a time stamp to
the instruction and echoes it (second dashed line) to all clients, at which
point the instruction is scheduled for execution at the specified time.

While orders can be given by the player, it is possible for different Als to
give orders to each other. This happens when a formation Al is passing on a
movement, order to its sub-units, but in a broader perspective (not yet imple-
mented functionality) this can be used to achieve sensible interaction between
elements of the same formation, ensuring e.g. that all platoons of a company
attack together properly, or that they wait together in an ambush without firing
before the time is right.

2.2.5 Conclusion

Having read this, you should understand how the different components in the
game interact at a high level. The entire situation is illustrated on Figure
2.2. The rest of the report is devoted to explaining the individual components,
analysing their requirements and deriving proper designs.

17

Networking

Synch
instructions

Player

orders
; \ 4

Rendering |} World (update)

\4

Update

» Event scheduling

Player
orders

\4
Units (update) <t—»| unitAl |«

A
\4

. . Targetting -
Unit movement Firing Fog of war, vision

o

Collision detector ~ |——J>| Pathfinder

Figure 2.2: Schematic overview of the flow of control. Black ar-
rowheads denote that one module affects the state of another actively,
whereas white arrowheads denote a flow of information from one com-
ponent to another (requested by the component towards which the arrow
points). New information enters the system only via networking. The
flow of information from the world to the rendering code encompasses
all unit positions, in reality this is available through the collision detec-
tor. Not included on the graph: firing can lead to elimination of units
which in turn removes them from the collision detector and results in
the invocation of relevant AI methods.

18

Chapter 3

Networking

While real-time strategy games traditionally include single-player campaigns,
experiece shows that the success of a game is largely determined by its playability
in multiplayer. The online playability of a real-time strategy game is therefore
very important, and the networking solution can have profound impact on this®.
This chapter will explore the options available and in turn decide on a feasible
design.

3.1 Choosing a network model

There are several different architectures and protocols used in multiplayer games,
and different genres have different requirements regarding efficiency and re-
sponse times. Fundamentally we shall discuss two variables: first there is the
amount of game data which has to be synchronized across the network, while
on the other hand there is the network response time, i.e. the ping or latency.

We can roughly categorize real-time computer games by their networking
requirements:

1. Small, fast-paced games such as first-person shooters. These games require
low ping but have small amounts of data to synchronize (e.g. the positions
and speeds of a few dozen game objects). For example the game Counter-
Strike is usually played by around 10-20 people who each controls one
person, and network latency can quickly cause deaths in the fast-paced
firefights.

2. Large, slow-paced games such as real-time strategy games. There are
very large amounts of data (hundreds or thousands of game objects), but
there are only lax requirements to response times since the player is not
concerned with such low-level control as above.

LCommand €& Conquer: Generals is regarded by the authors of this text as one of the
finest real-time strategy games ever conceived, and yet this game remains largely unplayed
online. Even on a high-speed LAN the game speed will almost grind to a halt with just four
players. Our conclusion: they chose the wrong network implementation.

19

3. Large, fast-paced games such as massively multiplayer online role-playing
games. These require both fast response and involve very large amounts
of data, and therefore demand very advanced networking code. It is well
known that this takes its toll even on modern games of the genre, but
luckily this is none of our concern.

We are obviously concerned only with the second category. We note two ways
to keep the game state identical across a network: either we can beam the
entire game state consisting of every logically significant game object across
the network with regular intervals. This approach obviously only accomodates
games of the first category because of sheer bandwidth requirements. Another
— and to us better — way is to let every computer simulate the entire game logic
deterministically in parallel, and only send across the network those instructions
that are issued by the players.

This approach is promising since it requires next to no bandwidth even
though thousands of units are on the battlefield. However it is strictly required
that all comptuers on the network are able to perform exactly the same simula-
tion given the player inputs received from the network, otherwise the game will
go ‘out of synch’ and never recover. The next section will describe this approach
in detail.

3.2 Synchronization

We shall now propose a complete solution to managing the flow of time (in the
game, that is). Suppose until further notice that the players have no control
of the game. We define that the game starts at frame 0, or ¢ = 0, in some
initial state which is identical on all those computers that partake in the game.
Now, all the partaking computers will perform a logical update (which will allow
entities to move or fire at each other automatically and deterministically, i.e.
without the player issuing instructions) at regular (and equal across the network)
intervals, and when such a logic update on some computer is completed we say
that the frame count t is increased by one on that computer. Thus, as time
progresses every computer will execute further logic updates for ¢t = 1,2,3...
until the game is over, and if the logic update routine is consistent then the
computers will all be in the same state at all time.

There is no network activity yet since the logic update routine is determin-
istic and therefore requires only local information. Note that the computers do
not need to execute the same logic update at exactly the same physical time, the
only important thing is the relationship between frame count and game state.

3.2.1 Interactivity: network instructions

Suppose now that we will allow a player to affect the game state, which is hardly
a deterministic endeavour. We will need to send the particular instruction that
this player has issued to all computers in the game such that they can execute

20

it. Furthermore it is obviously vital that all computers execute this instruction
while in the same frame, otherwise they will go out of synch forever.

Let us say that some computer acts as a server which keeps track of the frame
count, while all players are clients connected to the server?. The player who
wishes to execute an instruction then sends that instruction to the server. The
server receives this instruction while in frame number ¢y3. Now, every computer
on the network must receive this instruction and execute it at the same time, so
the server echoes the instruction to all clients along with the requirement that
the instruction be executed later at frame number ty + L, assuming that the
instruction will arrive to the other computers before they have furhter executed
L updates (we shall refer to L as the latency, even though adding the physical
network response time results in a slightly larger actual latency). Now, each
client will receive the instruction and can enqueue it for execution in the (¢ +
L)’th logic update.

3.2.2 Synchronization instructions

What happens if instructions arrive late to one player, at time tq+ L+ §7 Then
that computer will no longer be able to execute the instruction in time, and the
game is ruined forever. This must not happen, and we shall therefore require
that the server provides as a guarantee to each client that they are allowed to
execute updates until some frame count. If the server continously sends out
synch instructions to all clients stating that they may proceed the updating
procedure until frame ¢ where ¢t < tg + L, then a client can halt the game flow
if it reaches time ¢ and not continue until receiving a new such instruction from
the server. In the meantime any instructions that arrive will be enqueued for
execution at times later than ¢, ensuring their eventual execution at the correct
time.

A game implementing the ideas presented here will not rely on a classical
game loop which performs updates at the highest possible speed, but instead
use a timer which updates only at regular intervals. It is still possible to render
at higher frequency than the logical update rate, using interpolation, see section
4.1.4.

3.2.3 Conclusion

We now have a completely synchronized model which supports any number
interacting players and requires a server. The network activity will be very low,
perhaps few instructions per second for synchronization and a term proportional
to the player activity. Since the server will have to send each instruction to n
players, and n players will send O(n) instructions, the bandwidth use will be
O(n?) unless special countermeasures are taken, but real-time strategy games

2Servers and clients are not completely indispensable. Some games employ peer-to-peer
networking where no server is appointed. The client-server model provides a centralized
manner of handling and validating instructions, which is why we choose this model.

21

are traditionally played by no more than around 12 players, and with the low
per-player bandwidth requirement this remains acceptable.

3.3 The networking API

The objective of this section is to design a networking package adhering to the
requirements specified in the previous section. This will be done in an event-
driven manner which exposes a continually updated non-blocking instruction
queue to the programmer who can therefore easily integrate it in any timer
based or game-loop based implementation.

The instructions considered in the previous sections, both synch instructions
and client instructions, obviously require guaranteed delivery in consistent order.
Both of these properties are ensured by the protocol TCP/IP. UDP is another
protocol commonly used in games. It is generally used for more fast-paced games
because it achieves faster response times by sacrificing among other things the
guarantee of delivery: packages are sent almost without overhead, but some of
them may never arrive, and those that do may do so in any order. The guarantee
of delivery is essential, and along with the lax latency requirements this shows
beyond doubt that TCP/IP is a better choice than UDP for our purposes.

The previous section established a client-server model, along with the con-
cept of instructions. We shall further introduce the protocol which is simply a
collection of instructions to be used by server as well as clients. The protocol
consists of all the instructions that can be issued while the game is running,
which would in our case include e.g. ordering the movement of a particular unit
towards a particular location, ordering a unit to fire at a particular location, or
the previously mentioned synch instructions.

Now we are in a position to propose the final layout of the networking pack-
age.

e I0Handler. Responsible for sending and receiving a particular type of
instruction (for example movement instructions). An IOHandler has a
write method, which writes the instruction-specific data (this could be a
new movement destination for a unit along with that unit’s identity) to
the server. It has an echo routine which is invoked on the server when that
server receives the information, such that the server may check whether the
instruction is valid, thus preventing certain cheats. The server will then
most likely just pass the instruction on to all clients after attaching an
execution time stamp. Finally the I0Handler has a read routine which
will be invoked when the client receives the information echoed by the
server. The framework will provide input and output streams which the
I0Handler can use in its methods.

e Protocol. This is an unmodifiable collection of I0Handlers which is
identical across all computers, clients as well as server. In order to use
an I0Handler it must be registered with a Protocol before connection
is established. The protocol internally associates each I0Handler with a

22

unique identifier which the client and server employ to distinguish types
of instructions on the network.

e Client. The client can connect to a server at a specified IP address and
port. The client will keep a thread running which listens for network
input. Whenever input is received, the client will consult its protocol to
alert the appropriate I0Handler to handle the instruction. Output to the
server is written through the registered I0Handlers.

e Server. The server accepts connections from clients by listening on a
particular port. Every client which connects will be registered, and the
server will spawn a thread to listen for input from that client which ter-
minates when the client leaves. Whenever input is received, the protocol
is consulted and the appropriate I0Handler is made to handle the input.
The IOHandler can then write any information it likes to all clients (it
will most likely just pass on the instruction).

Finally there are server- and client event handlers which can be attached to
the server and client respectively, which can execute code on connection, dis-
connection and player events (these are fired in the case a player changes name
or team).

Using I0Handlers is quite easy: the write, read and echo methods must
be implemented through subclassing. The framework will automatically pass
references to relevant input and output streams as parameters to these methods
(for example the read method is always provided with an output stream which
writes information directly to the server, and the read method is provided with
the input stream which reads data received from the server), which means the
implementation only has to decide which data to write to them.

3.3.1 Implementation notes

The binary format used to send instructions consists of two parts, namely a
header and a body. The body consists of the information which an I0Handler
writes explicitly, while the header is managed automatically. There are two
different headers, depending on whether the information is travelling from a
client to the server or opposite. In both cases it is necessary to send the identifier
of the I0Handler which is responsible for the instruction, such that the correct
I0Handler can be fetched to handle the instruction at the destination. This
information is currently written as a byte, though it has become clear that
bandwidth is of such little significance that a 32-bit integer might as well be
used.

When the instruction travels from the server to the client, an execution-time
stamp must be supplied as well such that the clients know how long to enqueue
the instruction in order to execute it at the same time as the other clients.
The server will determine this timestamp based on a timer. Specifically the
time stamp is equal to the current time, which the server reads from a timer,
plus the server latency (mentioned in Section 3.2.1) which can be set when the

23

server is created and adjusted at any later time. The time stamp is written as a
32-bit integer. Thus the instruction overhead is a few bytes, plus the overhead
induced by the underlying TCP/IP protocol. The relatively small amount of
traffic necessary to run the game renders this overhead unimportant.

3.3.2 Random numbers and deterministic code

Keeping games synchronized requires some care while running the game sim-
ulation. If the game uses (pseudo)random numbers, it is obvious that every
client must be able to generate the same sequence of numbers, meaning that
they should use the same random seed and that successive number generation
should be deterministic based on the seed. The game world, to be discussed
in Chapter 4, exposes a single random number generator which must be used
only for events that are guaranteed to take place on all clients. Examples of
operations that differ between clients are rendering. First of all the rendering
rate is not fixed like the logical update rate, so random graphical effects should
obviously use a local random number generator instead.

It is easy to transfer a random seed across the network at the beginning of the
game (the client- and server event handlers are designed for exactly such pur-
poses), such that all clients can use the same seed, but at this point all random
seeds are still fixed to default values in order to ensure better reproducability
in the event of bugs.

It is also obvious that non-deterministic mechanisms such as rendering rou-
tines should not invoke any method that can affect the game state. In our
experience it is not difficult to distinguish between code which is deterministic
and code which is not. During the development of JWARS, we can proudly
announce that we have on no occasion observed a game go out of synch unex-
pectedly.

24

Chapter 4

World of JWARS

The JWARS world is the entity responsible for handling the game logic at the
highest level. The world encompasses coordinate space management, collision
detector, vision model, event scheduling system and many other things which
will be the subjects of this and several subsequent chapters. In this chapter
we will describe some of the most fundamental properties such game flow and
coordinate system management.

4.1 Flow of control and timing

Section 2.2 described how most games used a game loop, and went on to briefly
describe the logical and graphical update mechanisms. Recall that JWARS runs
by means of a timer which performs updates with regular intervals, as opposed
to an actual game loop. This section explains in greater detail why this timer
is beneficial and what it does.

Note that game is designed such that the selected update rate has minimal
impact on the game model. If a different update rate is specified (this is not
yet possible at runtime, but a planned feature), units will still be seen to move
at the same speed across the map, have the same reload time and so on, since
the game generally specifies time intervals in seconds and converts this to frame
counts internally.

4.1.1 Game loop vs. timer

A game loop serves to perform game updates at the fastest possible rate. For
every update, units are moved slightly, e.g. by incrementing their positions by
the movement speed times how much time elapsed since last update. Also the
graphical display is updated, showing the new locations of units. If the update
rate is high, animations will appear smooth and beautiful whereas lower update
rates can make the game resemble a “slideshow” with movement occuring in
large chunks. As game complexity grows, an update will take longer time for

25

the computer, so units should move farther per update proportionally to the
time which has elapsed. Using such a wvariable update rate ensures the best
possible use of CPU resources.

As we have seen in Chapter 3, every client must conduct ezactly the same
logical updates, which forces us to use a fixed update rate instead of a variable
one where entities would move based on the local machine’s computing power.
We have selected a frequency of 50 Hz, since this is sufficient for reasonably
smooth animations while not too demanding for slower computers. Recall that
only the game logic needs to be updated with this rate; graphical updates can
be skipped if the local computer has trouble keeping up with the fixed update
rate, resulting in less appealing graphics but preserving game integrity.

4.1.2 The game timer

The timer provided with JWARS is designed to synchronize the update rate on
different clients by periodically notifying timer listeners. It thus has similarities
with the timers provided with the java core classes, but in fact provides more
flexibility.

The listeners receive information about whether the timer is behind schedule
(e.g. if updates are taking too long) such that they can decide to skip unneces-
sary operations. It also explicitly supplies the frame count which is obviously
important to the simulation. After being started, the timer can be either paused
or suspended. If the timer either paused or suspended, it will no longer perform
updates until it is resumed. If it is suspended, then after being resumed it will
try to regain the time in which it has been suspended by executing updates at
the maximum possible rate. This is useful if temporary network trouble requires
the game to halt temporarily.

The timer works on top of a watch. A watch is any entity which can provide
the current time in milliseconds elapsed after some fixed point!. The timer polls
the watch periodically and adjusts its update rate such that it never diverges
from the watch.

The timer uses a thread internally. It is possible to specify that the updates
should take place in the Swing event dispatch thread (see Section 9.1). In this
case the timer will wait for the other thread to complete its update before
requesting more updates. In other words the timer thread blocks until updates
have been completed; another possibility is to enqueue multiple events after
another if updating still takes place (the Swing timer will do this), but this does
not provide the same flexibility: the former approach allows the next update to
take into account whether too much time was spent during the last update.

I'The watch should generally be some kind of wrapper around the computer’s system clock.
The java core API provides System.currentTimeMillis and System.nanoTime, where the lat-
ter is more precise but only available in newer versions. Programmers can choose the watch
implementation freely, including third party timers.

26

4.1.3 Game performance discussion

During testing, we have observed that slow computers can have trouble keeping
up with the required update rate during large battles where many units are
moving. This means the computer will stop refreshing the display (except for
sparse updates included to prevent the player from thinking that the game has
crashed), and the client will gradually lag farther and farther behind schedule.
Any received network instructions will then be enqueued for a very long time
before the client eventually reaches their actual execution time, meaning the
player will barely be able to control his forces.

This problem cannot be completely avoided: there will always be a computer
which is too slow. The problem can, however, be remedied by optimization.
Many of the operations carried out in the primary game update do not need
a temporal resolution of 50 Hz. The figure of 50 Hz was selected because it
allows for smooth animation. Might it be possible to lower the logical update
rate without sacrificing smoothness? As we shall see in the next section, yes.

4.1.4 Interpolation during rendering

Suppose the logical update rate is very low, perhaps one tenth of a second.
A unit which is located at » = (z,y) will in the next frame be located at
r+dr = (z+dz,y+dy), and the distance between these points is so large that
the graphical representation is no longer smooth.

However it is possible to perform graphical updates with a larger frequency
than logical updates, while interpolating between the previous and current po-
sition depending on how long time has elapsed between the last and the current
frame. Thus, if five graphical updates are performed for each logical update,
each successive graphical update can depict the entity at positions r + %dn
r+ %dr up to r + dr, and then the animation will retain its smoothness even
though the internal representation does not. We can thus use the weighted
average between the previous position and the current position to derive new
intermediate positions, and

This powerful trick can easily reduce the CPU requirement of the logical sim-
ulation by 80% of the current amount (e.g. if the logical update rate is reduced
from 50 Hz to 10 Hz). But things get even better. The variable update rate
discarded in the last section can be reintroduced in connection with rendering,
meaning that no particular graphical update rate is needed, but instead the rate
can be dynamically adjusted according to requirements.

At present this optimization has not yet been implemented, but it is planned
for the near future.

4.2 Coordinate spaces
It is normal for a computer game to utilize numerous different coordinate sys-

tems to represent information to the player (e.g. the screen coordinate system),
or to represent the game state internally. It is therefore desirable to provide a

27

standardized notion of coordinate systems to be used in the game. This allows
for code reuse and reduces the possibility of bugs during the numerous coordi-
nate transformations which would, lacking a centralized concept of coordinate
systems, have to be coded manually throughout the game.

The basic requirements of such a system for our purposes can loosely be
formulated already:

1. Locations should be represented by cartesian pairs of numbers (i.e. only
two-dimensional systems are considered).

2. There must be a way to convert coordinates from any coordinate system
to any other that represents the same space. This might involve scaling
or other transformations.

3. There should be tilemnaps, which we define as a coordinate system in which
each location specified by a pair of integers is associated with exactly one
tile object, the type of which can vary depending on the circumstances.
Tilemaps thus resemble two-dimensional arrays which support coordinate
transformations.

The notion of tilemaps deserves some comments. While real coordinate systems
in mathematics tend to be continuous, i.e. have infinitely many points between
any two different points, sometimes we desire purposely discretized represen-
tations. A chess board can be represented by a 8 x 8 tilemap where each tile
can hold a piece. Similarly we shall find numerous uses for tilemaps in JWARS,
including terrain representation and collision detection.

4.2.1 Coordinate data representation

While it would be nice to represent the world in continuous coordinates, this
is obviously not possible using a computer. We shall have to select a way to
discretize the world into some finite number of chunks.

Coordinate systems in games could conveivably be implemented in one of
two distinct ways, representing positions either by floating point numbers or
integers. Using floating point coordinates generally ensures a higher precision
when calculating movement of units, while on the negative side it can be diffi-
cult to determine how numerically large coordinates may be before the floating
point system loses precision. This can become a problem on very large maps.
More importantly, floating point coordinates can be awkward in implementa-
tions where tiles are used, since tiles are naturally indexed by integers.

Since — as mentioned previously — we shall use systems of tiles for several
purposes, which can only be indexed logically by integers, we decide to use
integers as the basic datatype of world coordinates.

A coordinate system must be assigned a width and a height, which denote
the number of units across horizontally and vertically, respectively. We shall
refer to the number widthxheight as the resolution of the system. Two coordi-
nate systems must have the same width:height ratio in order to represent the

28

scale=2

width=8 width=4
- -
2 »] g [
£ X £)
[«2] [=2]
: Nl 7| X

Figure 4.1: Two coordinate systems. Axes are similar to those nor-
mally used with screen coordinates. The black x in the left system is
transformed to the X in the right system, but the inverse transformation
yields the grey x in the left system because of integer division.

same space. Figure 4.1 shows two coordinate systems related to each other by
a scaling of 2. A coordinate in the fine system is transformed to the coarse
one by integer division, meaning several points in the fine system correspond
to the same location in the coarse one (like many pixels could be part of the
same terrain tile), whereas the inverse transformation is simply a multiplication.
Note that we have decided to use the same axes with which pixels are normally
indexed on the screen, but this choice is somewhat arbitrary. Presently coor-
dinate systems only use scaling transformations with positive scale, but if the
need arises they can easily be extended to use offsets or flip the axes.

Note to programmers: if a coordinate system’s width or height is not divisible
by the scale of a more coarse system (for example width=9 and scale=2), the
coarse system is extended to include a slightly larger area than the fine system
(corresponding to width—10). Under normal use this will not be a problem
since all well-defined locations in both systems can be transformed back and

forth safely, but carelessness can still lead to out-of-bounds errors.

The drawback of using integers instead of floating points is that movement
must occur in chunks. If, for example, a game runs with 50 updates per second
(which happens to be the current framerate in JWARS), there is no interme-
diate step between a speed of 0 and a speed of 1 unit per frame, resulting in
a quantization of speeds which can produce odd effects in the simulation. It
would surely be awkward to have a speed of 50 pixels per second as a minimum.

Eliminating this problem requires a very large resolution of the primary
coordinate system, such that the range of possible movement speeds seems con-
tinuous. For example, suppose the main coordinate system has a resolution of
221 % 221 which means the map measures around two million discrete points
across. If there are 27 = 512 of these units for each pixel on the main display,
and the game runs with a 50 Hz framerate, then the minimum possible non-zero

29

speed is 1—10 pixel per second, which is slow enough to depict a realistic-looking
physical simulation.

4.2.2 Important coordinate systems

Many of the following chapters will introduce new coordinate systems for one
purpose or other. We list here some of the coordinate systems that have

1. Main coordinate system. This coordinate system contains the logical co-
ordinates of every entity and must have very high resolution.

2. Pixel coordinates. This is used for the representation of entities on the
screen. For example an entity might be 20 pixels large, corresponding to
several hundred units in the main coordinate system.

3. Terrain map. This tiled map contains large square chunks of terrain graph-
ics used in rendering. Typically each such tile would have a side length of
around 30 pixels.

4. Minimap. Most realtime strategy games use a minimap to represent a
general overview of the situation, see Section 1.1.2.

There could be several other such maps, for example a coarse strategic map
which evaluates the force strengths in regions for use by the AI or scoring sys-
tem.

4.3 Terrain

Terrain representation is perhaps the most obvious application of tilemaps.
JWARS uses two layers of terrain: there is a basic terrain type (such as grass,
which happens to be the only such terrain type yet included) and a vegetation
layer. The terrain is represented as terrain tiles, where each tile must implement
a draw method.

Terrain tiles also possess an index of forestation, i.e. the density of tree
growth in the tile, which presently affects the movement speed of units and
increases the toughness of infantry in those tiles.

JWARS offers the possibility of adding objects that are not organized into
tiles, such as buildings. These objects are referred to as terrain objects and will
be described later.

Finally the random terrain generator allows creation of continuous 2D sur-
faces such as height maps by using the diamond-square algorithm. This algo-
rithm was used to disperse trees throughout the world but could be used to
generate hills and other kinds of terrain.

30

4.3.1 Terrain in games

Having different types of terrain in an RTS game is important for tactics. Ter-
rain usually offers place for concealment and maybe even provide cover for units.
In real life combat tanks are the masters of open terrain due to their long firing
range and heavy armour combined the lack of cover for their targets. A tank
in a city or a forest however does not have the visibility to keep enemies at a
distance. A single soldier with the right weapon can disable a tank if he gets
close enough. To get close to a tank however a single soldier will need cover in
the form of a terrain as forests, trenches or buildings. This is a single example
on the impact terrain has on realistic simulations. A game constructed purely
by the developers mind doesn’t have to be realistic and can be constructed to
not penalize terrain, but the JWARS game engine however uses realistic cal-
culations and statistics, so terrain will be needed for balancing. Otherwise we
could simply balance out tanks by giving all infantry squads a futuristic weapon
which would counter tanks.

Terrain usually takes on two forms. The natural terrain on the battlefield
like forests, hills and rivers and the more special terrain features in the form of
objects like buildings, entrenchments or maybe even abstrabt objective markers.
This system should be seen as a layer system. First is the ground features and
form like hills and trees, on top of this comes the buildings and units. Each
layer will be generated seperately so the data will be divided as well.

The terrain can have several impacts on the gameplay. Hills can have the
effect of blocking line of sight concatenated to LOS as well as slowing down
movements for units going up hill. A standard military strategy is also to have
higher ground in both ranged as well as melee combat as effectiveness degrades
when your target is on the high ground. Also forests can be implemented to
affect gameplay through the loss of visibility and cover. A normal soldier in a
forest would have plenty of ways to protect his body by standing behind a tree
or lying behind a root sticking up from the ground. All these examples need
some kind of terrain data representation for being implemented, and they can
all have huge effects on the gameplay and tactics.

4.3.2 Map design

When creating terrain in any game there are two distinct ways of handling the
map making which can either be combined or work independently.

Pre-made maps. Manually create all maps on which to play possibly include
a terrain editing tool for this purpose.

Generated maps. Implement a terrain generator which creates a unique map
for each game.

Use of predefined maps can be necessary if it is critical that no player has
terrain advantages. Few RTS games feature randomly generated terrain due to
this obvious discrepancy concerning the game setup which makes the game unfit
for tournements and other organized events.

31

In order for maps to be valid for tournement play they will have to be fair
for all players in all starting locations. Maps created randomly will never offer
the players equal opportunities or the same strategic options as a handmade
map with a creative designers touch. With a selection of maps to use, many
players also come to favorise some maps which they excel in - these features will
be stripped by using random generators. Many games today rely on designed
maps over generated terrain. Most of these however also include a map editor
which gives players a chance to create maps themselves.

However there are positive things to be said of generated maps as well. Pre-
defined maps will tend to foster pre-defined strategies. The strength of random
terrain generation is that players will have to adapt to the circumstances, im-
provise and devise new tactics for every battle.

In a game like JWARS both options are viable. In this project creating maps
however is not high on the priority list, and creating maps manually would
require a vast amount of time which could be spent elsewhere on the project.
We therefore decided to develop a tool which could be used for random terrain
generation using a particular seed?. The focus on this tool is not to create a
complete map generator which will give a total map solution but merely an
assistant for creating terrain features such as forests and height maps.

4.3.3 Random terrain generator

What we need is a way to displace height values on a two-dimensional grid in
a somewhat random order which looks “natural” and not e.g. entirely random
such as noise. We shall use the term height displacement map to refer to such a
map. In real life, a forest will usually be a cluster randomly dispersed around a
center natural displacement the same goes for hills. A height displacement
can be obtained by using mid-point displacement. The mid-point displacement
method works by starting with a straight line, the end points of which are at
the same height, see Figure 4.2. The middle point between the two end points
is then displaced by a random number, for example between 0 and 1. There
are now three equally spaced points forming two line segments, and the next
step consists of again displacing the points that are at the middle of each line
segment by new, limited random amounts. Continuing this, we get first 3 points,
then 5, 9, 17, 33 and so on. In general if we stop after n steps, the line will be
divided into 2™ +1 points. As figure 4.2 shows, this method ensures a continuous
landscape curves instead of random jaggy spikes.

In theory what is needed is a two-dimensional surface where each point has a
height. This third dimension can be interpreted to be height displacement (ob-
viously), vegetation density and any other concept which can be characterized
a function R X R — R. Our present problem it is not immediately obvious how
the mid-point displacement method can be used to generate a two-dimensional
grid.

2Using a seed for creating terrain allows us to create random maps but still save promising
seeds which can be used to reconstruct those maps

32

(1)

---®
conel

@ "

(3

(4)

Figure 4.2: The mid-line displacement used on a one-dimensional map

One algorithm which applies mid-displacement to generate a two-dimensional
grid is the diamond-square algorithm, which we have chosen to implement. The
algorithm, shown in work on Figure 4.3, is again based on steps - starting with
the large scale displacements and then with successive iterations creating smaller
displacements. The algorithm works by first displacing the corners of the grid,
corresponding to the end points in the one-dimensional case, and the center, to
random initial values. Then the four points at the centres of the map edges are
introduced, by assigning a height value equal to the average height of the nearest
neighbouring points that already exist, plus a small random amount. The edge
mid points actually have four neighbours if we consider the map wrapping, i.e.
the leftmost points are neighbours of the rightmost points (thus theoretically
resulting in a toroidal topology).

The algorithm earns its name because it successively displaces points which
are located on a grid (squares) and in diamond shapes. Implementation-wise we
start with two-dimensional grid of floating point numbers, where the grid sides
must have a length of one plus a power of two. Now, the algorithm consists
of the following steps, illustrated on Figure 4.3 (traversing in this case always
involves setting the affected points’ heights to the average of the neighbours plus
a small random amount as mentioned before):

1. Set a step value equal to the width of the map.

2. Traverse the map using steps of that size (this results in the corners being
traversed on the first run, as in Figure 4.3a) and the central point on the
first iteration (Figure 4.3b.

3. Traverse the map in a diamond pattern using the same step size, Figure
4.3c.

4. Divide step size by two, and increment the origin of the grid by a quarter
of the step size for the next iteration (this means traversals otherwise
starting in (0,0) will now start in (step/4, step/4). Go to step 2 unless all
points have been traversed.

33

A

sasa

Figure 4.3: The diamond square algorithm running on a 5x5 grid until
termination. If the grid were larger, the first steps would be identical,
but the algorithm would continue by halving the step size and performing
the same operation over and over.

N AR

Figure 4.4: This is a 3D model of a diamond-square algorithm running
on a NxN map. It clearly illustrates how jagged maps come to look more
natural.

This method eventually gets to traverse the entire grid. Figure 4.3d and e show
the second iteration. An example 3D model of a generated map is seen on Figure
4.4. Two-dimensional map representations generated by our implementation are
seen in Figure 4.5.

In the current version of JWARS, the growth of trees is deciding by inter-
preting a generated “height” map as a tree density.

In the terrain generator uses a class is called a FloatBuffer to store the
two-dimensional grid. It wraps array of floats and it is on this array that we
perform the diamond-square algorithm. The float buffer has several functions
that can be used to modify generated maps:

1. cutDff : takes a float as argument. All elements in the array get the float
value subtracted from them. If the new value is below zero we round it
off to zero. This is used for creating the forests — at many locations the
forest density should be exactly 0, and this is achieved by flattening the
map with cutOff.

2. smoothify : evens out the terrain more by traversing all non-boundary
elements and setting them to the average of the elements neighbours. We
use this function several times on the map used for creating the forestation
levels.

3. scaleToFit : Takes a minimum and a maximum value as arguments.
Scales and translates all the values in the buffer by the same amounts,

34

(a) (b)

Figure 4.5: These are two maps randomly generated by the terrain
generator. It is not immediately noticable but both maps are periodic,
i.e. their edges wrap.

such that the smallest and largest values are as specified. This method
guarantees that the float buffer does not contain elements larger or smaller
than the maximum or minimum.

The height generator algorithm and the float buffer constitute a powerful tool
when used together.

4.3.4 Terrain objects

After having all the natural terrain have created we can add the second layer of
terrain features to the world. These are called terrain objects. Terrain objects
can take the form of fortifications, buildings impassable mountain peeks, roads
or even lakes.

For creating terrain objects we impemented the blueprint class. Blueprints
are used in JWARS as blueprints in the building industry. A blueprint contains
all technical data concerning a specific objects, and when you have a blueprint
you can make a building as specified by the blueprint anywhere - even build
several buildings based on the same blueprint. The blueprint contains all rele-
vant data for an object except the location and an angle. At this moment all
blueprints and terrain objects are created in the StructureFactory class which
contains methods for generating objects and disperse them on the battlefield.

For creating a blueprint it will need a shape and some collision properties.
The shape is created by consisting of coordinates in an array, where each coordi-
nate designates a corner on the object, while the collision properties are handled
like on an unit — it can be massive or not. For upholding the ideals of JWARS
the blueprint can have any shape and size. The coordinates are placed in an
abstract coordinate system centered on the blueprints center (0,0). Along with

35

the coordinate array the blueprint creates the collision properties according to
the developers wish. For creating a terrain object we feed the constructor with
an image®, a blueprint, an angle, and the location within the world. After the
terrain object has been created we can add it to the world by registrering it in
the detector.

For making buildings usable by the pathfinder we create a pathfinding node,
and attach it to each corner of the object. The pathfinding nodes are only
created for the pathfinder usage. All polygon objects will be treated as convex
hulls by the pathfinder even though they might be in the shape as a hourglass.

4.3.5 Terrain appereance

I this section we will discuss the appearance of terrain JWARS. The appearance
of terrain randomly generated. The terrain consists of grass, which serves as
the ground, and each tile has a forestation level which designates the amount
of trees in that tile. Each terrain tile contains references to two images one
for the ground and one for the vegetation. Most of the images are shared by
multiple tiles. For example there are sixteen different images of grass to be
shared by hundreds, maybe thousands of tiles on a map. The sixteen variations
are used to make the terrain look less monotonous. For each forestation level,
six different images are created for this purpose.

Both grass and forest images are referenced within each terrain tile, being
used by the tile’s draw method whenever the tile should be rendered to the
screen. The tile thus knows how to draw itself, and it would therefore be possible
to use terrain tile implementations that do not rely on images along with those
that do.

Creating the terrain map, along with the generic grass background and the
different amounts of forestation is done in the MapFactory class. Specifically
the map factory distributes the tiles, using different variations of the images,
randomly in a terrain tile double array. Figure 4.6 shows how hard it is to see
any repetitive pattern in the background. When examining the background the
same image can be spotted several times on the screen but it will not annoy the
player or make the background layer seem “too” generated.

We have found a special combination of colours with an added amount of
randomness yield a satisfying result - each pixel in a grass image has the fol-
lowing profile in RGB — the RGB values are (18,96,6) plus random numbers up
to (128,72,72). The grass images thus contain only noise, and therefore seem to
fit beside each other.

For creating the forest graphics we use the same principle. Instead of creating
a single array as with the background images we need several different images for
the different amount of forestation. The default amount of levels in forestation
is 6 and we have chosen to created 6 different images of each level. By moving
the RGB scale to the darker greenish area small circles representing trees are

3Images can be attached to objects but at this moment in development we simply fill
polygons with a colour instead of making images for all buildings.

36

Figure 4.6: Terrain graphics. Though the terrain consists of tiles, 32
pizels on each side, this is not clearly visible due to the amount of varying
tile images. Some trees are visible in the right side of the picture.

painted onto the image. By first calling a terrain tiles draw function and then
the drawVegetation we get all the layers in place.

The technique described here could be expanded to support different terrain
types by using the appropiate RGB codes for each wanted graphic set. This is
however of minor importance for the development of the project and is still a
feature designated for future implementation.

One of the original thoughts was to let the terrain generator create a height
map and include it in game engine. This would have made the game engine more
realistic but would also rise a new problem: how do we illustrate it? Height
curves are not implemented in the current version of JWARS, but they are
planned for the future. Using 2D graphics make illustrating a third dimension
in a map somewhat difficult. The solution has been around for some time in
real-life map making where height curves illustrating terrain differences would
be a viable, but ugly solution.

4.4 Event handling

Many if not most real-time games include a game loop, which is a loop in which
the entire model and graphical display of the game are updated repeatedly.
This normally involves traversing all the dynamical entities and updating their
positions, velocities and other variables. These updates might include opera-
tions such as the creation or removal of entities from the game, which can be
inconvenient while the list of entities is being traversed. It is therefore desirable
to handle updates in one loop, then store the more complicated operations as

37

events to be resolved later, just after the game state has been updated. This
approach can prevent bugs and ensure that things are done in a consistent order.

Fundamentally we shall here refer to an event as something which can be put
in a queue and then executed at some later time. Note that in this model, the
event serves simply as enqueueable executable code, which is in contrast with
the AWT /Swing event term, where events are short-lived objects that convey
specific information to event listeners.

4.4.1 Types of events
There are three distinct event concepts which will prove useful.

e Peripheral input. The user can typically control the game by mouse,
keyboard or typing commands into a console. It can prove troublesome to
invoke the code associated with these actions immediately: if the player
e.g. changes the view of the battlefield while the battlefield is being drawn,
this will result in graphical tearing. This should not happen, and this kind
of event should therefore be stored and the corresponding code executed
only when graphical and logical update operations have been finished.

e Network events. As we shall see in Chapter 3, instructions received from
the network are scheduled to be performed at specific times. Therefore
these instructions should be enqueued until that time.

e Delayed events. If weapons are firing, then their reload progress must be
tracked somehow. This could be done by polling each and every single
weapon (of which there are probably hundreds) once per update, but if
they reload equally quickly then it is simpler and more efficient to insert
reload events into a queue such that it is sufficient to poll that queue of
events once per update.

4.4.2 Performance considerations

While the storing of multiple events in the same queue (like in the reloading
example above) can eliminate most of the checks otherwise necessary, there will
still be an abundance of events to be allocated in memory and released. It is
therefore desirable to save some of the frequently used events such that they can
be used multiple times. Following the earlier example with weapons reloading,
it would be expensive to create a new reload event every time a weapon fires.
It would be more sensible to save the old reload event and enqueue it again the
next time that weapon fires, because the weapon obviously cannot fire before
its reload event is released from its queue.

4.4.3 Queueing system

The preceding discussion leaves us with two primary concerns, namely an event
and a queue which can store events. The event should have an execute routine
and it should know the time at which it is supposed to be executed.

38

The queue should have an update routine which polls the next event in the
queue for whether it should be executed, then executes it (and possibly any
following events) if the time is right.

This is enough to handle the delayed and network-type events as noted before.
In the example regarding reload of weapons, it will be necessary to use one queue
for each different reload interval. For example, if rifles can shoot once every 100
frames then all rifle reload events can be stored in a rifle reload queue, and
all grenade launcher reload events can be stored in another queue representing
another reload time.

Finally, peripheral input events should generally be handled immediately (i.e.
within the same update as it is generated), but this kind of input could originate
from another thread than that in which the game updates are performed. It is
therefore necessary commendable to use a thread-safe approach (in java this is
done simply by declaring the relevant methods synchronized).

In conclusion we now have two special queues, namely the peripheral input
(synchronized) queue which executes the events stored in them immediately
when polled, networking queue which stores instructions received from the net-
work until such time as they should be executed, and any number of delayed-
execution queues that handle weapon reloads and other things which we shall
see in other chapters, such as vision checks and targetting.

39

Chapter 5

Collision detection

This chapter will after an introduction to collision detection formulate the design
and capabilities of the JWARS collision detector. It is designed to handle large
numbers of geometrically simple colliding entities without constraints on entity
sizes.

5.1 Basics of collision detection

The most important objective of this section is to decide on an overall approach
to an efficient and reasonably simple collision detector bearing in mind the re-
quirents of real-time strategy games. There is by no means an optimal such
collision detector since requirements invariably will differ greatly with applica-
tions. We shall further shall restrict the discussion to two-dimensional collision
detection seeing as JWARS does not need three dimensions.

In a real-time strategy game there is generally a large amount of units,
possibly more than a thousand. It is therefore of the utmost importance that
the collision detector scales well with the number of units in the game.

5.1.1 Divide and conquer approach

Let n be the number of units present in some environment. In order to check
whether some of these overlap it is possible to check for each unit whether this
unit overlaps any of the other units, and we will assume the existence of some
arbitrary checking routine which can perform such a unit-to-unit comparison
to see whether they collide. While the amount of such checks can easily be
reduced, for example noting that the check of unit 7 against unit j will produce
the same result as the check of unit j against unit ¢, this method invariably
results in O(n?) checks being performed. This approach is fine if there are very
few units, but this is obviously not the case in a normal real-time strategy game.

The amount of checks can, however, be reduced by registering units in lim-
ited subdomains of the world and only checking units in the same subdomain

40

aganst each other (for now assuming that units in different subdomains can-
not intersect). Suppose, for example, that the world is split into ¢ parts each
containing % units. Then the total amount of checks, being before n?, will be
only

2
number of checks =~ ¢ (E) =n?/q.
q

It is evident that within each subdomain the complexity is still O(n?), but
decreasing the size of the subdomains can easily eliminate by far the most
checks, particularly if the division is made so small that only few units can
physically fit into the domains. The applied approach thus employs principles
of a divide-and-conguer method (see [2, pp. 28-33]), though it is not explicitly
recursive.

The best case scenario where all units are in different tiles runs in O(n) time
since no cross-checking takes place. The worst case scenario, where all units are
in the same tile is extremely unlikely, because only a handful of units should fit
physically into a tile.

5.1.2 Tile registration strategy

This approach still needs some modifications in order to work. Specifically,
units may conceivably overlap multiple subdomains, necessitating checks of units
against other units in nearby subdomains. Assuming square subdomains will
prove both easy and efficient, and we shall therefore do so. Consider a grid
consisting of w x h elements, or tiles, defining these subdomains. We shall
describe two ways to proceed.

1. Single-tile registration. Register each unit in the tile 7" which contains
its somehow-defined geometrical center. In order to check one unit it is
necessary to perform checks against every unit registered in either T' or
one of the adjacent tiles. Thus every unit must be checked against the
contents of nine tiles. This approach is simple because a unit only has to
be registered in one tile, yet much less efficient than the optimistic case
above and requires that the units span no more than one tile size (in which
case they could overlap units in tiles even farther away).

2. Multiple-tile registration. Register the unit in every tile which it touches
(in practice, every tile which its bounding box overlaps). Checking a unit
now involves checking it against every other unit registered in any one of
those tiles it touches. This means that a unit whose bounding box is no
larger than a tile can intersect a maximum of four tiles. Units of arbitrary
size can cover any amount of tiles and therefore degrade performance,
but the collision detection will obviously not fail — also in most real-time
games the units are of approximately equal size and for the vast majority
this approach will be sufficient.

41

Figure 5.1: The collision grid visualized. The number of units regis-
tered in each tile is listed inside the tile. This is an in-game screenshot;
the debug grid can be enabled by passing -d as a runtime parameter.

For the JWARS collision detector we have chosen the second approach, which
is illustrated on Figure 5.1.2, primarily because it does not restrict unit size to
any particular scale. This approach will also likely be more efficient since it in
most cases will require less than half the number of tiles to be visited (as noted,
4 tiles would be a bad case in this model whereas the former model consistently
requires checking 9 tiles). However there is one possible problem, namely that
two units which occupy two of the same tiles will (unless carefully optimized
out) be checked against each other in both of those tiles!.

5.1.3 Shapes and sizes of colliding entities

The best-case time of such a tiled collision detector is O(n) corresponding to
the case where all units are in separate tiles. The tiles should be sized such
that only a few units (of a size commonly found in the game) can fit into each,
but they should not be so small that every unit will invariably be registered in
multiple tiles. Every time a unit moves the tiles in which it is registered will
have to be updated, which becomes time consuming eventually.

As an example, this model should easily accommodate a battlefield with
many tanks (around 6m in size) and at the same time provide support for a few
warships (around 100 — 300 metres). If necessary, it is possible to improve the
model by allowing variably-sized tiles, such that the tiles are made larger at sea

IThe present implementation does not optimize this, since this can hardly degrade efficiency
considerably.

42

than at land, for example. This approach will, however, not be implemented
since such extreme differences in scales are very uncommon in the genre.

Having covered the methods necessary to minimize the number of checks, it
is time to briefly mention the checking routine itself. It is obvious that a large-
scale game can not realistically provide collision detection between arbitrarily
complex shapes. In the realtime strategy genre units are commonly modelled as
circular or square, since a larger degree of detail would hardly be noticable on the
relevant scale. We have therefore decided to provide only collision detection for
circular units. However the collision detector does provide an escape mechanism
ensuring that units can implement a certain method to provide any custom-shape
collision detection. Using circular shapes provides the benefit of simplicity and
efficiency, and is sufficient for most basic entities. However there are presently
static objects (see Section 4.3.4 on terrain objects) which are polygonal and can
be very large, and they make use of this escape mechanism.

5.2 Design of the collision detector

The collision detector manages a basic kind of entity which we shall refer to as
a collider. The most basic properties of a collider are its location (z,y) and the
radius r of its bounding circle (it has a few more properties which are irrelevant
to this section but will be mentioned later). Whether or not a collision has been
detected is determined solely by these properties.

5.2.1 The checking routine

The entire checking routine for a single collider which wishes to move to a certain
location now reads:

1. Determine which tiles the collider will overlap in its new position

2. Traverse these tiles, and for each other collider found here, perform the
following steps.

(a) Check whether the bounding circle of the moving collider intersects
the bounding circle of the other collider.
(b) If the circles intersect, invoke user-defined checking routine.

(c) If the shapes intersect, invoke user-defined collision handling routine
on the moving unit. The moving collider will not be moved to its
desired position, and the checking routine is terminated.

3. If at no point above the checking routine has been terminated, the moving
collider will have its position updated to its desired location. The collision
tiles overlapped by the collider in question will be updated accordingly.

This routine works well in the realtime strategy genre when the primary func-
tion of collision detection is to prevent entities from overlapping. There is no

43

particular way of handling a collision other than cancelling the movement re-
quest (unless the user specifies this manually in the handling routine), and this
approach would therefore be bad if realistic physics (conservation of momentum
or elastic collisions, for example) were desired. These things are not particularly
relevant in the realtime strategy genre where the behaviour of a single unit is
not closely monitored.

5.2.2 The collision grid

In order to represent the collision grid, the collision detector uses the map util-
ity package which is described in section 4.2. It fundamentally requires two
coordinate systems: a main coordinate system (the z,y and r properties of col-
liders are presumed given in this system) and a more coarse collision grid. The
latter is a tile map consisting of collision tiles, where a collision tile is capable
of storing a list of colliders.

Registration of a unit in the collision grid uses the coordinates and radius
of the collider to derive a bounding box, which is easily compared — through
the coordinate transform provided by the map package — to the grid elements
of the collision map. The checking routine described in the previous section is
easily implemented by traversing the tiles thus overlapped by the collider, then
and for each tile comparing the radii of present colliders.

The actual checking routine, check, takes a collider and a desired location
(z,y) as parameters and returns whether the specified location is legal (i.e. does
not overlap with any other collider registered in the collision grid).

The collision detector further has a move method which takes similar argu-
ments, and which will also move the specified entity instead of only performing
a check.

5.2.3 Further features

Finally a few utilities of the collision detector should be mentioned.

First, some entities may naturally be able to move past another while others
are not. For example, infantry units consisting of multiple men would be able to
enter a building which would be impassable by larger objects such as vehicles.
Also infantry squads would be able to walk through each other, whereas an
infantry unit would not be able to move past a tank (which is massive), and
two tanks would not be able to drive through each other. Therefore the collider
should also specify a boolean which determines whether the object is massive.
If either of two colliding colliders is massive, then the collision detectors check
will return false. Thus infantry squads can easily be made to pass through each
other or buildings (all non-massive entities).

Finally it is sometimes desirable to “cheat”, i.e. not perform strict collision
detection in order to make the gameplay smoother. For example if it is desired
that a new unit should enter the map, but there is no space at the desired
location, it might be best to disable the collision detector and allow that unit
to overlap others until such time as the unit no longer overlaps them (when

44

they or the unit have moved). Colliders may therefore be declared as ghosts, in
which case the collision detector completely ignores them until they are declared
non-ghosts.

Regarding implementation, these two properties, whether colliders are mas-
sive or ghosts, are conveniently encapsulated in a set of collision properties
which every collider must have. The collision properties may be retrofitted in
later versions to support an abstract notion of height (a “2.5 D” approach where
a two-dimensional world is artificially equipped with a few layers representing
different heights) or other concepts that can desirably be modified.

The concept of colliders is contained programmatically in the interface Collider,
such that any class can implement it.

There is one more function that can advantageously be included with the
collision detector, even though it does not relate directly to collision detection:
Section 9.3 describes how entities are rendered to the main JWARS display. In
order to localize the entities that are actually present on the display, it is desir-
able to traverse the tiles used by the collision detector. The collision detector
should therefore also have access to the terrain map. When an entity is moved,
the collision detector is in this context responsible for dirtifying the affected
terrain tiles, meaning that those tiles should be redrawn during next graphi-
cal update. This process, traversing the overlapped terrain tiles, is completely
equivalent to that of traversing collision tiles. With this in mind, each collider
must also possess a sprite, the concept of which is described later in Section 9.3.
The collision detector thus tracks the movement of sprites on the screen, such
that redrawing can be skipped in regions where no movement takes place.

5.2.4 Efficiency and optimization

At an update speed of 50 Hz, the present implementation of the JWARS game
can on the authors’ test systems support approximately 1000 simultaneously
moving units before lagging behind in logical framerate. It is, however, possible
to run a logical framerate of e.g. 10 Hz (see Section 4.1.4) and perform interpola-
tion to ensure graphical smoothness between logic updates (thus using a higher
graphical than logical update rate). Using such an approach the performance
could be enhanced 10-fold, and would allow the collision detector to handle at
least 10,000 moving entities on our test system, but this figure can be reduced
if custom geometries are used or if other parts of the logic are computationally
heavy.

5.2.5 Using the collision detector

The programmatical interface of the collision detector is very simple and can be
concisely described in only few terms:

e The collision detector is instantiated by supplying three coordinate sys-
tems, namely the high-resolution main coordinate system of Section 4.2,
a tile map of collision tiles and a terrain map (Section 4.3).

45

e An entity, technically anything which implements the Collider interface,
can be added by calling the register method, passing a reference to the
collider in question as parameter.

e If an entity is to be moved, the move method should be called, specifying
the relevant entity and its proposed new location. This method will, as
described above, check the validity of the new location for the entity and
move the entity accordingly. If a collision is detected, collision handling
methods on the colliders in question will be invoked as required. Finally
this method returns whether the move was successful.

e An entity can be removed from the collision detector by calling the remove
method.

If for some reason the locations of entities are changed without notifying the
collision detector, this may result in that entity being registered in incorrect tiles.
Thus that unit might overlap other units without a collision being reported. This
issue can be remedied by covertly encapsulating the positions of entities within
the collision property such that it is impossible to tinker with it from outside;
at present we have not deemed this precaution necessary.

5.3 Conclusion

This chapter has introduced the JWARS collision detector, and selected a tile-
based approach to ensure that the detector accomodates large amounts of enti-
ties efficiently.

It works by registering entities in appropriate tiles using axially aligned
bounding boxes. Collision checks are done using the radii of the entities, mean-
ing that all units are considered circular. However an escape method is provided
that allows arbitrary geometry.

Performance-wise the collision detector is optimized for large amounts of
units each with simple geometry, but even if complex geometries are used the
combined use of bounding boxes and bounding circles is likely to eliminate most
of the expensive checks.

46

Chapter 6

Pathfinding

The JWAaRSs pathfinder is a modification of the well-known A* algorithm, which
is specialized to handle large and open maps.

Pathfinding is an essential part of any real-time strategy game as it enables
the player to control units without wondering if they make it to the selected
destination or not. Requiring the player to find the suited paths for all his untis
is out the question, as it would become infeasible for any human when the unit
count reaches a large enough number. The best solution is to let the computer
calculate a path for the unit through the world, which would satisfy the player.

The best way is not necessarily the fastest, since it can, for example, be more
dangerous to walk on a road when enemies are nearby. It is probably better to
select the geographically shortest, which may lead through rough terrain, but
this behaviour is more predictable for the human player.

6.1 Pathfinding in general and in JWARS

Moving units in RTS games require a pathfinding algorithm to navigate around
impassable obstacles. Most game pathfinders today extend the normal ‘single-
source shortest path problem’ solution to incorporate unit-to-unit relations,
which make units capable of interacting in order to navigate around each other
dynamically. For this project we need a pathfinder to work on the world of
JWARS, while it should still be a viable solution in other world representations.
Given the world representation in JWARS the pathfinder will likely be used on
large maps, and with no restrictions on terrain objects shape and size: it will
have to be very adaptive.

When moving units in the world of JWARS a navigational problem arises
when finding the shortest paths between to points. There exists a range of solu-
tions when finding the shortest path between to points, these solutions however
have different requirements for the map in which to navigate.

Many contemporary RTS games solve the problem by using a tilesystem.
When using a tilebased pathfinder the world is structured in to tiles and units,

47

buildings or other entities take up space by having the ability to occupy tiles.
The map used for pathfinding designates tiles with either “used” or “free” as
markers when scanning through the map with an algoritm!. This approach
has several advantages, like high and consistent speed, while it requires a map-
structure supporting this to search in. As described in Section 4.3, we wish
buildings and other terrain objects to have a certain amount of flexibility (for
example, small buildings should not have their shape determined by an inflexible
grid), thus having minimal restrictions on shape and size. We therefore choose
to allow polygonal terrain objects, and thus relying solely on a tile structure to
simplify the problem is no longer feasible.

For JWARS a different approach must therefore be used. In order to devise
an algorithm we look at the basic pathfinding problem an object is blocking
your path. The shortest way around an object is to walk around it, either left
or right. Using this idea the algorithm should “walk” (or shoot) in a straight line
from the starting point towards the destination point until it meets an obstacle.
It will then examine the obstacle and generate paths left and right around the
obstacle, then shoot again from each side of the obstacle. Note that when using
polygonal objects, it will be optimal to walk along the obstacle’s line segments
until reaching the corner from which the destination is again “visible”: corners
can be used as intermediate waypoints. Eventually it should either reach its
target or decide that the target is unreachable.

6.1.1 The algorithm

We will here as a general overview summarize the workings of the derived algo-
rithm. More detailed, but difficult, observations will be postponed to the next
sections, along with a full description.

While running, the algorithm maintains a list of potential waypoints (or
nodes) called the open list, which works as a priority queue. The priority queue
keeps track of the nodes immediately reachable by the algorithm and sorts them
using a heuristic evaluation in order to estimate which way will most likely be
the fastest; this will allow the algorithm to guess the correct way without having
to try all combinations of left and right which could take a long time if it has to
walk around many buildings. The example in Figure 6.1.1 shows the algorithm
at work in a simple setup. The list of nodes is updated and sorted after each
iteration in the algorithm, and nodes which have been accepted as waypoints
are removed from the list (they are no longer potential waypoints).

Let us go through the steps taken by the algorithm:

1. See Figure 6.1(a). The algorithm is about to shoot from s to t. Having not
yet started, the open list contains one element, being the starting point s.

L Although these are not open source games, meaning that we cannot know for sure, several
observations support this assertion. For example, buildings can typically be placed only in
discrete locations, and in some games units in close clusters (notably zerglings in Starcraft)
are clearly placed according to a grid.

48

S

t /-t t
LI q
®p ®p
S S

openi Openis Openis

(a) About to start. (b) An obstacle blocks the (c) q is slightly shorter.
way; either walk towards q or

p.

Figure 6.1: A simple pathfinding problem.

2. On its way the algorithm discovers an obstacle. It determines the “left-

most” and “rightmost” points q and p as seen from the starting location.
Having stepped onto the starting location, s is removed from the open list
while p and g are now potential waypoints. The algorithm “guesses” that
the distance s-g-t is smaller than s-p-t and therefore it sorts the open list
with q before p, meaning that it will check the most promising path first.
This is shown on Figure 6.1(b).

. Now ¢ is removed from the open list, as the algorithm shoots from that

location. Note that p remains in the queue in case another obstacle is
discovered which makes the current path longer than expected. However
no other obstacle is found, and thus t is reached and added to the open
list which now reads (p,t). The algorithm sorts the list, determining that
the distance travelled (s-q-t) plus the remaning distance (0) is still smaller
than s-p-t, then sorts the list which now reads (t,p), see Figure 6.1(c).

3

4. The algorithm finally terminates when t is removed from the open list.

This largely explains how our algorithm works. However there are still uncer-
tainties, such as the exact strategy used to “guess” which distance is the shortest.
This shall become clear in the next sections.

Logically this method favours sparsely populated areas since fewer objects
would create fewer obstacles and result in more straight lines. A pathfinder
based on a grid system (where the individual tiles serve as nodes) would have
smaller search areas if lots of buildings are occupying space, thus leaving less free
space to be searched through. Our pathfinder will have the opposite problem:
in large, sparse areas there are few nodes, but a labyrinth would be a mess to
represent because of the scores of corners: our chosen algorithm is specifically
designed to represent large, outdoors areas.

49

6.1.2 Data structure

Most people proficient within the pathfinding area choose to run their algorithms
on graphs. A good example of an algorithm using graphs is the A* algorithm
which is a shortest path graph algorithm. For finding a shortest path using
graphs for data representation, history has shown that the A* algorithm is a
viable choice.

In any situation we will need a way to represent possible future waypoints
of a moving object as fixed points so e.g. a move order can be broken down
into multiple segments represented as a graph. Given a graph represented as
follows:

G =(V,E).

V is a list or other representation of all the vertices (or nodes) in the graph.
FE is a representation of the edges in the graph. An edge is best seen as a link
between two vertices - meaning that you can go from vertex vl to vertex v2 if
they are connected by the edge e(v1,v2). We shall also introduce the weight of
an edge, corresponding to the amount of time (or the cost) it takes to traverse
it, which is given by a weight function w : E +— [0, in finity].

Given a graph with a chosen data structure there are several possibilites to
solve the single-source shortest path problem from vertex A to B. Most of these
algorithms are based on selective expansion of the search area, as these have the
best running times with the fewest vertices visited like the A* algorithm.

The pathfinding in JWARS has some requirements to the algorithm which
we must take into account before finally choosing a solution. The most pressing
issue is to handle the dynamic and rather limitless implementation of units and
other objects in the world (recall that the collision detector, Chapter 5, allows
arbitrarily sized units and obstacles). We have chosen a very open approach
which imposes only limited restrictions on unit and building location, size and
geometry, which however complicates the final form of a pathfinding solution.
Any building or unit can be placed anywhere on the almost continuos map and
will thus not e.g. fill out a predefined amount of tiles in the world. In order
to perform pathfinding we need access to the units and obstacles placed in the
world. Therefore the most obvious data to use for pathfinding are the actual
objects stored in the collision detector, Chapter 5.

If we are to use the object data some rules have to be defined, or the amount
of different scenarios is limitless. An effective yet relatively simple way to this
is, as mentioned in the preceding example, to represent objects as polygons.
More specifically it proves necessary to allow only convex hulls. Convex hulls
have many properties which make the basics of handling and calculating a lot
easier. If we do not establish ground rules like this the more eccentric objects
will be impossible to handle.

In this project it is the data representation and requirements for the world
modelling which forces us away from the normal pathfinding implementations.
For this game we will have to come up with a rather unique pathfinding solution.

50

As stated above the best data for these calculations are the terrain objects since
they alone contain the relevant data. A solution to a pathfinder using only the
terrain objects can be as simple as walk towards the goal, if you encounter an
obstacle walk around it and continue towards the original goal. On this basis we
have developed a pathfinder which is based on the A* algorithm and employs
a heuristic estimation of the distance from any node to the goal. The JWARS-
pathfinder is meant for 2D purposes only and in this case a straight line towards
the goal will result in the most optimistic evaluation a node can get.

6.2 Implementation

For using the pathfinder some unique classes have been implemented. The
pathfinder is designed to work on objects of the class TerrainObject. All
terrain objects have a list of pathfinding nodes which the pathfinder uses as
vertices. In order to work on the pathfinding nodes using the A* algorithm,
the vertex must possess several attributes. These attributes are as follows: a
reference to the ancestor of the vertex (i.e. the previous node in the path)
and three integer values which we call f,g and h. The three integers are all
measurements of distance. The variable f holds the distance travelled during
the algorithm to the current node. ¢ holds a heuristic evaluation (or guess) of
the distance to the goal from the current vertex, and h is the sum of f and g.
The attributes of the pathfinding node are essential for understanding the more
technical description of the pathfinder.

The implementation we have chosen for the pathfinding is to transform the
dynamic/open implementation of the JWARs-world to a graph-system on which
we can perform a search algorithm. For accomplishing this we have implemented
a dynamic graph with the following rules and definitions.

For every path needing to be found we start with the given graph for the
current map G = (V, E). V consists of all corners of static objects — convex
hulls — on the map. This data is stored in the collion map. E is an empty list.?

The start and goal locations are considered vertices® which are specified for
each run of the algoritm.

6.2.1 Expanding and searching

The algorithm is started by calling the method findPath with an end coor-
dinate and the unit for which a path should be found. As explained later the
pathfinder returns unique solutions to specific settings. Calling the method with
two differently sized units can yield two different results. This will be described
to depth later in this chapter.

2Tf it were to be a pre-defined list for E it should consist of all possible routes between
any vertices on the map. This amount of data would be hard to handle and if the amount of
static objects were large enough it would require a lot of memory space.

3The pathfinder contains a specific class for this purpose called Target. This class extends
the the PathFindingNode class and can also be registrered in the collision detector.

o1

Given the start coordinates as the unit’s current location and the end coor-
dinates as argument to the method, we can create the start vertex and add it
to the priority queue. The pathfinder uses the standard loop from A*, which
means it expands the search area from the first element of the priority queue;
it will therefore be forced to select the start node for the first iteration. In a
standard implementation of A* the priority queue will be referred to as the open
lust.

Taking into account that all distances travelled are straight lines, we can
always be sure that we have the shortest possible path between any two given
nodes if we use the “relax”-concept as in [2, p. 586] when describing Dijkstra’s
algorithm. A pathfinding node’s g-score is simply calculated as the distance
from the current node to the goal location. The g-potential will ensure that a
node having travelled less than others and having the possible result of getting
directly to the end node will be next in the priority queue. This approach mean
we can safely terminate the algorithm upon reaching the goal location and
have the shortest path possible without further extending the search area. For
extending the search area we let the algorithm draw a line between two nodes
and check the line for collisions. This is done using the ezpand function in the
pathfinder. Having the loop selecting a new node to expand by each iteration
we will now explain the expand function and how this works in the world of
JWARS. When expanding a node we seek activate nodes which can be reached
in a straight line from the current node. We do not seek all possible nodes,
merely those who will prove beneficial for further searching. When expanding a
node we expand it towards another node - this being either the target node or
the corner of an object. The expand function is used for expanding the search
area of the algorithm as it adds newly discovered nodes to the priority queue. If
the path between two nodes is not blocked by any object, we can safely add the
target node to the priority queue, as we can guarantee a direct path between
the two nodes exist. If an object is blocking the route between the two nodes,
we try to find a way around the object by calling the expand recursively.

The expand method determines how to expand the search tree, by finding
obstacles and recursively searching the paths left or right around them. Written
in pseudocode, reads:

expand (source, destination, unit){
[use Bresenham’s algorithm]
tileList = getTileList(source, destination)
obstaclelList = getObstacles(tileList)

for each obstacle in obstaclelist
{
if (path might intersect obstacle)
{
angle = angle from source to destination
minAngle = angle from source to obstacle’s leftmost corner
maxAngle = angle from source to obstacle’s rightmost corner

52

if (minAngle < angle < maxAngle)

{
expand (source, leftmost corner of obstacle, unit)
expand (source, rightmost corner of obstacle, unit)

}

}
}
}

If we hit the wanted pathfindingnode while finding min and max values
the node will be added to the priority queue and is then activated for future
expansion according to the heuristic evaluation.

The recursive call to the expand function enables the function to activate
several edges leaving one node thus activating all relevant edges for leaving the
current node. A single node expanded could follow Figure 6.2

Every time a position (pathfindingnode) is grey, Figure 6.2, it has been
added to the priority queue by the expand function. When the expand function
succesfully makes contact with the targetted node we update the target node
with the relevant data for the A* algorithm to run as intended. The update
method will reevaluate the three values needed for sorting and evaluating nodes
in the list so we can expand further according to the heuristic evaluation. Finally
it will set the ancestor of the given node to the node from which we came. In
theory no edges are represented in £. When a node is expanded we get a set
of edges based on the current pathfinding problem. The expand function is
essential for this pathfinder as it is the major difference between our pathfinder
and a more convenitonal pathfinder with defined edges for each vertice.

In JWARS the class PathFindingNode has been implemented solely for the
purpose of pathfinding and has all the needed attributes for being handled
as a vertice. A pathfinding nodes settings is calculated from the blueprint
which determines the objects size, shape and positioning. A very important
feature of a pathfindingnode is the ability have a static coordinate and a dynamic
coordinate. This ability is neccessary for the pathfinder to find a path based on
the Moveable’s radius. When creating a PathFindingNode a vector is calculated
based on the two adjacent corners in the object creating an indent direction.
When multyplying this indent direction with the unit radius we get an indented
location. This location is the dynamic coordinate which will be calculated in each
run through the pathfinder for all relevant nodes. In order to locate obstacles
in a line between two points, the pathfinder uses a specially endowed tilemap
called a LineDrawCapableMap.

The LineDrawCapableMap comes with a method which utilises Bresenham'’s
line drawing algorithm to find a list of tiles based between two points on the map.
A LineDrawCapableMap can be constructed on top of an ordinary tilemap,
providing the line drawing capability to a tilemap which originally could not
offer this functionality. Specifically we want to endow the collision map (see
Chapter 5) with the ability, since this is an obvious way of finding obstacles on

53

O

(a) By first expanding towards the target (b) When expanding towards the corners

object A is found to block the path of A, one call is succesfull and can add
A’s corner to the priority queue while the
other finds object B to block

© o © @ e

O

(c) With B blocking the searched route to- (d) Both expands towards Bs corners are
wards A’s second corner we need to estab- successive and they are added to the pri-

lish routes towards B’s corners. ority queue.

Figure 6.2: A single iteration in the loop of the pathfinder. The expand
function calls it self repeatedly so all needed nodes are found.

54

the path. From the LineDrawCapable map a list will be returned consisting of
CollisionTile’s from the collision map. The line drawn between the two points
can be ordered in any thickness (measured in collision tiles) required for units
larger than the standard collision tile. Using the list of collision tiles we have
access to all registrered objects in the vacinity of the searched path.

When checking a building for collision we take several steps before concluding
that a collision will occur. The free positioning and shape of objects makes a
simpel point-to-line distance worth calculating. This will ensure that buildings
with no chance of interfering with the searched path will be excluded from the
check early on. The second step is to calculate all angles to the the indented
locations in the current object. Calculating the largest and smallest angle we
can perform a check wether the line is between these two angles. If we detect
a collision with the object, we enforce the rule about all objects being convex
hulls for pathfinding issues. If we need to go around the object we references
to the largest and smallest angle to the object. Now we simply expand towards
these nodes as stated in the pseudocode for the expand function.

By using the dynamic expand dunction we have a new setup and all nodes
could produce a new set of edges everytime we use the pathfinder. We do not
store the individual edges but merely activate those discovered by the algorithm
upon expanding a node. Using this approach we expand the graph accordingly
to the A* and update the nodes found by the expand function. * The operation
that makes this algorithm stand out is the expand function which activates
vertices/edges while searching for the path.

An important aspect of the chosen solution is that it is only dependant on
the game implementation of the collision detector. If a developer wants to use
this pathfinder it is fairly easy to convert to a different setup - a conversion
would need a function capable of detecting a collision between a game object
and a straight line from point A to B.

When running the algorithm we have some settings which is restored after
each usage. Initial settings:

e All nodes are initialized with h = g = co.

e The list of vertices to expand - the open list - is initialized empty.

6.3 Final design

The algorithm is designed for terrain with a sparse object population. With
fewer objects we get a shorter runtime as the chance of hitting an object blocking
the searched path diminishes. When there is fewer objects the pathfinder has to
examine and get around it will reduce the runtime significantly as the expand
funtion can be called recursively. This is the exact opposite when using the
earlier mentioned pathfinders based on a grid layout for the graph. In a grid
where a certain amount of space taken by objects the graph will be diminished

4A more formal word for the update method is to relax the edges adjacent to the node —
in this case we update the nodes found by the expand function

95

Figure 6.3: The illustration shows the pathfinder tracking around the
large object on its way to the target zone. The fastest route however is to
ignore the large objects and go straight for the smaller building, around,
and then for the goal.

and making the pathfinder runtime shorter. This make the pathfinder in JWARS
somewhat specialized as it favourites a certain type of terrain but will still
function on densely object populated terrain.

The expand function suffers one fatal error. It can fail in finding all the
neccessary edges leaving it. An example of this situation is shown in Figure 6.3.

It is clearly that acquiring the nodes on the smaller building would be the
fastest route to the target X. The path taking the moveable closer to the object
however, fits a standard tactical manouvre, where covers means safety from
enemy fire. In the real world objects on the battlefield would be used by units
to hide their positions or make up defenable position. One other error which
can be forced by a programmer is create a single structure from multiple convex
hulls. We have already stated that in order to have non-flawed data objects must
be convex hulls. If a programmer chose to make create a 'U’ formed building
consisting of 3 rectangles, the pathfinder would not return a path to the target,
merely a path inside the 'U’ where it would remain stationary.

The flaw in the expand function could be fixed by adding in a do/while-loop
in the update function or a similar fitting place.

current = this;
do (
if (expand (this, current.ancestor))

{

56

this.update(current.ancestor, goal);

}

else{ current = current.ancestor; }
)
while{ current != start }

Placing this pseudocode in the implementation would make the pathfinder
check all nodes leading to node which we just found. It would cut some corners
and make the implementation final but have not been included in this final
release.

Some pathfinders have been expanded to forecast other units walk patterns,
and to take these into their own calculations when searching for a path. This
possibility do not arise in a world which is not grid-based since the possibilty
to “rent” map space is not available. Unfortunately this option will never be
available to a pathfinder based solely on the terrain objects themselves. In
the real world however it does make sense not to let all allies know where
you are all the time. This general rule should apply to all RTS games aiming
for realism. For solving the issue with units sharing knowledge and optimising
paths another type of data would be needed. Implementing a system for units to
communicate and plan their movements socially can be implemented. Currently
the walkAround method in the MoveableAT class makes up for collisions. This
method should be extended to take unit-to-unit communication into account
for smarter move patterns on the small scale. We have experienced some issues
concerning two different systems both capable of giving orders to units as they
have a tendency to work against each other.

a7

Chapter 7

Dynamical game objects

Until now we have described several complex modules, notably the collision
detector and pathfinder. This chapter will describe the actual inhabitants of
this world, how they are organized, which variables they must have and their
behaviour.

7.1 Unit organization

A central concept of all strategy games is the basic controllable unit, ranging
from individual men and vehicles in some games to division-scale (as in the
Civilization series). The concept of units in JWAaRs differs fundamentally from
the corresponding concepts in other realtime strategy games, borrowing features
from turn-based strategy games and real-world military hierarchies. This chap-
ter will provide reasons for and description of the JWARS unit organization and
its advantages. The ideas presented below constitute the most important single
reason for the existence of JWARS, distinguishing it from all strategy games
known by the authors, and this is therefore the most likely feature to make
JWARS “famous” if such a thing should happen.

7.1.1 Real-world military organization

All modern militaries are remarkably similar in their organizational structure.
More or less consistently, the armed forces are divided into several armies which
are successively divided into corps, divisions, brigades, battalions, companies,
platoons and individual vehicles or squads of infantry. Commanding officers are
assigned on each of these levels, and the organizational structure allows large
amounts of forces to be controlled as a single entities. The high-level entities are
generally referred to as formations whereas the lower-level ones (which comprise
e.g. purely infantry) are called units.

In most cases, each unit comprises three or four units of the next smaller
type. For example a battalion might contain four infantry companies plus sup-

o8

porting anti-tank or mortar units. Infantry companies usually consist of three
infantry platoons and possible further support. A platoon can consist of three
10-man infantry squads, each man being armed with a rifle except for a light
machine gunner and an anti-tank team.

Generally it is practical for the commanding officer at a particular level of
organization to directly control units up to two levels down in the hierarchy.
Thus a divisional commander exerts direct control of a number of brigades, and
to a limited degree the battalions. The individual formations and battalions
are assumed capable of controlling their own components. It is obviously not
practical for a commander at a very high level to control vast amounts of single
tanks.

7.1.2 Military command in computer games

The category of computer games in which the player controls a large military
force with the objective of defeating a similar force in battle can be divided into
two primary groups: real-time and turn-based strategy (or tactical) games. In
any case the player usually has a force which consists of units.

Some turn-based games, such as the Steel Panthers series, attempt to achieve
very high degrees of realism, including realistic weapon specifications, provide a
structuring of units into a true military hierarchy, and sometimes these games
include scenarios that accurately depict the orders of battle (the unit structure
and equipment) of the historically involved formations. In Steel Panthers, for
example, the player has unlimited time to control every single entity no matter
the size of the entire army. For very large battles, the player who spends the
most time is likely to win. While the units may be organized into platoons
and companies, the player still has to control the forces at the single-vehicle
or single-squad level, and platoons are thought of as abstract entities and not
actually units.

In real-time games the situation is different. First and foremost, the degree of
realism is rarely very high, with tanks being able to shoot less than 100 metres
and nuclear weapons frequently being a native part of the battlefield. Aside
from the ahistorical antics, the controllability of forces becomes very important
because the player cannot take arbitrarily long time to issue orders. Generally
the units are not organized at all, meaning that the player has direct control
of every unit. This means that as the game grows in complexity, controlling
the units becomes ever more demanding, and the player who is fastest with
the mouse frequently wins out due to the better ability to pull wounded units
out of harm’s way, bring reinforcements forward quickly, and possibly manage
resources at the same time.

To facilitate somewhat efficient control, real-time games generally allow the
player to drag a selection box on the battlefield with the mouse to obtain mo-
mentary control of whichever units are inside the box, and every order issued
will apply to this selection. Another feature is to organize units into control
groups, such that the player can use hot keys to select i.e. a group of aeroplanes
even though they are not near each other (and therefore difficult to drag a box

59

~ Top-level Container Unit
~ Cermany
~ Battallion
=~ Rifle co

= Rifle plt
SMG sqd
Rifle sqd
Rifle sqd
Rifle sqd
PzFaust team

B Rifle plt

I+ Rifle plt

I+ Rifle plt

Rifle co

Rifle co

Rifle co

Panzer co

Panzer co

Heawy tank co

StuC co

TV TYY

Figure 7.1: Ezample of a unit tree. Only the nodes with downward
pointing arrowheads are expanded. This is part of a screenshot from
JWARS.

around). Control groups can be effective, but it can be difficult to manage
them particularly if new units are produced continuously, since they have to be
manually included in the groups.

7.1.3 Tree-based unit representation

Many proponents of turn-based games scoff at the stress and dependence on
quick mouse action in real-time games, using nicknames such as real-time click
fests, while many real-time players find turn-based games boring.

JWARS proposes the use of an explicit military hierarchy to help control
forces of arbitrary size in real time quickly and efficiently, reducing the need for
quick mouse actions. Since the forces can be almost arbitrarily large, the game
world might as well be expanded past that of most games. This will further
mitigate the importance of fast mouse action, since the time scales involved
in most operations will increase. On the other hand, the reduced reliance on
mouse action increases the relative importance of tactical thinking, which will
hopefully appeal to both turn-based and real-time players alike.

There is one possible drawback of this model, namely that the structuring of
units may not be as the player wants, and that the explicit tree structure lacks
the flexibility to use units individually. Nonetheless the structure is identical
to that of real military units, which makes it a marketable feature regardless of
controllability.

Figure 7.1 shows an example of a military hierarchy in the current version of
JWaRs. This battalion consists of 116 individual entities (vehicles or separate
infantry squads), comprising 344 infantrymen and 36 tanks or assault guns.

It has now been established that all controllable entities in JWARS should

60

be organized into a military hierarchy. This is the cornerstone of the entire
philosophy of JWARS: the player should not need to distinguish between con-
trolling single vehicles or larger units such as companies. To help enforce this
principle, the concept of a unit, which in previous games has always referred to
single physical entities (such as tanks) shall in the JWARS context refer to any
controllable entity.

With this in mind we have defined a base class of controllable entities called
Unit, which has the two subclasses Moveable and Formation, where the former
represents actual physical entities such as vehicles while the latter represents an
abstract concept such as a company or platoon, and can contain any number
of sub-units (such as platoons or vehicles, themselves being either subforma-
tions or physical entities). Formations and moveables are directly controllable,
presenting the same interface to the user.

The game world contains a single unit which serves as the root of the hi-
erarchy. Entities can be added to the world, meaning that they are added as
sub-units of the root unit. There are presently two teams in JWARS, Germany
and the Soviet Union. The teams are examples of formations themselves. Each
team contains two battalions, and each battalion is composed of several different
infantry and tank companies.

7.1.4 Network distinguishability of units

The usage of a root and the unit tree give us convenient references between units
and their sub-units. Suppose we want to send a command across the network
applying to a particular unit. We must be able to pick out the corresponding
units on all clients in the game. A unit is uniquely identified by its position
in the unit tree, which makes it unnecessary to devise another datastructure in
order to distinguish units over a network.

This relationship has been implemented with a system which we call a unit
tree ID. Each unit in the game has a unique ID stored in a single integer which
enables us to send orders over the network regarding specific subtrees. When
an order is given a unit ID accompanies it, and the network ensures that when
executed the relevant unit ID is used. The ID tagging is ordered by a single
integer split into 6 layers of 5 bits. Each 5-bit layer designates which sub-
formation to choose from the current formation — starting from the root. This
means that the limitations on the unit tree is maximum 31! sub-formations and
a maximum total of 6 layers. It could be argued that a using a long would
support larger forces yield a more flexible unit tree, but this transformation has
not been done yet.

7.2 Game data management

This section describes the data management strategy used in JWARs. [1, p.
55| defines a data-driven system as “...an architectural design characterized by a

L1f the current layer reads “0” we have reached the wanted formation

61

separation of data and code”. Such an approach is useful for numerous reasons.
First of all, trivial matters such as changing the range of a cannon hardly warrant
recompilation of the source code. It is preferable that the game content can be
changed without even knowing the code, such that different people can take
care of programming and game content.

This will also make it possible for players to modify the game to provide
their own units and weapons. For example, Warcraft 111 is highly reconfigurable
and there exist large sub-communities of Warcraft I players that play custom
modifications of the game?.

JWARS includes a loading routine which reads game data from external files,
then converts the data into categories which are factories for creating various
game objects.a

7.2.1 Inheritance versus data-based game object classifi-
cation

JWARS contains several different types of units, such as tanks and infantry
squads. Further there are different types of tanks, such as PzKpfw IV and T-
34. We note two basic ways of dealing with such variations, inheritance and
purely data-based classification.

Common lessons in object oriented programming describe how the abstract
class Animal could have an abstract subclass Fish which could have non-abstract
subclasses such as Anchovy or Lamprey. It would be possible to use a purely
inheritance-based hierarchy, meaning that there should be a class called PzKpfwIV.
But even so there were made variations of this tank. Does this warrant yet an-
other level in the inheritance hierarchy?

On the other hand one could use only one kind of unit, then provide a
large amount of data to categorize the unit. For example type=infantry. The
problem is that if flying units are introduced, then every ground unit must
somehow state that it cannot fly. This can become very cumbersome.

The natural solution is to use inheritance® only in those cases where func-
tionality differs greatly. For example, since infantry squads do not have a turret
which can turn around, it makes sense to use a Tank class which has one, whereas
the other classes need not. The inheritance relationship between different types
of units in JWARS is seen in Figure 7.2.

7.2.2 Category model

Modelling a tank requires a certain amount of data. For example it has a
movement speed, turning speed, a cannon, any number (usually two or three)
of machine guns, front armour thickness, side armour thickness and the list goes
on. It would be inconvenient for the programmer to supply all this data every

2Notably there are countless variations of “Tower Defense” maps where the players build de-
fensive towers to defeat oncoming computer-controlled hordes, and the widely played “Defense
of the Ancients” modification.

3Languages which do not support inheritance can use delegation instead

62

Unit

S

Formation Moveable

SR

InfantrySquad Vehicle

NS

Tank AssaultGun

Figure 7.2: Different unit classes by inheritance hierarchy.

time a tank needs to be created, especially if hundreds of tanks are created, and
particularly because most of these tanks are identical anyway.

One solution is to use the factory pattern, i.e. a software component which
can create any number of units of some type. Suppose every type of unit has
its own factory, called a category. The category has to contain all the data on
which the units of that type rely, but the category does not have to provide
any other functionality than that of creating units. By letting units have direct
access to their category and its data, they need not store the data explicitly
themselves. The categories thus serve as both factories and data repositories
for the unit type they represent.

To recapitulate, every unit type, that is, every configuration of infantry squad
and every model of vehicle is represented by a unique category object: there is a
T-34 category for the T-34 tank, a Rifle squad category for the Rifle squad and
SO on.

Note that when inheritance or delegation is used to distinguish types of units
such as infantry and tanks, their respective categories must be able to make this
distinction too; it follows that categories should be organized in a similar and
parallel inheritance hierarchy, see Figure 7.3.

It is not just physical entities (such as tanks) which benefit from using cate-
gories. Categories are used to classify all complex in-game components, includ-
ing tank hulls, tank turrets (it was not uncommon for different turrets to be
mounted on the same hull type) and weapons. A tank category, for instance,
holds references to its hull, turret and weapon categories. Aside from enabling
logical structuring of data, this allows an SU-85 tank destroyer (which histori-
cally used the T-34 tank’s chassis) to use the hull armour data of a T-34 tank.
Also many of the infantry squads in the game use the same rifles, machine guns
and grenades.

63

UnitCategory |[€ = = = === === > Unit

I i I ILl

FormationCategory MoveableCategory |& ->| Moveable Formation

Figure 7.3: Parallel inheritance hierarchy of unit classes in JWARS
and category classes. The fully inked arrows denote inheritance rela-
tionship, while the dashed lines denote correspondence between a class
of unit and a class of category.

7.2.3 Content loading by categories

JWARS provides a data manager which serves as a central data repository.

As promised earlier, game content is read from external files. The central
data manager can conveniently be used to parse datafiles containing game data,
and categories can be created dynamically from data obtained in this way. The
datafiles are stored in a custom, human-readable format, see Tables 7.1 and 7.2
which show examples of datafile entries.

When the data manager loads a file, it parses the words in the file (separated
by whitespace) in sequence. First it reads the category type identifier (“weapon”
or “tank” in the above examples) and uses the type identifier to determine the
correct category class (e.g. WeaponCategory or TankCategory). Then the data
manager invokes the corresponding category constructor which is responsible
for parsing the remaining text from a particular datafile entry. Notice that one
of the top entries in each datafile entry is an identifier. When the data manager
has loaded a category, the category is stored in a dictionary, using the identifier
as a key. The category can then be accessed from the data manager by providing
that identifier.

Table 7.2, which defines the PzKpfw-IV tank category, holds a list of weapons.
The weapon names given in the list are the identifiers of weapon categories.
Thus, as the PzKpfw-IV category loads, it can retrieve the specified weapon
categories from the data manager through the weapon identifiers, and get hold
of the weapon categories.

When finally a PzKpfw-IV tank is created, the PzZKpfw-IV category can use
its list of weapon categories to create the corresponding weapons for the tank.

The military hierarchy is similarly created by means of formation categories.
Formation categories hold references to sub-unit categories (so a company cat-
egory could hold a list of platoon categories, which could hold a list of infantry
squad categories). When the formation category is used to create a formation,
it will automatically result in the creation of the sub-units too. For example,
creating an infantry company will result in the creation of the four infantry
platoons of which the infantry company consists. The creation of each platoon
involves the creation of the relevant infantry squads, which again involves the

64

Category

)

UnitCategory WeaponCategory

A

'
! 75mm Kwk40 L48
' 76mm F-34 Gun

! Karabiner 98k
L]
L]
L]

FormationCategor MoveableCatego
gory gory Molotov cocktail
' Y N T e '
\ Battalion H 4
1 Rifle company H |
1 Rifle platoon H
']

InfantryCategory TankCategory AssaultGunCategory

' I : ' H
1 Infantry squad VT34 ! 1 Sturmgeschuetz H
\ SMG squad i1 PzKpfw-lv V SU-85 !
1 Panzerfaust team 1! Tiger ! Eemcccmmmamaaaad
P VA | :

']

1]

Figure 7.4: Categories. The continuous bozxes indicate category classes
whereas the dotted boxes list examples of actual category objects of the
corresponding class. Arrows indicate inheritance.

creation of weapons for each squad.

7.2.4 Conclusion

We have now developed a system to manage game content by editing text files,
i.e. without having to know or touch the code. External data files define weapon
types, infantry squads of different sizes using different weapons, and tanks which
can be created from a central data repository which is loaded at runtime. The
game already includes five kinds of infantry squads, four kinds of tanks and two
assault guns. The standard formations, such as platoons and companies, into
which the forces are organized are defined in a similar manner.

7.3 Unit AI

This section is devoted to the unit AI framework. In this context, Al means
relatively simple codes for organized behaviour as opposed to e.g. complex and
unpredictable behaviour which may be desired in other games.

7.3.1 Hierarchical structure

Most realtime strategy games include two kinds of Al: first there is a simple
AT which controls the low-level behaviour of the individual units. This Al is

65

Type & identifier weapon 75mmkwk
Full name "75mm Kwk40 148"
Firing range 1.2 km
Effective range 500 m
Reload time 8.1 s
Firepower data ap 120 16
Explosion type mediumexplosion
Splash radius 5 m

Table 7.1: The datafile entry defining the weapon category correspond-
ing to a German 75mm Kampfwagenkanone (tank gun). The right col-
umn contains the actual lines in the datafile, while the left column is
only for description. The firepower data comprises ammo type (armour
piercing), armour penetration (in millimetres) and “kill index” (effec-
tiveness against infantry).

Type & identifier tank pziv
Full name "PzKpfw-IV"
Radius 3.8 m
Speed 24 km/h
Turn rate 1.4 /s
Begin weapon list begin
Main gun 75mmkwk
Machine gun mg34
Machine gun mg34
End weapon list end
Hull type pzivhull
Turret type pzivturret

Table 7.2: Datafile entry defining the German Panzer IV tank. The
entries in the weapon list are identifiers of weapons. Notice the identifier
of the tank gun from Table 7.1. The other guns and the hull and turret
types are also identifiers of categories. These include filenames of images
which are used to display the components.

66

responsible for automatically doing tasks which are trivial, such as firing at
enemies within range or, if the unit is a resource gatherer, gather resources
from the next adjacent patch if the current patch is depleted such that the
player needs not bother keeping track of this. The other kind of AI is the
separate Al player which controls an entire army, and which is incompatible
with the interference of a human player. This Al is responsible for larger tactical
operations such as massing an army or responding to an attack.

In JWARS, as we shall see, there is no such clear distinction between different
kinds of AI. Because of the hierarchical organization it is possible to assign an
AT to each node in the unit tree, meaning that while every single unit does have
an AT of limited complexity to control its trivial actions, like in the above case,
the platoon leader has another AI which is responsible for issuing orders to each
of the three or four squads simultaneously, and the company leader similarly is
responsible for controlling the three or four platoons. It is evident that this
model can in principle be extended to arbitrarily high levels of organization,
meaning that it will easily be equivalent to the second variety of AT mentioned
above: the entire army could efficiently be controlled by AI provided that the
AT elements in the hierarchy are capable of performing their tasks individually.

There are numerous benefits of such a model, the most important of which
we shall list here.

e Tactically, if one unit is attacked the entire platoon or company will be
able to respond. In classical realtime strategy games this would result in
a few units attacking while the rest were standing behind doing nothing.
Thus, this promotes sensible group behaviour which has been lacking in
this genre since its birth.

e It is easy for a human player to cooperate with the AI. For example it is
sensible to let the AT manage all activity on platoon and single-unit level
while the player takes care of company- and battalion-level operations.
This will relieve the player of the heavy burden of micromanagement which
frequently decides the game otherwise (as asserted in section 1.2.1). Thus,
more focus can be directed on strategy and tactics instead of managing
the controls.

e The controls may, as we shall see below, be structured in such a way
as to abstract the control from the concrete level in the hierarchy. This
means the player needs not bother whether controlling an entire company
or a single squad: dispatch of orders to an entire company will invoke the
company Al to interpret these orders in terms of platoon operations. Each
platoon AI will further interpret these orders and have the individual units
carry out the instructions appropriately.

e A formation-level AT can choose how to interpret an order to improve effi-
ciency. For example the player might order a platoon to attack an enemy
tank, but the platoon AI might know that rifles are not efficient against
the tank armour. Therefore it might conceivably choose to employ only

67

the platoon anti-tank section against the tank while the remaining platoon
members continue e.g. suppressing enemy infantry. These considerations
are easy for a human player, but cannot be employed on a large scale since
the human cannot see the entire battlefield simultaneously. Once again
this eases micromanagement.

There are, however, possible drawbacks of the system.

The worst danger of employing such an Al structure is probably that the Al
might do things that are unpredictable to or conflicting with the human player.
Care must be taken to ensure that human orders are not interfered with, and
that the behaviour is predictable to humans?.

From a game design perspective it might also be boring if the automatization
is too efficient, leaving the player with nothing to do. This problem, of course,
can be eliminated simply by disabling certain levels of automatization. It is also
unlikely that the AI at higher levels of organization can ever outwit a human
commander, making sure that human interaction is still required.

7.3.2 Design considerations

It was stated above that the control of single entities versus large formations
could be abstracted such that the player did not need to bother about the scale
of operations. If this principle is to be honoured, the user interface must allow
similar controls at every level of organization. At the software designing level
this may be parallelled by providing a common interface to be implemented by
different AT classes. It should be possible to give move orders, attack orders and
so on, and each of these should have its implementation changed depending on
the context, i.e. whether the order is issued to a formation or a single entity.

It is therefore reasonable to propose that every unit, whether it is an ab-
stract formation or a physical entity, should possess an AI, and this AI should
expose an interface which allows a standardized set of instructions. However the
implementation of these instructions should be left open, such that the different
kinds of units can freely interpret them appropriately.

It further proves useful to have different types of Al specialized in different
roles. The code which manages movement not necessarily have much in common
with that which manages shooting. Therefore it can be an advantage to hold
such functionality separate. Specifically, this will result in a MobileAI and an
AttackAI, each of which provides the corresponding functionality. Since units
must provide the functionality of both, the logical solution is to assign each unit
a UnitAI which conforms to the specifications of MobileAI as well as AttackAI.

This design is obviously well-suited in an environment which allows poly-
morphism and inheritance, and for this reason the use of Java interfaces are
ideal for the core AI classifications.

4(Classical examples of this problem are when resource gatherers deplete resources and
automatically start harvesting from patches too close to the enemy, or when the player issues
a movement order and the unit moves the “wrong” way into the line of fire because the
pathfinder has determined that this way is faster.

68

7.3.3 Al layering structure

Along with the AT interfaces that specify the AI capabilities, some simple im-
plementations exist which can take care of specific roles. The following example
will illustrate the usefulness of this principle.

The MobileAT interface specifies an orderMove method which is supposed
to make the relevant unit move to a specified location. Also similar movement
orders can be appended or prepended to a queue of such orders. There is a
standard implementation, MovementQueueAI which takes care of all this queue
management. Suppose now that a pathfinder should be used to break the move
order into straight-line segments leading around some obstacles. This func-
tionality can be provided by wrapping the MovementQueueAI and providing a
PathFindingAI with an orderMove method which invokes the pathfinder, then
enqueues the way points by using the underlying MovementQueueAI. The player,
however, does not need to know that the AI responsible for pathfinding actually
wraps an Al responsible for enqueueing movement orders. The only information
which is important is that the AI provides the movement functionality.

In a completely unrelated matter, the BasicAttacker which is an imple-
mentation of AttackAl is responsible for keeping track of a target and whether
or not to shoot. The implementations which provide movement and targetting
functionality can now be reused together. The AI of a physical entity such
as a tank (called a Moveable) is an implementation of UnitAI which wraps a
MobileATI and a BasicAttacker. Thus the behaviour of a tank is dictated by
interchangeable AI “building blocks” that can be expanded as required.

This example is of course dependent on the layout which we have happened
to choose for the AT API, and this might not be what another developer wants.
Nonetheless the design shows a flexibility which allows almost arbitrary ex-
tensions. In conclusion, units have a particular Al interface which is exposes
attacking and movement functionality, and the AI framework relies on delega-
tion to various specific implementations to provide this functionality. Interfaces
are used for polymorphism.

7.3.4 Future AI work

It is no secret that the limited work which has gone into the Al implementations
in JWARS are not going to revolutionize the real-time strategy genre. However
the unique tree-organization allows for much more complex and intelligent be-
haviour which can be implemented in the future. This section will mention some
of the more promising improvements which can be done.

e Aggression modes. In some cases it is desirable that units fire at every
nearby enemy. But otherwise this might not be a good idea. If a recon-
naissance patrol opens fire on the enemy troops they are observing, they
will most likely be spotted and killed. If an infantry squad is waiting for
an unsuspecting tank to come close enough to throw a grenade down the
open hatch, then it is most unwise to open fire at a range of two hundred
metres. Thus, a good Al must know when to fire and when not to. When

69

the squad opens fire it is important that the remaining squads of the pla-
toon, or the entire company, open fire as well. It therefore makes sense to
make e.g. a company Al responsible for starting such an ambush, though
it requires that the AI supports, for example, an ambush state.

Battlefield-awareness. A common problem in contemporary real-time strat-
egy games is that an airstrike is ordered on an enemy factory somewhere.
While under way the planes are attacked by unseen anti-aircraft batteries
and shot down. In this case it would be beneficial to call off the attack
entirely. But if there is only one anti-aircraft emplacement, and if the
attack involves twenty planes, calling off would be silly. Assigning an Al
to the entire attack wing would easily provide a means of evaluating and
handling such threats.

Morale-dependent AI. While under fire, people can panic and retreat. This
kind of AI could refuse to perform offensive acts if panic sets in. Once
again this can be done by replacing the AT implementation temporarily.

70

Chapter 8

Combat dynamics

This chapter deals with the combat model provided with JWARS. The combat
model encompasses different modules pertaining to weapons and automatic fir-
ing routines, armour and damage. Following that, the wision model, which is
relevant for automatic targetting will be discussed.

8.1 Firing and damage

Most real-time strategy games use remarkably similar combat models. Units
will fire automatically at enemy units when the enemy units come into range,
wait for their weapons to reload and continue firing until they or the enemies
die (or until they receive new orders and disengage).

Every time a unit fires, it may or may not hit its target (in many games they
will even always hit the target), and do damage to the target and possibly the
surrounding units based on the weapon used and the type of target.

The canonical way of representing damage and the health of an entity is to
use hit points. A unit has a certain number of hit points, and every time it
gets hit by a weapon, a number of hit points based on the weapon type, target,
luck or other factors, gets subtracted. If a unit reaches 0 hit points it dies. The
health state of a unit is typically represented graphically by the characteristic
green health bar, which becomes shorter and changes colour to yellow and red
as things go downhill.

This is a very simple basis model which is used in most games. We can
mention Warcraft I-III, Starcraft, Dune II, all Command & Conquer games,
and the list goes on.

For JWARS, however, we have something more ambitious in mind. Reality
does not deal in hit points. If a shell hits a tank, one of two things happen:
either the shell bounces off the armour doing no or very little actual damage,
or else the shell penetrates the armour and will likely cause horrible damage.
It does not take 7 hits or 5 hits like in the hit point model, but could take any
number of hits. If the tank is sufficiently heavily armoured, no amount of hits

71

from that cannon will destroy it!.

Such realistic models have been used in the Steel Panthers series of turn-
based strategy games. Our approach shall borrow some true and tested ideas
from this highly realistic series of games.

8.1.1 Combat rule set

The combat rule set is the basis for the implementation. This does not mean
every implementation has to use this rule set this is only the default.

e There are two primary types of entities: vehicles and infantry squads.

e Some vehicles are tanks, which have a hull and a turret which can tra-
verse, whereas others are assault guns which have a hull and an inflexible
superstructure with a cannon. Hull and turret or superstructure each
possess an armour table, which lists the thickness of steel armour in mil-
limetres and the angle of armour plating. This information is borrowed
from Taschenbuch der Panzer 1945-54[4] and sometimes Steel Panthers:
World at War6].

e Infantry squads have a strength, i.e. a number of men.
e Each entity can have any number of weapons.

e A weapon has a maximum range, an accuracy, a firepower (determining its
efficiency against infantry), an armour penetration value (in millimetres
of steel, numbers are borrowed from Steel Panthers: World at War[6]), an
ammunition type and a reload time. A Weapon can fire at a location but
is not guaranteed to hit. Weapons can deal splash damage, i.e. collateral

damage to units near the impact location.

e Whenever an infantry squad is hit or nearly hit by a weapon, people may
die depending on luck, impact distance, weapon firepower and possibly
other factors.

e Whenever a vehicle is hit directly by a weapon, it might be destroyed
based on the weapon’s armour penetration ability, the vehicle’s armour
thickness and the angle of incidence.

e Enemy units will automatically fire at each other if within range.

We intend to expand the ruleset in the future, to support crewed weapons (e.g.
infantry-operated anti-tank guns or FlaK), offboard artillery which can conduct
indirect bombardments of any part of the battlefield and aeroplanes which are
offboard most of the time but can make bombing runs.

! Anthony Beevor[3, pp. 90-91] notes a particular occasion on which German panzers fired
many shells at an immobilized Soviet KV-1 heavy tank. Finally the Soviet crewmen emerged
to surrender, badly shaken, but unhurt.

72

8.1.2 “Weapon vs. armour”, or “armour vs. weapon”?

There is a tricky matter of evaluating different ammunition types versus different
armour types which warrants a discussion of the way such checks are handled.
This section will discuss real-life weapons systems in order to determine the
most sensible way of handling shell impacts.

Suppose a shell hits a tank. We will want to compare the steel penetration of
the weapon with the thickness of the armour. If the shell uses kinetic energy as
a means of penetrating the armour (e.g. common armour piercing ammunition)
then its ability to penetrate armour should be reduced with impact speed and
thus travelling range. If the shell uses only explosive power (such as HEAT,
high-explosive anti-tank which is commonly used in infantry anti-tank weapons
such as the bazooka, Panzerschreck and Panzerfaust), then its steel penetration
is completely independent of impact speed.

The common way of handling such a problem in object oriented languages
is to equip each weapon with a different method for calculating damage to steel
armour. The problem is that several types of armour can also exist, which means
the weapon will have to distinguish manually between target types anyway. See
below: should the implementation be provided by weapon or armour?

armour . calculateDamage (weapon)
//Allows armour class to select implementation
weapon.calculateDamage (armour)
//Allows weapon class to select implementation

We have decided that the complexity of armour is generally greater than
that of weapons, and that the implementation should therefore be left to the
armour class.

For example, diverse defensive technologies range from no armour (infantry)
to steel and spaced armour. The previously mentioned HEAT ammunition uses
a curiously shaped warhead to achieve a directed explosion, forming a jet of
molten metal[7] which can travel a certain distance largely unaffected by the
type of armour it penetrates. This can be negated by mounting a thin layer
of armour on vehicles some distance away from the armour, meaning that the
jet will disperse before reaching the inner armour layer. This is called spaced
armour. Figure 8.1 shows a Soviet T-34 tank equipped with a mesh to detonate
such warheads prematurely. A more modern technology called ezplosive reactive
armour or ERA uses explosive charges as part of the tank armour to obstruct
the jet, nullifying its penetrative capabilities[8].

Thus we decide that weapons must be characterized by a select few param-
eters, whereas armour has the benefit of possessing the method which decides
what happens on impact, given the weapon parametres. This allows armour
systems arbitrary complexity (they can provide any implementation) whereas
weapons have to express their efficiency in terms of a pre-determined set of
parameters. In order to distinguish different types of weapons (which is still
necessary), a few standard types are hardcoded: high-explosive, armour pierc-
ing, HEAT and bullets. Bullet type weapons are considered special: unlike the

73

Figure 8.1: Soviet T-84 tank with wire mesh for protection against the
Panzerfaust anti-tank weapon.[9]

other types, they are considered to fire volleys consisting of several shots (such
as from a machine gun or a whole squad firing several rifles). Also, if the first
weapon declared on an infantry squad has the bullet type, then it is consid-
ered issued to every member of the squad, meaning it will have its firepower
multiplied according to the number of men. The other ammunition types have
no explicit meaning, but when calculating damage, the armour can distinguish
these types on an if-else basis.

8.1.3 Structure of the weapons API

There are four concepts which are introduced in order to properly separate the
code.

e Weapon. A weapon has a category (see Section 7.2) which stores its ca-
pabilities, and a state, being either loaded or not. The weapon has a fire
routine which ultimately might result in people getting killed (no humans
were harmed during the making of this routine).

e WeaponModel. The weapon model serves as an interface between the set of
weapons belonging to a unit and the code which attempts to control the
unit’s more aggressive antics. The weapon model can be used to emulate
the weapon set independently of the actual weapons, which allows the
weapon code to be substituted without breaking e.g. the unit Al

e ArmourModel. Responsible for handling the (nearby) impact due to the
firing of a weapon. Present implementations include two armour models,
being infantry- and vehicle-specific, respectively.

74

e Damageable. Responsible for handling any damage caused when the ar-
mour model reports that it could not withstand the punishment. Presently
this only serves to alert a unit of when it is destroyed, but is supposed to
take care of destroyed radios, fire control, suspension, engine etc. if some
day those concepts are implemented.

8.1.4 Firing routine

The firing routine corresponding to a particular weapon takes the source loca-
tion and the target location in the main coordinate system as parameters, and
validates by checking whether the weapon is loaded and within firing range of the
destination. It is desirable, though not presently implemented, that direct-fire
weapons (as opposed to indirect-fire weapons which are used for bombardments)
should also confirm that they are within line of sight of the target (line of sight
is discussed later, in Section 8.2.6).

If firing is possible, the actual impact location is calculated, which can be
different from the target location. If the weapon type is “bullet”, meaning that
it fires a volley of projectiles (such as in the case of machine guns), then the hit
location is always exactly the targetted location, since this is where the bullets
will hit on average. Bullets are then assumed to hit randomly in a “cloud”
and not exactly on the central point. Non-bullet weapons have their impact
location determined based on luck and the “effective range” of the weapon, but
other factors may be included later.

Finally, the set of all entities within the weapon’s splash range of the impact
location is determined by using a utility method provided by the collision detec-
tor (Chapter 5) which returns a set of colliders that are within a specified radius
from a specified location. All units in this set are considered “hit”, though they
may not receive any damage.

For each unit which has been hit, the armour model belonging to that unit
has its reportImpact method invoked, and this method decides what happens
to the unit in question.

8.1.5 Impact handling by armour

There are presently two types of armour model: infantry and vehicle. As men-
tioned previously, the armour model determines what happens to a unit when
hit. The infantry armour model calculates a number of casualties based on luck,
the impact distance and the firepower of the weapon in question. The present
implementation serves its purpose but can use adjustments for play balance.

The vehicle armour model is somewhat more complicated. Vehicle armour
is specified by categories (the concept of which is introduced in Section 7.2). A
vehicle is considered divided into three sections: the front, the sides (assuming
symmetry) and the rear. For each of these sections there is an armour thickness
in millimetres, plus the armour angle (sloped armour is important in tank war-
fare and is therefore included in the model). Tanks, also having an armoured
turret, have a similar set of numbers for that, see Figure 8.1.5.

75

Hull armour

Front 47 mm @ 60°
Side 40 mm & 39°
Rear 45 mm @ 4§°
Turret armaour

Front 72 mm & 33°
Side 22 mm @ 24°
Rear 52 mm@ 19°

Figure 8.2: Armour statistics for a T-84 tank. This is part of a screen-
shot from the game.

The vehicle armour model first calculates which section has been hit. This
is based on the travelling angle of the shell fired, compared to the orientation of
the vehicle. For example if the shell is fired from directly in front of the vehicle
then it will hit the front armour with certainty, but generally the probability
of hitting a particular section of the vehicle is determined (see Figure 8.1.5) by
projecting the relevant sections of the vehicle on the normal plane of the impact
direction, and the ratio of probabilities is equal to the ratio of projection lengths.

The armour penetration value of the weapon is compared to the armour
thickness at the hit location, taking into account the impact angle on the armour
plating. For example, if the shell hits at an almost-parallel angle it will have to
penetrate many times the length necessary if it hits at a perpendicular angle.
More precisely, the effective thickness is equal to the actual thickness divided
by the cosine of the impact angle on the armour, further divided by the cosine
of the armour slope (i.e. the angle between the armour plating and vertical).

If the armour penetration is still larger than this effective armour thickness,
the tank is destroyed.

8.1.6 Conclusion

We have now explained how weapons fire and how armour models handle the
impact from weapons. Weapons are defined by a limited number of variables
such as armour penetration, range, reload time and an abstract notion of type
which distinguishes bullets, high explosives and armour piercing ammunition.
Armour models, being more complicated, contain the code for handling impacts.

8.2 Vision

The last section described how weapons and armour work. But there remains
the problem of deciding when to use them. We have mentioned earlier that
opposing forces should shoot at each other automatically once the opponents
have been discovered.

76

Tank hull -~

Figure 8.3: Side hit or front hit? The projection S of the tank side
on the normal of the impact direction is about equal in length to the
projection F of the front, so the probability of hitting the side is about
50 %.

We have also promised to implement a kind of fog of war, a common notion
of RTS games meaning that units should not be able to see each other at all
time. This section will derive a framework for handling wisibility of units to
opposing units.

8.2.1 Vision in games

As mentioned, the concept of not being able to see all enemy units is called fog
of war in reference to the smoke caused by e.g. artillery bombardments. In
some old games such as Dune 2 and Command & Conquer, the entire map is
blacked out by the beginning of the battle, and the player has to explore the
map in order to locate the enemy. In the two mentioned games, terrain that has
been explored once will forever stay visible along with any enemy units in those
areas. Newer games generally allow the player only to see the immediate areas
surrounding friendly units, i.e. as soon as the units move away, the enemy units
in that area are once again obscured. In most cases (Warcraft III, Starcraft,
Total Annihilation etc.) there is a maximum vision range, which lets a unit
observe a circular neighbourhood of their location, except for obstructions of
the terrain such as hills or buildings which can block the view. The maximum
vision range is usually less than the size of the main battlefield display, for
example around 50 metres.

Bearing in mind the realistic approach of JWARS we wish a model of vision
which can support much larger ranges, namely hundreds or thousands of metres.
This is still shorter than realistic spotting ranges, yet considerably longer than
in contemporary games. Furthermore it should be possible for terrain objects
to block line of sight. Finally, we propose that units should be able to hide
even though they are well within direct line of sight. It is in reality easy for
infantrymen to hide in bushes or high grass (which are not explicit game objects

77

but rather types of continuous terrain, thus not directly blocking sight), and
this possibility should be included in any realistic wargame?. Thus, there is
no guarantee that the player’s forces can see an enemy ambush, even though
the ambush is technically within line of sight. This “fuzzy” model of vision is
common in turn-based strategy games such as the Steel Panthers series.

While not yet suggesting a final way to perform this kind of check, the
probability of spotting an enemy unit should be larger if the unit is close, moving,
large or clad in bright red clothes. It is also possible.

The problem of determining which units are visible to others can be tackled
in a number of different ways, which will be discussed in the following sections
along with their pros and cons. We shall refer to entities capable of seeing and
being seen as observers. With two teams in the game, an observer can be in
one of two states: it is either wvisible or not visible to the opponent. Observers
which are not visible to the opponent should obviously not be drawn to that
opponent’s screen, and his forces should not shoot at an observer unless it is
visible.

8.2.2 Approach 1: direct observer-observer checking

Suppose that given two observers, there exists a method for checking whether
one can see the other (e.g. returning true or false after taking into account a
lot of factors). The most obvious way of implementing vision is to continuously
check for every observer whether it can see every other observer. This is ex-
tremely inefficient because the number of checks increases with the square of
the number of units. Actually this is exactly the same problem we encountered
when designing the collision detector in Chapter 5. It is obvious that a similar
solution can therefore be applied: dividing the map into tiles. If there is some
maximal vision range, then a vision check is only needed if two observers are
within that range of each other, and if the size of a tile is comparable to the
vision range, then it is sufficient to search only the neighbouring tiles for other
observers when checking visibility for a particular observer.

Using this method with which we are already familiar, the problem can be
solved cleanly and efficiently, provided that the range of vision is relatively short.
Unfortunately this may not be the case. In real life the visibility extends many
kilometres. Only if the map is much larger than the visibility does this approach
yield a significant increase in performance otherwise we will have to check the
entire map or very large parts of the map anyway. It is particularly bad in large
battles when many (n) observers are within vision range of each other, therefore
requiring O(n?) checks.

It is clear that the large distances involved are our primary problem. How-
ever there is an important optimization which can be performed only because
of the large distances. Over short distances, it is very important that observers
respond immediately to spotting an enemy. This is because whoever shoots first

2The lack of vision from World War Il-era tanks is of particular importance here: infantry
units could hide only a few metres away and attack advancing tanks using molotov cocktails,
hoping that the volatile fluid would pour into the tank engines.

78

will likely win. Movement over larger distances takes a long time, and combat
is less hectic. Since observation checks generally involve large distances, it can
thus be expected that the time scale on which observers will be spotted and
disappear is relatively large, i.e. several seconds. Therefore it is not necessary
to check which observers can see each other every frame. It is sufficient to check
once in a while, possibly once per second or even less. Doing this can decrease
the amount of time taken by an order of magnitude or more.

8.2.3 Approach 2: observer-terrain checking

We have, however, considered an alternative approach which holds some advan-
tages and disadvantages. In most RTS games, units are visible if the terrain on
which they stand is visible. Suppose an observer moves. It would be possible to
register all the terrain visible to the unit in its new position (this would require
a tilemap with a very fine resolution if observers should be able to hide behind
buildings, etc.). Any enemy observers within the visible area are then made
visible. This means the complexity of the entire spotting functionality for n
observers is reduced to O(n), since work has to be done only when observers
are moving, and every observer has to do the same amount of work (register
surrounding tiles as visible).

As mentioned, a very fine tilemap is required for this approach. With large
vision ranges this becomes a problem because of the sheer amount of tiles it is
necessary to traverse, namely O(r?) where r is the observation radius.

We have selected the first approach because it can be implemented rapidly
due to its similarity with the collision detector, because of its relatively high
efficiency in most cases (except when very large forces are massed), and because
with the suggested optimization it is not likely to be become a bottleneck.

8.2.4 The spotting routine

To recapitulate, we have selected an approach to vision checking where all ob-
servers should regularly check which other observers they can see. A full vision
check, i.e. checking for all observers whether which other observers they can
see, will consist of a number of separate steps.

For each observer O, do the following;:

1. Traverse all tiles within vision range of the current observer O.
2. For each of those tiles, traverse all observers within it.

3. For each other observer O found, if that observer is within the fixed maxi-
mum vision range of O, perform an observer-observer vision check between
the current observer O and the other observer O.

The process is illustrated in Figure 8.4.
The exact implementation of the observer-observer vision check is — as we
mentioned previously left open. The particular implementation used in the

79

®
[]
®
P I
7
, AN ®
/ L] N
e |, -
P
| o _ \ []
! [J |
[, L4
A /
\
N e
N 7
~__t e
® o
[]

Figure 8.4: The spotting routine. The current observer is surrounded
by a dashed circle, the radius of which is equal to the mazimum vision
range. The algorithm will traverse the four tiles that overlap the circle
and expend no time checking the rest of the map. These four tiles contain
eight observers aside from the current one, four of which are outside the
vision range. The remaining four observers (excluding the current one)
that are inside the vision range are subjected to an actual observer-
observer check.

80

Collision detector | Observation environment
Collision map Observation map
Collision tile Observation tile

Collider Observer
Collision properties Observer model

Table 8.1: Equivalent terms of collision detection and observation han-
dling.

present version of the game is very simple: the observer-observer collision check
simply returns true, i.e. an observer is visible to the enemy if and only if it is
within the maximum vision range (which happens to be around 300 metres).
The game therefore uses a simple “circular vision” approach.

If an enemy observer leaves the line of sight it should become invisible again.
This is a trivial matter if the observer knows when it was last spotted by an
enemy in that case it can regularly check whether the time elapsed since it
was last spotted is greater than some pre-defined relazation time, then become
invisible as necessary. The relaxation time is presently around 5 seconds, though
the exact value is of little importance as long as it is longer than the interval
between spotting checks.

8.2.5 Final design

Since visibility is handled almost the same way as collision detection, it can
hardly be surprising that a very similar design has been employed. Table 8.1
shows an overview of the terms we use in the context of observation, along with
the corresponding term from collision detection.

An observation environment serves as a centralized manager, hosting the o0b-
servation map which consists of observation tiles. The observation environment
can register Observers which have a location and have the observer-observer
check routine. Observer is technically a Java interface, meaning the implemen-
tation of is left open (perhaps infantry squads, having maybe 10 men which can
look in different directions, would like an implementation different from that of
a tank, where the crew can see only through a small opening unless they open
the top hatch). Each registered observer is associated with a particular observer
model, holding inforamtion which is used “under the hood” (such as the time at
which the observer was last spotted).

Note: there are a few differences between the collision detector and vision
handling. Whereas the collision detector will register a collider in all the tiles
that overlap the collider, the size of the tiles used in this section are very large
compared to the actual observers, so there is no advantage in registering an
observer in more than one tile at a time. Thus, observers are only registered in
the tile at which their center is located.

There is another subtle difference: internally, the collision detector uses an
array-based list implementation to represent the colliders registered in each tile.

81

Removing elements requires that the entries with indices larger than that of the
removed collider be copied to occupy lower indices in order to prevent “holes” in
the array. For n colliders this takes O(n) time on average. This is efficient only
for very small lists, and indeed collision tiles are not expected to contain many
colliders at a time. The important difference here is that the observation tiles
are very large and can contain hundreds of elements. Thus we have decided to
use a linked-list implementation which allows addition and removal in constant
(O(1)) time, sacrificing random access which is worthless for our purposes. The
observer model serves as a reusable link for the linked list, thus eliminating the
overhead of creating link objects dynamically.

8.2.6 Evaluation and discussion

After having tested the vision system in action with more than 400 observers in
one battle, we have not seen any measurable impact on game performance. We
conclude that the selected approach is efficient enough for the simple circular
vision model used presently and probably (though this has not been tested)
somewhat more complicated vision models as well.

It is desirable to improve the observer-observer check to the realism stan-
dards proposed earlier in Section 8.2.1. This takes long time to do well, and does
not involve any technical problems of comptutationally interesting nature, which
is why we have decided not to implement it yet. The implementation should
take into account range, the type of unit (infantry can hide more easily than
tanks), the speed of the unit (it is easy to spot moving entities), the amount of
vegetation in the terrain, and it should incorporate a line-of-sight (LOS) check
such that e.g. buildings or trees can block the field of vision. Regarding the
LOS check, this can easily be implemented since the pathfinder (Chapter 6)
has already implemented the Bresenham line drawing algorithm and used it to
traverse the collision map for obstacles. This code can be directly reused to find
obstacles to LOS.

82

Chapter 9
Graphics

While graphical beauty is not one of the primary objectives of JWARS, the
rendering system is designed with some care for performance and practical us-
ability. The system relies on Java2D and the Swing framework, as these shall
prove reasonably efficient for our purposes, not to mention the convenience that
they are included with the Sun Java Runtime Environment.

There are numerous alternative graphics libraries which could likewise have
been used, ranging from the low-level OpenGL wrapper, JOGL[10], to scene-
graph implementations such as Java3D[11], Xith3D[12] and the game library
LWIGL[13]. In the following we shall discuss a number of rendering strate-
gies with the intent of applying them with AWT /Swing. However, importantly,
these terms do not apply only to this framework; they are general principles
used in rendering in many different contexts.

9.1 Active versus passive rendering

As mentioned in Section 1.1.2, the user interface of real-time strategy games
normally consists of a centered main display which displays the battlefield and
the animated action. Surrounding this display is typically an overview map and
a number of status panels which are not animated, or contain relatively little
graphically heavy content.

The main battlefield display will require continuous redrawing due to the
dynamical nature of its content, and the rendering operations are expected to be
complex and demanding for the computer. Widget toolkits such as AWT /Swing
are not designed for this kind of rendering, and it will be necessary to manage the
rendering manually: the main display will use active rendering, i.e. it will draw
directly to the screen when requested, and requests will be issued continuously.

Note that most real-time computer games issue such requests at the max-
imum possible frequency to ensure the best smoothness of animations. This
can be done from a rendering loop. We have decided to use a less aggressive
approach and render only once every time the logic is updated; this will occur

83

at a 50 Hz rate, which proves sufficiently smooth for a 2D game where most
entities move reasonably slowly. However in fast-paced 3D games this is barely
considered sufficient by skilled players'.

On the other hand, since the surrounding panels are not generally animated,
these components are ideally represented by Swing widgets using the normal
passive rendering, where repaints are scheduled as required and taken care of
when the computer “feels like it”. Since the panels are going to display data
which depends on the internal game state and contain buttons which might affect
that state, and since AWT /Swing applications run largely from a particular
thread, namely the so-called Event Dispatch Thread, it will be necessary either
to synchronize the interaction between the user interface and the model, or to
execute all relevant code in the Event Dispatch Thread. Therefore the entire
game logic runs from this thread, but this is of little importance to the remaining
parts of the program.

9.2 Double buffering

Double buffering refers to a technique which can be used to improve the per-
ceived performance of an application. A naive implementation of a rendering
loop would simply clear the rendering surface, then perform the drawing op-
erations and terminate. This will most likely cause the screen to flicker. The
explanation is that the drawing operations take so long time that the user no-
tices the screen being temporarily empty. Double buffering uses two drawing
surfaces: a on-screen buffer which is displayed, and an off-screen buffer which
resides somewhere in the computer (or hopefully the graphics adapter) memory.
A graphical update could consist of clearing the off-screen buffer and performing
all the rendering operations onto it. Then the off-screen buffer is drawn (or blit-
ted, a particular technique used for rendering images) onto the on-screen buffer,
making the changes visible in one sweep. The blitting can even be synchronized
with the refresh rate of the screen, though we shall not go into detail with this.

There are other techniques associated with double buffering, for example
page flipping which interchanges the off-screen and on-screen buffers simply by
switching a pointer. There are approaches that use even more buffers, although
this is hardly of interest here.

Swing applications are automatically double buffered. Only the main dis-
play, which is actively rendered (and which therefore does not use the Swing
repainting mechanisms) cannot automatically be double buffered. Implement-
ing proper double buffering would require the allocation of the aforementioned
buffers, preferably in video memory. Fortunately this is not necessary in our
particular case because AWT happens to provide a Canvas class which can have
its own BufferStrategy®. Double buffering is hence of little practical concern,

11t is commonly known that televisions use much lower framerates. Smoothness is in this
case achieved because the frames are blurred and perhaps interlaced.

2A Swing-competent reader might notice that the JFrame can likewise use such a
BufferStrategy. But doing so would affect the passively rendered panels in the GUI as

84

though it remains important to any rendering system.

9.3 Battlefield rendering and layers

As it has previously been explained, the primary display shows some subset of
the battlefield, the content of the wviewport, in high detail. There are several
types of graphics which are to be displayed here, and it will prove advantageous
to organize them in layers.

1. First, there is the ground terrain. As described in Section 4.3, the terrain
is represented by a tile map of terrain tiles, called the terrain map, and
each such tile is capable of drawing itself to the screen (provided an AWT
graphics context). Not all of the tiles need to be drawn see Section 9.4.

2. The next step is to draw all the ground units, e.g. tanks and infantry. Since
it is cumbersome to traverse all existing entities and determine whether
they are inside the view, the collision detector comes in handy: converting
the viewport bounds to collision grid coordinates allows the traversal of
only those collision tiles that overlap the viewport, and thus cleanly pro-
vides all the entities to be rendered. Each entity, being a so-called sprite?,
is responsible for painting itself given its screen coordinates.

3. Having painted the ground and the entities on the ground, the next level
is vegetation (which is presumed to be taller than those entities). Each
terrain tile is capable of drawing its vegetation to the screen, and this will
overlap any units present?.

4. When cannons are firing, there should be explosion animations to desig-
nate the locations of impact. These should be visible to the player (even if
physically situated below trees) since they provide valuable information.
There might be rockets or aeroplanes flying through the air. All these
things (although neither rockets or planes exist in JWARS yet) can all
be rendered together. While airborne projectiles should theoretically be
rendered ordered by their altitude, this would be troublesome, and even
when aeroplanes are implemented in JWARS, there will hardly be suffi-
ciently many of them so close together as to warrant such an ordering.

5. Finally it might be desirable to display information such as text in the
main display. When a unit is selected, a green line indicates its direction
of travel, whereas a red line indicates its target. These effects which are

well. Only the Canvas offers the desired control over the rendering process.

3Qprites are single, flat graphical components such as images or animations, several of which
can be drawn together in a context. In two dimensions it is difficult to create something which
is not a sprite. In three dimensional games, however, sprites can be used for e.g. smoke which
has no need for a 3D structure.

4When an entity stops moving it will be drawn on top of the trees. This makes sure that
the entity cannot go “missing” in the woods, which would be a serious moment of irritation
for the player. Interestingly, this feature was originally a glitch in the rendering routine.

85

not physical entities serve to enhance the ability of the player to control
the forces. Their purpose is to convey information to the player without
otherwise obstructing the battlefield view. We shall refer to this kind of
effects as the Head-up display or HUD. This type of display is commonly
used in military aeroplanes and computer games.

Some of these layers will mostly have stationary content, such as the ground and
trees, the display of which should be updated only when viewport is relocated.
Others will have dynamic content, such as explosions and moving entities. The
following section will provide a solution to rendering these layers efficiently
taking into account their differences.

9.4 Optimization of the rendering routine

Obviously, a battlefield display in which no movement occurs needs not expend
any resources rendering. However if a car is driving across the screen, the area
immediately around the car will need to be updated as it moves. The terrain
dirtification system is designed to take care of this, ensuring that minimal time
is used to needlessly render terrain.

Whenever an entity moves, the collision detector is responsible for traversing
the area and checking whether the entity collides with others. Suppose every
terrain tile in the terrain map can be in one of two states, either dirty or not.
The collision detector can then traverse the terrain tiles overlapped by the sprite
belonging to that entity, and set the state of these terrain tiles to dirty, signifying
that the tiles need to be redrawn. This will allow the painting routine to filter
out those tiles that are dirty and paint them, ignoring the rest. After having
been painted, the tiles are no longer considered dirty.

There is one problem with this approach: while it will accommodate the first
three layers, the dynamical content such as the HUD cannot be rendered in this
way, because the collision detector does not (and should not) know about this.
This will result in the terrain not being repainted while the HUD changes, thus
leaving graphical artifacts on the display.

Our solution is to render the first three layers onto a secondary off-screen
buffer (which needs only relatively little repainting work). The secondary off-
screen buffer is every frame then rendered onto the primary off-screen buffer
which we introduced in Section 9.2. Finally the remaining layers, which gener-
ally need complete repainting for every update, are rendered onto the primary
off-screen buffer, the content of which is finally blitted to the screen.

While the introduction of this extra step takes some time, it still yields much
better performance. Drawing an image (such as the secondary off-screen buffer
being drawn onto the primary one) is a very fast process, whereas the remaining
in-game graphics, involving rotations and possibly transparency, are much more
time consuming. Modern computers are capable of rendering images (without
e.g. rotation) hundreds, possibly thousands of times per second depending on
resolution, and normally this process takes place in the graphics adapter and
therefore requires no actual CPU activity.

86

Animations
and HUD

Terrain and unit
rendering code

1-3 Double buffering system

5-6

Secondary Primary
off-screen /4_\ off-screen 7 Screen
buffer buffer

Figure 9.1: The rendering routine. Different steps are indicated by
numbers. Steps 4 and 7 are very fast on modern computers and are not
likely to have significant impact on performance.

Finally, let us summarize the complete rendering routine.

1.

6.
7.

Render any dirty terrain within the viewport to the secondary off-screen
buffer.

. Render any dirty entities within the viewport to the secondary off-screen
buffer.

. Render the vegetation of any dirty terrain within the viewport to the
secondary off-screen buffer.

. Render the secondary off-screen buffer to the primary off-screen buffer.
. Render any animated effects onto the primary off-screen buffer.
Render the HUD onto the primary off-screen buffer.

Render the off-screen buffer onto the screen.

Figure 9.1 shows a visualization of these steps.

9.5 Conclusion

In this chapter we have derived a double buffered active rendering routine for
two-dimensional top-down view game graphics. The routine saves time by using
a third buffer to keep track of the areas on the screen in which no movement
occurs.

87

Chapter 10

Game 1mprovements

10.1 Future work

Here we will list areas designated for future improvements by the developers
and known bugs in the version of JWARS following this report. Here is a list of
features and areas planned by the developers

1. Terrain heights in the world. Hills should be implemented as fast as pos-
sible for tactical gameplay

2. Line-of-sight should form direct controls of forestation and other terrain
obstacles for tactical gameplay

3. Offboard artillery
4. Fix current onboard artillery to something usefull
5. Air bombardement and AA guns should be implented

6. Different formation patterns and GUI to support them instead of the
arrow formation

7. Moving formations would make all sub-formations move with the same
speed

8. Enable replays save all registrered orders in a list
9. Enable more terrain as sand, water and jungle
10. Night/Daylight combat mode

11. Better selection of targets by the Al

88

10.2 Known issues

This is a list of known bugs in the current implementation.

1. When ordering formations to move it is possible to cause an IndexOut0fBoundsException
by moving large formations near the maps edges — some units will get or-
ders outside the map. This can be corrected by translating off-board
locations to sensible locations in the relevant code, or by simply removing
units that leave the map. We consider this a bug in the code which uses
the collision detector, and not the collision detector itself.

2. When moving a unit away from a terrain object while within the same
collision tile the pathfinder thinks the terrain object lies in the path of the
unit and will return invalid move orders (no exceptions).

3. Units do not reset their targets properly when the targets move out of
vision range. The unit keeps firing at the now invisible target.

4. The pathfinder presently cannot use mobile entities as obstacles. A rudi-
mentary system which handles collisions between units on an Al level will
give move orders along with the pathfinder — conflict. This is solved by
expanding the pathfinder to work on moving entities so only one authority
is needed for moving units.

89

Chapter 11

Conclusion

The purpose of this project was to create a real-time strategy game which bor-
rowed elements from turn-based strategy games and implemented a realistic
military hierarchy allowing better control along with a level of AI group coor-
dination which is potentially unmatched among games of the genre. The hier-
archical structure has not been used before. The Al framework makes heavy
use of polymorphism and delegation to provide the possibility of dynamically
changing AT behaviour that can be made to adapt to changing tactical circum-
stances. The current implementations of Al are only rudimentary and do not
actually interact, but the framework ensures that relevant AI code is invoked
when appropriate.

The most important API packages that are necessary for such a game are
fully functioning except for minor bugs. The modules are designed specifically
for large game worlds and have proven efficient, even without extensive opti-
mizations, in handling hundreds of units engaged in battle at the same time
during network play. Collision detection and vision management use tiles to
localize entities and reduce algorithm complexity while retaining flexibility, al-
lowing units of arbitrary size. Special care is taken to allow programmers to
implement custom code for handling collisions and custom visibility checks while
the framework can invoke the provided code as required.

The pathfinder employs an approach specialized for large maps which gen-
erates a search tree dynamically, being particularly efficient in open areas. This
can reduce memory consumption and increase efficiency for large game worlds
compared to conventional approaches using inflexible high-resolution grids.

The combat system is highly generic, and while the present implementations
still need game balancing, the system uses particularly realistic armour and
weapon representations such as in many advanced turn-based wargames, thus
attempting to create a hybrid genre.

Most game data is loaded from external files using simple script-like syntax
which can be modified by people without knowing the source code. This model
is ideal for normal game development where coders and game designers work
separately.

90

A two-dimensional rendering system has been developed to efficiently man-
age tile-based maps by avoiding unnecessary repaints through the use of separate
off-screen buffers.

The networking code is based on a client/server architecture and requires
very small bandwidth. The game has been tested on Sun Solaris 10, Microsoft
Windows XP and Ubuntu Linux 6.06.

The goals defined for the project have thus been reached, except for a single
feature we have not had time to implement. JWARS regretfully lacks the notion
of terrain height.

91

Bibliography

[1] Sean Riley, Game Programming with Python (Charles River Media, 2004.
ISBN 1-58450-258-4)

[2] T.H. Cormen et al., Introduction to Algorithms, 2nd Edition (McGraw-Hill
Book Company, 2001. ISBN 0-262-03293-7)

[3] Antony Beevor, Stalingrad (Penguin Books, 1999. ISBN 0-14-024985-0)

[4] Senger u. Etterlin, Taschenbuch der Panzer 1943-1954 (J.F. Lehmanns
Verlag Miinchen, 1954.)

[5] Wikipedia entry on professional Starcraft competition.
http://en.wikipedia.org/wiki/StarCraft_professional_competition

[6] Steel Panthers: World at War by Matrix Games.
http://www.matrixgames.com/

[7] Wikipedia entry on shaped charge ammunition.
http://en.wikipedia.org/wiki/HEAT

[8] Wikipedia entry on explosive reactive armour.
http://en.wikipedia.org/wiki/Explosive_reactive_armour

[9] Wikipedia entry on the T-34 tank.
http://en.wikipedia.org/wiki/T-34

[10] JOGL - Java OpenGL bindings.
https://jogl.dev. java.net/

[11] Java3D, scenegraph based 3D APL
https://java3d.dev. java.net/

[12] Xith3D, scenegraph based 3D APL
http://xith.org/

[13] LWJGL, Light-Weight Java Game Library.
http://lwjgl.org/

92

Appendix A

(Game manual

Before running the JWARS program there are some requirements which must
be met by the computer. We haven'’t tested the application on slower computer
systems, but we know that the following requirements are sufficient.

- Java Runtime Environment 1.5.0

1200 MHz

At least 50 MB free RAM (incl. virtual machine)

One network port (7777 by default) must be available to run the program
in multiplayer

A.1 Running the program

To run the program you will ned the jwars.jar file which can be downloaded for
free at

http://www.student.dtu.dk/~s021864

This is the homepage of Ask Hjorth Larsen, one of the developers. The home-
page will have the newest stable version ready for download at all times.

Having a Java Runtime Environment installed, the game can be run by
doubleclicking on the .jar file in Microsoft Windows or by using a similar function
in other operating systems. Starting the program this way will run JWARS
with the default settings. By using a command prompt it is possible to run the
program using parameters which changes screen size, looks and other options
using the command

java -jar jwars.jar <parameters>

in the library containing the jwars.jar file. The parameter string consists of a
single dash followed by a number of letters. Here is the full list of available
parameters of the current version:

93

Jwars Launcher

Server Enter IP of server Game
Create Server 192, 168.0.42| | Exit
Copy IP to clipboard Join Game | Launch

Figure A.1: The JWARS launcher.

- 0 : Enable OpenGL pipeline. This greatly improves performance, but
does not work on all graphics adapters.

- f: Run in full-screen mode.

- h : Print this help and exit

- m : Use Motif look-and-feel

- n : Use native look-and-feel

- d : Draw debug collision grid

- a: Bad ATI driver mode (disable window decorations)

- v : Print version information and exit

For example, the command
java -jar jwars.jar -ofm

will run JWARS using the OpenGL pipeline in full-screen mode with the Motif
look-and-feel.

On starting the program the JWARS launcher will appear, see Figure A.1.
The launcher is a tool for setting up a game in multiplayer by either creating
a server or joining a server specifying an IP address. The default entry in the
IP field is localhost which will attempt to join a server created on the local
machine (this is useful for testing network support when only having access to
one computer). In order to join games over the internet simply enter the IP
address of the creator in the IP field and push join. If succesfull you will join
the game at the wanted ip address if not an error message will be displayed. It
is not possible to connect to a server who runs another version of JWARS.

If a new game is wanted simply press ‘Create Server’. Creating a server will
expand the JWARS Launcher to a lobby where all currently connected players
will be displayed. The lobby can be used for exchanging messages in order to
set up teams or to simple correspondance, see Figure A.2.

In the lobby all connected players will be listed in the left side. The game
supports any number of players but only two teams. A player can select his
team by left-clicking on his name. By doing this the team will change to the
opposite flag. When joining the default name will be Manstein and team will be

94

[] JWars Launcher —|ax

Server Enter IP of server Game
Server Created Exit
Copy IP to clipboard | Client spawned | Launch
Players Correspondence
EManstein Welcome to Jwars alpha 2 build 3. Use the Text

Pnknccnncuuﬁ field helow To Type messages.
<Manstein> Hallo, Welt!
<POKOCCOBCKHMA> ZORABCTEYH, MUp!

1]

Figure A.2: The game lobby. Manstein and Rokossovsky are chatting
before a friendly game of JWARS.

Germanny. The name can be changed by right clicking on a players own name
- in this case a text box will pop up and ask for the new name.

The game creator can start the game at anytime by pushing the Launch
button. When launching the launcher itself will close and the game GUI will be
opened in a window.

A.2 In-game control

Now we will describe the JWARS GUI and how to use it. First we will focus
on the different panels and how to use them for getting information and then
how to manage the units under your control. Most of the players interaction
will done by the mouse. The keyboard offers certain actions but JWARS can be
played without using the keyboard.

A.2.1 Using the panels

When the game is running the GUI will offer the player all necessary tools for
gathering information and controlling the units, see Figure A.3. In order to
get an overview of the current positions and forces, look at the minimap placed
in the bottom left corner of the screen. To manoeuver around on the minimap
simply left click somewhere on it and the focus will move to that location. Using
the mouse on the minimap to move the main screen in the game is an efficient
way to cycle around the battlefield.

Holding down an arrow key will make the main view scroll in the arrow key’s
direction. The minimap will show all known unit location in color code (red for
russian army and blue for german army). Forests are dark green. The enemy is

95

JWars alpha 3 Build 3

Figure A.3: The battle is raging between the Russian and German
forces.

most likely not visible from your start location, so there should be only either
red or blue forces visible presently.

The lower right corner contains a command line. Messages typed here will
be sent to all players in the game, unless they start with a slash character, in
which case they will be interpreted as commands. Here is a list of the usable
commands.

e /commands : Writes a list of different commands for the command line.

e /time : Prints the current time.

e /countunits : Prints the total number of selected units or, if no units are
selected, prints the total number of units in the current game.

e /lateness : Prints the number of milliseconds which the game is currently
behind schedule (under normal circumstances this should be no greater
than 20).

e /exit or /quit : Quits JWARS

e /clear : Clears all text from the console

96

The upper left panel contains the ORBAT, or order of battle, which is a list
of the available units on each team. Click on a particular unit in the tree to
select it. The tree view will automatically expand nodes to provide information
about the selection. Units that are killed will have their names written in red.

Clicking on the ‘Score’ tab will show the current force strengths and casual-
ties in terms of vehicles and infantry.

The bottom middle panel contains information about the currently selected
unit, or is empty if no unit is selected.

If the selected unit is a formation, this panel will list its sub-units. If the
selected unit is a single entity it will list the weapons of that entity. Clicking on
a weapon in the list will write the weapon data to the console. If the selected
unit is an infantry squad, this panel will also show the number of men. If it is a
tank it will also show the armour thickness and angles on different parts of the
tank.

A.2.2 Marking and moving units

When a player wishes to move units the relevant unit must be selected first.
There are several different ways of selecting units where each can fulfill a certain
need for a situation.

The simplest way to select an unit is by left-clicking with the mouse on it
in the main display. In doing this the unit under the cursor will be selected as
the only unit. Double clicking on the unit will select that unit’s superformation,
i.e. its platoon. Triple clicking will select its company, and quadruple-clicking
selects the entire battalion. It is not possible to select formations larger than a
battalion.

There are several ways to select the super-formation of a unit besides clicking
multiple times on a unit. While having a unit selected, rolling the mouse scroll
wheel upwards will successively select larger super-formations.

Pushing the backspace button has the same effect as mouse wheel up. Each
additional order to mark the superior formation will move the selection one step
up the chain of command. This is an unique selection command for JWARS
provided by the special unit tree. This brings to the next speciel entry in
JWARS.

On the left side of the screen is the unit tree. The panel is a tree view of the
formation structure which can be expanded and minimized to provide detail or
overview. Clicking an entry in the unit tree will also select that formation or
unit and center the view on it.

When having selected the wanted formation or unit simply right click on
either the minimap or in the main panel. This will make all the selected units
move to the selected spot in formation, i.e. not all standing on the same spot.
As units move across the map they may eventually spot enemy units and will
open fire on the enemy if possible. This might result in units dying, being
removed from the game, possibly in a big explosion. Units that are destroyed
can no longer be seen or controlled.

The game does not presently end even if a force is decimated.

97

]Wars aipi‘la 3 build 3

o= [] Panzer co
o= [Heawytank co
o= [5tG co
¢ [5oviet Union
¢ [Battallion
& [JsMG co
o [Rifle co
o= [Rifle co
o= [Rifle co
o= [Heawstank to
o= [Tank destroyer
o= [Tank co
o= [Tank co
% [Bantallion
o= [3MG co
% [Rifle co
e I Rifle pit
o= Rifle pit
o= [Rifle plt
o= [Rifle plt
o= [Rifle co
o= [Rifle co

Rifle co
Rifle plt
Rifle plt
Rifle plt
Rifle plt

Figure A.4: A green circle around units is a notification about the
players current selection of troops. When troops are selected their des-
tination coordinates become green lines on the ground to illustrate their
current heading.

98

You can order the selected units to fire manually at a location by holding
shift and pressing the left mouse button on the desired location.

If any questions arise when playing, feel free to email either of the developers
on emails asklarsen@gmail.com or michael_francker@hotmail.com. Ques-
tions will either be answered directly or by reference to this paper which page
and line number.

99

Appendix B

Development plan

During the time developing this project we have had numerous versions of the
game. We have used these earlier versions for creating a development plan which
demonstrates the different stages the game has been through. In doing this we
have created a development timeline. Before the project started we had a list
of features we wished to implement in JWARS and in the end of this section we
will evaluate this list to the final product.

In this section we will take the most important aspects of each stage of the
project, and supply them with an identifier, marking the element’s status at
that stage of development: “—” denotes the element as unfinished and requires
more work, “4+” means that the element is in an acceptable state for delivering
but further development is open and “v” implies that this part of the program
is as finished as it will ever be.

The focus in the first stage of development was having a world in which to
play and test JWARS. One of the important features was being able to play
the game online so a server/client model had to be running. This is because
we expected synchronization to be difficult and wanted it to work from the
beginning. Having an early version of the network it would also be possible to
adjust the model to later needs. Another important aspect of the game to have
in a useful state early on is the GUI. No final GUI model or look was chosen at
that time but we still needed it to test the network and world code.

Simple working GUI ready for extension
— A unit representation

— Element of control — mouse listener

Networking code, Server/Client relationship inc. Timer
+ World buildup Coordinate systems and tile maps

+ Command line/Chat panel used for debugging

100

When the elements above where working in union we had a base to build on
and could now extend the individual parts of the implementation.

The second stage of development centered around building frameworks. Dur-
ing this time some needs became obvious for further development and key areas
were created. Especially the collision detector took time during this stage.

— Moveable/Formation/Unit framework

— Basic Al framework

Terrain dirtyfication framework
v' Event handling framework
v Collision detector

As the game began to take shape updates on certain areas was needed. While
still extending the game engine the game content began reaching a satisfactory
level.

+ Extended Al framework Interface set

AT implementation of low level collision handling
Networking improvements (client /server event handlers)
Better support for multiple unit types data managament

Support terrain implementation — forestation and objects

NN NN

Terrain generator — Height generator tool
v" Rendering mechanism improvements - secondary buffer

At this stage the game was playable and had fulfilled the minimum requirements
stated before the project was started. With multiple types units and an actual
terrain to play on, the game looked nice and simple (with room for improve-
ments). At this time we were nearing the date of delivery and the remaining
important game features would have to be implemented. The features imple-
mented during the last and fourth stage are important for any RTS game, and
we focused on finishing these particular features instead of expending time on
e.g. game content which is less critical.

+ Combat dynamics

+ Final GUI layout

v Fancy graphics (explosions)
v' Pathfinder

During the fourth stage we managed to include most of the wanted features
for JWARS. There is one feature we hoped for which did not get to implement,
and that was the concept of terrain height.

101

