
JWars - A Generi Strategy Game inJavaMidterm projet � Informatis and Mathematial ModellingAuthors:Mihael Franker Christensen, s031756Ask Hjorth Larsen, s021864Supervisor:Paul FisherAugust 8, 2006

DTU - Tehnial University of DenmarkLyngby

Front page: Soviet T-34 tanks supported by infantry advaning aross the Rus-sian steppes

AbstratThis projet douments the development of the real-time strategy game JWarswhih uses a unique hierarhial fore struture to improve the player's abil-ity to ontrol large fores, plus provides a basis for advaned AI interationsbetween units. The game, whih is written in Java, inludes several API pak-ages providing ollision detetion, path�nding, networking and numerous minoromponents. These are designed spei�ally for handling large, sparse gameworlds and are partiularly suited for modelling realisti environments. The re-port disusses eah of the orresponding problems in detail, fousing on analysisand design while demanding little spei� knowledge of the Java programminglanguage.The game aims to inorporate the tatially advaned gameplay of turn-based tatial wargames into a lassial real-time setting. The game in itspresent state demonstrates the appliability of the underlying framework, whihprovides all the basi funtionality required by the genre. Development is ex-peted to ontinue, adding further game ontent and omplexity.

Contents
Abstrat iContents iiList of �gures . vList of tables . viiiPrefae 11 Introdution 21.1 Introdution to the genre . 21.1.1 Bakground . 21.1.2 RTS ombat and ontrol 41.2 Why JWars? . 71.2.1 Flaws in ontemporary real-time games 71.2.2 Military hierarhy . 81.3 Overview . 81.3.1 Features of JWars . 91.3.2 The JWars API modules 91.3.3 Produt requirements . 101.4 Reading this report . 112 Arhiteture 122.1 Connetion and initialization . 122.1.1 Loading game data . 132.1.2 Launhing the game . 132.2 Flow of ontrol . 142.2.1 Synhronization . 142.2.2 Deterministi behaviour 152.2.3 Player input and network instrutions 162.2.4 AI, orders and their exeution 162.2.5 Conlusion . 17ii

3 Networking 193.1 Choosing a network model . 193.2 Synhronization . 203.2.1 Interativity: network instrutions 203.2.2 Synhronization instrutions 213.2.3 Conlusion . 213.3 The networking API . 223.3.1 Implementation notes . 233.3.2 Random numbers and deterministi ode 244 World of JWars 254.1 Flow of ontrol and timing . 254.1.1 Game loop vs. timer . 254.1.2 The game timer . 264.1.3 Game performane disussion 274.1.4 Interpolation during rendering 274.2 Coordinate spaes . 274.2.1 Coordinate data representation 284.2.2 Important oordinate systems 304.3 Terrain . 304.3.1 Terrain in games . 314.3.2 Map design . 314.3.3 Random terrain generator 324.3.4 Terrain objets . 354.3.5 Terrain appereane . 364.4 Event handling . 374.4.1 Types of events . 384.4.2 Performane onsiderations 384.4.3 Queueing system . 385 Collision detetion 405.1 Basis of ollision detetion . 405.1.1 Divide and onquer approah 405.1.2 Tile registration strategy 415.1.3 Shapes and sizes of olliding entities 425.2 Design of the ollision detetor 435.2.1 The heking routine . 435.2.2 The ollision grid . 445.2.3 Further features . 445.2.4 E�ieny and optimization 455.2.5 Using the ollision detetor 455.3 Conlusion . 46iii

6 Path�nding 476.1 Path�nding in general and in JWars 476.1.1 The algorithm . 486.1.2 Data struture . 506.2 Implementation . 516.2.1 Expanding and searhing 516.3 Final design . 557 Dynamial game objets 587.1 Unit organization . 587.1.1 Real-world military organization 587.1.2 Military ommand in omputer games 597.1.3 Tree-based unit representation 607.1.4 Network distinguishability of units 617.2 Game data management . 617.2.1 Inheritane versus data-based game objet lassi�ation . 627.2.2 Category model . 627.2.3 Content loading by ategories 647.2.4 Conlusion . 657.3 Unit AI . 657.3.1 Hierarhial struture . 657.3.2 Design onsiderations . 687.3.3 AI layering struture . 697.3.4 Future AI work . 698 Combat dynamis 718.1 Firing and damage . 718.1.1 Combat rule set . 728.1.2 �Weapon vs. armour�, or �armour vs. weapon�? 738.1.3 Struture of the weapons API 748.1.4 Firing routine . 758.1.5 Impat handling by armour 758.1.6 Conlusion . 768.2 Vision . 768.2.1 Vision in games . 778.2.2 Approah 1: diret observer-observer heking 788.2.3 Approah 2: observer-terrain heking 798.2.4 The spotting routine . 798.2.5 Final design . 818.2.6 Evaluation and disussion 829 Graphis 839.1 Ative versus passive rendering 839.2 Double bu�ering . 849.3 Battle�eld rendering and layers 859.4 Optimization of the rendering routine 86iv

9.5 Conlusion . 8710 Game improvements 8810.1 Future work . 8810.2 Known issues . 8911 Conlusion 90Referenes 92Appendix 92A Game manual 93A.1 Running the program . 93A.2 In-game ontrol . 95A.2.1 Using the panels . 95A.2.2 Marking and moving units 97B Development plan 100

v

List of Figures1.1 Sreenshot from Starraft. The voraious Zerg swarm is overrun-ning a Terran settlement. 62.1 Flowhart illustrating the proess of exeuting an instrution is-sued by a player. The player performs an ation whih results inthe networking ode writing the appropriate instrution identi-�er and data aross the network (dashed line). The server addsa time stamp to the instrution and ehoes it (seond dashedline) to all lients, at whih point the instrution is sheduled forexeution at the spei�ed time. 172.2 Shemati overview of the �ow of ontrol. Blak arrowheads de-note that one module a�ets the state of another atively, whereaswhite arrowheads denote a �ow of information from one ompo-nent to another (requested by the omponent towards whih thearrow points). New information enters the system only via net-working. The �ow of information from the world to the renderingode enompasses all unit positions, in reality this is availablethrough the ollision detetor. Not inluded on the graph: �ringan lead to elimination of units whih in turn removes them fromthe ollision detetor and results in the invoation of relevant AImethods. 184.1 Two oordinate systems. Axes are similar to those normally usedwith sreen oordinates. The blak × in the left system is trans-formed to the × in the right system, but the inverse transfor-mation yields the grey × in the left system beause of integerdivision. 294.2 The mid-line displaement used on a one-dimensional map 334.3 The diamond square algorithm running on a 5x5 grid until termi-nation. If the grid were larger, the �rst steps would be idential,but the algorithm would ontinue by halving the step size andperforming the same operation over and over. 344.4 This is a 3D model of a diamond-square algorithm running on aNxN map. It learly illustrates how jagged maps ome to lookmore natural. 34vi

4.5 These are two maps randomly generated by the terrain generator.It is not immediately notiable but both maps are periodi, i.e.their edges wrap. 354.6 Terrain graphis. Though the terrain onsists of tiles, 32 pixels oneah side, this is not learly visible due to the amount of varyingtile images. Some trees are visible in the right side of the piture. 375.1 The ollision grid visualized. The number of units registered ineah tile is listed inside the tile. This is an in-game sreenshot;the debug grid an be enabled by passing -d as a runtime parameter. 426.1 A simple path�nding problem. 496.2 A single iteration in the loop of the path�nder. The expandfuntion alls it self repeatedly so all needed nodes are found. . . 546.3 The illustration shows the path�nder traking around the largeobjet on its way to the target zone. The fastest route however isto ignore the large objets and go straight for the smaller building,around, and then for the goal. 567.1 Example of a unit tree. Only the nodes with downward pointingarrowheads are expanded. This is part of a sreenshot from JWars. 607.2 Di�erent unit lasses by inheritane hierarhy. 637.3 Parallel inheritane hierarhy of unit lasses in JWars and at-egory lasses. The fully inked arrows denote inheritane rela-tionship, while the dashed lines denote orrespondene betweena lass of unit and a lass of ategory. 647.4 Categories. The ontinuous boxes indiate ategory lasses whereasthe dotted boxes list examples of atual ategory objets of theorresponding lass. Arrows indiate inheritane. 658.1 Soviet T-34 tank with wire mesh for protetion against the Panz-erfaust anti-tank weapon.[9℄ . 748.2 Armour statistis for a T-34 tank. This is part of a sreenshotfrom the game. 768.3 Side hit or front hit? The projetion S of the tank side on thenormal of the impat diretion is about equal in length to theprojetion F of the front, so the probability of hitting the side isabout 50 %. 778.4 The spotting routine. The urrent observer is surrounded bya dashed irle, the radius of whih is equal to the maximumvision range. The algorithm will traverse the four tiles that over-lap the irle and expend no time heking the rest of the map.These four tiles ontain eight observers aside from the urrentone, four of whih are outside the vision range. The remainingfour observers (exluding the urrent one) that are inside thevision range are subjeted to an atual observer-observer hek. . 80vii

9.1 The rendering routine. Di�erent steps are indiated by numbers.Steps 4 and 7 are very fast on modern omputers and are notlikely to have signi�ant impat on performane. 87A.1 The JWars launher. 94A.2 The game lobby. Manstein and Rokossovsky are hatting beforea friendly game of JWars. 95A.3 The battle is raging between the Russian and German fores. . . 96A.4 A green irle around units is a noti�ation about the playersurrent seletion of troops. When troops are seleted their desti-nation oordinates beome green lines on the ground to illustratetheir urrent heading. 98

viii

List of Tables7.1 The data�le entry de�ning the weapon ategory orrespondingto a German 75mm Kampfwagenkanone (tank gun). The rightolumn ontains the atual lines in the data�le, while the left ol-umn is only for desription. The �repower data omprises ammotype (armour piering), armour penetration (in millimetres) and�kill index� (e�etiveness against infantry). 667.2 Data�le entry de�ning the German Panzer IV tank. The entriesin the weapon list are identi�ers of weapons. Notie the identi�erof the tank gun from Table 7.1. The other guns and the hulland turret types are also identi�ers of ategories. These inlude�lenames of images whih are used to display the omponents. . 668.1 Equivalent terms of ollision detetion and observation handling. 81

ix

x

PrefaeDuring the development of JWarsmany friends have taken the time and troubleto test the ode on many di�erent platforms and hardware. This help has beenof immense value to us, partiularly for testing the graphial performane usingdi�erent drivers and graphis adaptors, not to mention the performane of thenetworking ode under less-than-optimal (non-LAN) onditions. In partiularwe would like to thank Dennis Dupont Hansen, Kasper Rek, Peder Skafte-Pedersen and Kenneth Nielsen.Finally we are very grateful for the help and patiene of our supervisorPaul Fisher with whom we have had numerous tehnial disussions about thevarious software omponents.

1

Chapter 1Introdution1.1 Introdution to the genreThis setion is meant as an introdution to the real-time strategy (from nowon also known as RTS) genre. This setion should be seen as history of thegenre as well as a opportunity to understand the general game struture andthe more advaned onepts in the genre. First we will de�ne the RTS genreand then a quik walkthrough around it's history. In the end we will pointout the importent features implemented in RTS games over the years. Thesefeatures will be importent for our projet sine our goal is to develop a gamewhih engine live up to the time's standard.1.1.1 BakgroundJWars in its present form is in the most tehnial sense of the words a real-time tatial game. The term strategy applies to large sales of operationswhere logistis and supplies beome headahes. JWars models ombat at thebattalion level while exluding base building and resoure gathering whih areotherwise normal features in RTS games, and is by some de�nitions thereforemerely a tatial game. Even so, the sale of operations is ironially larger thanin most real-time strategy games, and we shall therefore amidst the ontroversyof genre de�nitions take the liberty of ategorizing JWars as an RTS.The RTS genre ame about in the 80's, but was only fully developed andformally seen as a single unique genre 10 years later with titles as Westwood'sDune II and Blizzard's Warraft and Warraft II. For the asual gamer an RTSgame an be reognized by some simple properties whih have grown to distintthe genre:1. War planning is essential � strategy2. The player has no `Next turn' button, but instead time progresses ontin-uously � real-time 2

Other typial properties:1. Resoure gathering and management2. Base building and army prodution. The army onsists of units, ontrol-lable entities whih an �ght.3. The player has diret ontrol of his units/buildings4. The player must defeat the opponent(s) in battleThe RTS genre was developed from the turn-based strategy games genre. Oneof the �rst RTS games, perhaps the most de�ning game for the genre, is DuneII whose developers were inspired by Sid Meier's Sim City. It should be notedthat while Sim City di�ers from the standard RTS game, it is also reognized asa RTS game where the opponent is the game environment itself, and not an AIor another human player. As suh, many diversities have risen in the RTS genreas game developers beome more inventive. Today RTS games are in generalbuilt on a player vs player environment yet providing single player ampaignsonsisting of pre-de�ned senarios where the player �ghts the omputer.Most strategy games require the player to understand basi military on-epts and most often a paper-rok-sissor approah on unit ombat. A unitan defeat some opposing units, while it in turn will be defeated by a suitableopponent unit. Often this is ombined with gradual unit improvements by de-velopment in the player's armoury for the ost of resoures and time. Resouresare mentioned as a basi onept in RTS games sine eonomy leads to morehigher military power whih in turn leads to higher resoure inome either byonquering land or holding strategi resoure areas. This has been the basiapproah to strategy games, gather resoures, build up military fores, gathermore resoures or fousing on utting o� the opponent's supplies and destroyingenemy resoure areas. In this oktail of hoies for the player omes the tati-al manoeuvres and strutural plaements if possible. Most games today try toinorporate terrain as a fator in the games and many aspets of real warfarehas ome in to play like high ground, bottlenek manoeuvres, entrenhment andso on. As the omputer game industry grows, so does the amount of time andmoney spent on developing new features in strategy games. Many of the moresuesful games found a �rm middleground in supporting a lot of features butnot making the game dependent on these. This will allow more simple usersapable of enjoying the game in a relaxed playstyle while the hardore gamersan dive into miromanagement1 of troops, exploitation of game engines et.The average RTS game normally uses the single player ampaigns as a linearstory introduing sequentially more advaned units/onepts along the story.Often a ampaign starts with the player only ontrolling few simple units withfew degrees of freedom for the player as the mission is laid out. As the player1Miromanagement refers to the player ordering eah spei� unit around to optimizetheir performane - as opposed to maromanagement whih involves larger troop movement,maintaining prodution and similar issues. 3

ompletes missions more units and buildings or onepts will beome available -in this way a new bought produt will introdue units slowly and let the playerfamiliarize himself with the game features in turn, thus not making the gameseem too ompliated. In the JWars projet however we will not be inludingsingle player missions as we would rather spend time developing the engine thansetting up spei� senarios.In the last ouple of years RTS games have been improving greatly in onespei� area - graphis. Most of the popular older games relied on 2D graphiswhile the 3D environments in �rst-person-shooters blossomed. Not until Bliz-zard's release of Warraft III: The Frozen Throne did it beome a standardto use 3D engines in RTS games, though earlier games using 3D graphis hadbeen around for a while without onquering large market shares. Graphis in-�uened some games' popularity, though most is based on gameplay and theuniverse in whih the game takes plae. Almost all newer titles use a 3D enginewith hangeable view angles and zoom funtion, in this projet however we relyon 2D graphis and fous on gameplay and the gameengine itself. This is notpurely something we do to save time: 3D environments an beome onfusing,meaning the player's ability to ontrol his fores su�ers.1.1.2 RTS ombat and ontrolRTS games fous on large sale ombat. All ations made by a player areprimarily made with the thought of inreasing his fore strength. With this inmind an example of unit balaning and a brief explanation of a GUI will opensome doors for the inexperiened players.In RTS games the player should be able to hoose between a wide seletionof possibilities for ombining his fores. This is where unit balane and thestrategy idealism reates synergy and reates the dynami atmosphere in whihthe genre unfolds its true gameplay. The term unit balane is used to determinean ordering of how units ompare against eah other in ombat.In this instane we generalize the onept for better understanding. If wereate an example with 3 di�erent units being measured against eah, other forinstane an aeroplane, a tank and an anti-airraft gun (AA gun), logi wouldreate simple rules for this setup:- Plane beats tank- Tank beats AA gun- AA gun beats planeWe ould attah a fore ratio on eah instane if we wanted to use a measure-ment of how many of one type it would take to defeat the other type. Thislooks like a standard rok-paper-sissors setup and a player would never beable to selet a single strategy and be sure to win. By expanding this theoryinto ontaining more di�erent units with strengths and weaknesses the tatialgameplay is ensured in the game as the players will need to take steps oun-tering eah other throughout the game. Normally a player an hoose between4

wide varieties of units to ounter out the opponents units. This would normallyreate a stalemate for two armies �ghting. If however the one side has aessto a unit whih ounters most or all of the opponents units this would destroythe balane of power, thus making the unit too e�etive. By reating a unitwhih is overpowered in this way players ould ensure a higher hane of vitorythan normal by using this unit extensively. When games ontains suh units itbeomes unbalaned and require unit balaning. The unit balane an be om-promised by several fators as eah attribute needs to be balaned out againstother units i.e. the more omplex the game the harder to balane.The real idea behind unit balaning is not to have a units strength on a linearmodel, but let attributes like speed, length and auray reate units suited forspeial situations.Unit balaning is one of the greatest hallenges for developers and is often anongoing proess even after release. Games today whih base their playerbase onan online environment have the ability to release updates when needed. Mostlythe developers will release a game whih is unbalaned unintendedly, and onlythe testing done by players when playing the game will �nd the issues whihneed attention. Some developers has adopted the theory that there is no testinglike releasing the game to a massive audiene.Next we will introdue one of the most lassi games in the genre as anexample of how a game GUI ould be reated. The example we have hosenis Blizzard Entertainment's Starraft inluding the expansion pak - Starraft:Brood War. This game has been hosen beause it is a well-known2 and typialexample within the genre, and beause both authors of this paper are pro�ientin this game.Most RTS games have extremely similar user interfaes. Several designs withunique abilities and setups have ome up but invariably ontain the two mostommon omponents � a main display or fous panel whih fouses on a limitedpart of the battle�eld and displays nie and detailed graphis of the ation,and a smaller minimap whih shows the entire map but only onveys littleinformation. Add to this any number of status- or ontrol panels. These are alltools for the player to enhane his ontrol and provide important information.Figure 1.1 shows a sreenshot from Starraft. As usual, the GUI is split intodi�erent omponents, eah providing the player with information and options.Covering most of the sreen is the fous panel.The player an selet units displayed here by dragging a box around themusing the mouse. The player an now give orders to this seletion. The exat wayto give orders di�ers between games. In starraft, right-liking on the ground,for example, will ause the urrently seleted units to walk to the spei�edloation.The minimap is loated on the bottom left orner3. The minimap serves as2Starraft is for example extremely popular in South Korea, where publi ompetitions areregularly televised and famous players are sponsored.[5℄3The bright dots on in the minimap is the players base while most of the map is unexplored� blak. Notie the retangle on the minimap showing where the fous panel is entered.Another detail is the large retangle in the minimap whih indiates that the minimap doesn't5

Figure 1.1: Sreenshot from Starraft. The voraious Zerg swarm isoverrunning a Terran settlement.a primary overview for the player to swith his fous on the battle�eld. Theminimap usually shows the player's own fores in green and opponents foresin red. In this way an enemy massing fores or approahing your territory willresult in red markers on the minimap. The minimap will never be the player'smain soure for information as the information it provides is always sparse andan even be misleading.The lower middle panel provides information about the urrently seletedobjets on the battle�eld. When a player has his fous on a spei� unit orobjet all relevant information onerning the objet will be displayed here. Thisis the most diret information the player an get from the game as it will oftendisplay a single unit's statistis like �repower, range, speed and health status.In the referred sreenshot a bunker is seleted showing its urrent health statusand an amount of marines oupying it.Finally, the lower right panel ontains ontrols that are available for theurrent unit seletion. Sine the urrent seletion is a bunker, whih is immobile,it only has one ontrol button (though it normally has more): pressing it willause the marines inside to leave.The user interfae in Starraft is a standard example for the genre. Thesimple GUI handles most situations very well and this setup is used by mostRTS games today. Most new players to an RTS game have a tendeny to usethe fous panel as the only soure for information while wathing the minimapis in reality extremely important, for example allowing the player to spot enemyattaks earlier.streth to �ll the entire panel as it does in newer releases.6

1.2 Why JWars?This setion introdues JWars and why the authors believe this is worthy of aprojet. First we shall onsider some �aws or features absent from ontemporarygames, then we shall see how these might be remedied.We have hosen this projet with a partiular purpose in mind � to reate agame whih ombines the realisti tatial elements of turn-based tatial gamesand the fast pae of real-time strategy games. Where the turn-based gamesnever stress the opponent and give him arbitrarily long time to make a deision,they rely on realisti features and ompliated ombat systems. These elementshave not been seen in any mainstream real-time games yet, as RTS game enginesrely on faster paed gameplay on smaller maps thus exluding realisti distanesand other game ontent. This onept in itself is not exatly new, but shortlyin Setion 1.2.2 it will beome lear what separates JWars from the hithertoexisting games.In developing JWars we want �rst prove that the ombination of the gametypes is not unrealisti. This is done by developing the neessary API pakagesthat are supposed to allow other developers to ontinue our work, sine we willsurely not be able to �nish an entire game of ommerial quality ourselves withinthe time limit of this projet.1.2.1 Flaws in ontemporary real-time gamesThere are some areas in whih the real-time strategy genre has not evolved muhover the years. Some of these are:
• Individual units typially behave unintelligently unless the player takesare to ontrol eah (or very small groups) of them personally. For exam-ple, if an enemy approahes a group of friendly units then half the groupmight attak and be lured into an ambush whereas the other half staysidle. Also it is frequently observed that anti-tank weaponry will be au-tomatially direted at infantry even though enemy armour is nearby aswell.
• As the game progresses, omplexity grows greatly as units are produed,and the player annot hope to ontrol fores with suh attention to detail.This diretly bene�ts the player who is quikest with a mouse or keyboard,and not the player with superior strategi ability. Control, rather thanstrategy, thus beomes the primary point of onern during gameplay.
• While not neessarily a drawbak, most games use hit points (this is dis-ussed in Setion 8.1) to represent a unit's health. When damaged, somehit points are deduted until the hit point ount reahes 0 at whih pointthe unit in question dies. Thus most games are deterministi in nature,or ontain only negligible random fators in ombat.7

1.2.2 Military hierarhyMany of the drawbaks pointed out above an be eliminated by introduing atree-based means of ontrolling units. Suh a system is in reality a requirement ofany working military as we an learly see in the world today, and it is therforeurious that no attempt has yet been done to inorporate suh a system inreal-time strategy games.Aside from easing the ontrol of large fores for the player, it is possible toprovide better AI support using this system. By using a tree hierarhy in thegame, a simple AI an be assigned to every military formation �leader�, suh thatthis AI is responsible for ontrolling the immediate subordinate formations. The�at unit struture in most real-time strategy games allows for little organizedinteration through unit AI, but by expliitly embraing a military struture,multiple platoons and ompanies an work together, ontrolled by automatedommanders.The AI-spei� possibilities implied by this system are almost endless, yetbearing in mind the time neessary to develop suh a system we an hardlyhope to ahieve any impressive results in this �eld sine the entire game has tobe built from srath. What we an do, however, is to provide API omponentsthat demonstrate the appliability of this model, and therefore opens the wayfor future development of the AI.The inreased ontrollability obtained by using a tree-based hierarhy al-lows players to ontrol nearly arbitrarily large fores. Consequently it an beexpeted that fous on tatis will beome relatively more important.1.3 OverviewThe software presented in this report an roughly be diveded in two setions: theJWars game (or just JWars) and the JWars API, or appliation programminginterfae, whih are both written in the Java programming language. The gameis in reality a thin shell of speialized ode � omprising user interfae andontrol � plus the game ontent, whih works on top of the API pakages thatare responsible for handling more omplex problems.The JWars API onsists of several modules whih an be used separatelyor with a minimum of ross-pakage dependenies. The following hapters willdesribe eah of these modules in turn, but in order to ahieve an overview, weshall list the main modules brie�y below. Chapter 2 is devoted to desribingtheir high-level interation in the game. The important API modules are largelyfeature omplete.The game itself represents a genuine e�ort of reating a quality piee ofsoftware and does not only serve as a means of demonstrating and testing thepakages. However game development is time onsuming and normally involvesmuh larger teams of programmers and designers. Therefore in its present statethe game, while fully playable, inludes only the most important features, andhas not yet been balaned for �serious� play. Most of the required work on the8

game is of relatively trivial nature and does not hold any tehnial problemsworth mentioning.1.3.1 Features of JWarsThe game is a fully playable two-dimensional top-down view real-time strategygame. The game takes plae on the eastern front in World War II, and theavailable weapons orrespond roughly to the situation in the fall of 1943, at theBattle of Kursk. Many ideas are borrowed from advaned turn-based tatialgames whih are not normally seen in real-time games, making it unique anddi�erent from ontemporary games. Features inlude:
• Two teams: the German Wehrmaht and the Soviet Red Army. Eah sidepossesses roughly two battalions worth of tanks and infantry.
• Supports multiplayer over LAN or the internet. Opposing players areexpeted to ontrol the two fores. Additionally, several players an shareontrol of eah fore simultaneously for ooperative play.
• Opposing fores automatially �re at eah other. Combat dynamis arehighly realisti, using e.g. real-world tank armour tables.
• Expliit military hierarhy allows e�ient ontrol of large military forma-tions.
• A large game world allows players time to fous on tatis.
• Beautiful (but simple) randomly generated graphis.1.3.2 The JWars API modulesThis is an overview of the generi software omponents that an be reused inother games.
• World representation. JWars uses a number of abstrat 2D oordinatespaes and provides utilities for onversions between these. Spei�allymany tile-based maps are required by the di�erent omponents of JWars.
• Collision detetion. The saleable tile-based ollision detetor is apableof deteting ollisions between irular objets of arbitrary size.
• Path�nding. The path�nder implements an A* algorithm whih dynami-ally expands and updates the searh area aording to requirements. Thisapproah aomodates obstales of arbitrary size and plaement, and a-omodates large maps without exessive memory footprint.
• Spotting system. The spotting system uses a tile-based approah whih ispartiularly e�ient if the map is large ompared to the visibility radius.9

• Arti�ial intelligene. Every unit and every formation has an AI whihis responsible for interpreting and arrying out orders. The present AIimplementations are still very simple, but the framework is designed withextensibility in mind.
• Event handling model. A queueing system provides e�ient managementof timed exeution of game events avoiding unneessary ountdown timers.
• Data management. Sript-like �les an be used to store game data suhas unit and weapon statistis. These are loaded into a data repository andorganized in ategories whih serve as fatories for di�erent unit types.
• Server-lient based networking model. The TCP/IP based networkingmodel supports a ustomizable set of instrutions and provides base serverand lient lasses for managing player onnetions. This model has verylow bandwidth requirements, but requires strit logial synhronizationbetween lients and server.
• Multiplayer synhronization utilities. Synhronization on multiple lientsis done by means of a timer whih assures that lients follow the servertemporally losely.
• Rendering routine. The display is atively rendered using double bu�ering,supplied by an extra bakbu�er whih used to redue the repaint ount ofstati objets suh as terrain.
• Terrain generator. The terrain generator reates random ontinuous mapswhih an be used as e.g. altitude maps.1.3.3 Produt requirementsBefore starting the projet we had some minimal requirements whih would haveto be done within the projet's time limit. At the beginning of the projet wewrote down the minimal requirements. The minimal requirements were listedbut has been rewritten to this:The game must be playable over the internet by at least 2 players. For gameontent we must have a working GUI making the player apable of giving ordersand gathering information. Units must be able to move around in the worldand shall automatially begin �ring at opponent units within the �eld of sight.Units must be able to sustain damage as well as being destroyed and be removedfrom the game. The world must provide di�erent terrain types whih should beable to have an e�et on the units oupying spae within the the given terraintype � like movement speed or visiblity alterations.10

1.4 Reading this reportThe urrent hapter � Overview � should hopefully have provided a lear ideaof whih modules we have worked with and what the game is like.The following hapter � Arhitehture � is meant to provide atual insightin the workings of JWars, the way di�erent modules interat with eah otherand are glued together by the game ode.The main part of the report follows, and here the di�erent modules will oneafter another be disussed and evaluated in great detail. Note that in most aseswe have avoided expliit ode and language-spei� information, preferring ahigher level of disussion fousing on analysis, design and algorithms. The reportshould thus be of interest to game programmers and not only Java programmers.The struturing of the report is loosely hosen suh that modules with fewdependenies (for example networking and world representation) are treated�rst, and the subjets progress to suessively higher levels of abstration andinterdependene in the later hapters. Still, the hapters should be indepen-dently readable.In the end of the report is the Appendix ontaining the Game Manual whihis useful for running and using the appliation.

11

Chapter 2ArhitetureIn this hapter the arhiteture of JWars will be desribed, i.e. the way inwhih the di�erent omponents are made to interat. It should be outlined thatthe desriptions in this hapter are kept brief. There are far more operationsunder the hood that noted here, but it would be too umbersome to desribethe less important routines. This hapter will only mention the most importantsteps. The subsequent hapters will then go into greater depth desribing howthe individual omponents are designed.2.1 Connetion and initializationAs the program is started, a small GUI is presented whih allows the user toreate a server or join an existing one. If the user wants to join a game, thiswill spawn a JWars session whih attempts to onnet to the spei�ed server.Creation of a server will always result in a lient being spawned loally whihonnets to that server so as to allow the server's user to partiipate in the game.This lient is no di�erent from any other lient (onneting from remote), eventhough it is physially running in the same virtual mahine as the server. Thelient thus runs independently of the server, but the server uses some ommonfuntionality of the lient, suh as the timer and network instrution set. Thepratie of giving the server aess to the logi of the loal lient also allows theserver to hek the validity of orders issued (this has not been implemented, butthis is one reason for hoosing the design) by the players before relaying thatinformation to the lients. This redues the possibility of heating.When a lient session is spawned, the �rst thing done is to onnet to thespei�ed server whether it is loal or remote. This allows the lient to reeiveinitialization data from the server, suh as a random seed and the size of themap to be played1.1For reasons of debugging, the random seed is always 0 in the urrent implementation, andonly one map will presently be generated, but the order of initialization allows for dynamialspei�ation of game data. 12

2.1.1 Loading game dataAfter onneting, the game world is generated. This involves a number of steps,namely reating oordinate systems and tile representations of terrain, alongwith the reation of a ollision detetor and an observation environment (whihis responsible for heking whether enemy units an see eah other on the map).Notably this step also involves registering the root unit, whih is the anestorin the tree hierarhy of all units (see Setion 7.1.3) whih will later be added tothe world.The following step reads all unit, weapon and formation data from external�les (though this ould easily be done through the network as well). This kindof data storage is obviously preferable to hardoding; in fat it allows peopleto hange the game ontent ompletely without looking at the soure ode, byentering data in a simple sript-like fashion. This information is representedin ategory objets, whih hold data pertaining to spei� types of units. Forexample, the information of a Panzerkampfwagen IV is read one, and thensores of panzers an be spawned using the ategory as a fatory and datastorage.The game presently adds two German and two Soviet battalions to the game,and plaes them in pre-determined wedge-like formations (this is hardodedsine implementing an entire editor, whih is the �normal� way to do this, wouldtake too long) in opposite orners of the map. The battalions are organized inompanies and platoons, ontaining both tanks, assault guns2 and infantry.The �nal step is to build the main Swing GUI whih will be displayed duringthe game. Even though the game is not yet about to start (lients are still joiningthe server) it is preferable to generate the GUI now, suh that the GUI is readywhen the game is started.2.1.2 Launhing the gameAt this point the entire game setup has been loaded, but the game has notyet started. Rather the person hosting the server will want to wait until aenough lients have joined (even though this game only has two armies, severalplayers an ontrol the same army to inrease e�ieny), and meanwhile a listof the urrently onneted players is shown, displaying the player names andwhih army they ontrol. This lobby frame is also equipped with a hat foronveniene.The game starts when the server presses the launh button. This will resultin a launh instrution being sent to all lients. When reeived, it will disposeof the lobby frame and start the timer whih ontrols the �ow of time (in thegame). It will also make the main GUI visible. At this point the game is fullyrunning, and will remain in this state forever or until the players quit.2An assault gun is a gun mounted on a tank hassis but without a traversing turret13

2.2 Flow of ontrolMost real-time omputer games run by means of a game loop, i.e. a loop in whiheah iteration onstitutes an update of the game state and display as quiklyas possible. JWars, too, runs by ontinuously applying updates. However, inorder to ensure that the lients run equally fast, the update rate is instead �xedby the previously mentioned timer. The timer exeutes those updates fromthe AWT/Swing event dispath thread, whih means no synhronization withthe Swing-managed display is neessary. However the timer also provides thepossibility of using its own thread, whih might be desirable in non-AWT/Swinggames.The timer attempts to adjust the game �ow to that of the server. If anupdate is ompleted before it is time to perform the next one, the timer willsleep for the appropriate amount of time before invoking the next update. But ifthe game �ow lags behind that of the server, for example beause the omputeris too slow to perform updates at the required rate, the timer will report itsonerns by passing parameters to the update routine, whih will take note ofthis and attempt to regain lost time by skipping non-vital parts of an update.This brings us to the next point, namely the basi omponents of suh an update.One update onsists two steps.1. The game logi is updated. This means that all units are updated, allowingthem to move (using the ollision detetor), turn around, take aim, �reand so on, depending on their destination or target. Atually this is theresult of the update method of eah unit being invoked reursively downthe unit tree. The logial update will also inlude various other tasks, suhas polling for network input and input from the keyboard. Importantly,this will also poll the task sheduling system whih stores and managestasks that should be performed after a delay.2. The primary graphial display is updated3. This involves redrawing anyparts of the terrain on whih there are moving entities (if no moving enti-ties are nearby the terrain is not redrawn sine no hanges have happened),then drawing all the visible entities.2.2.1 SynhronizationIn ase the timer is lagging behind shedule, for example due to the loal om-puter not being able to run the game at the required speed, the graphial updatewill automatially be performed only a few times per seond (suh that the dis-play still appears responsive to the user) while logial updates will be performedat the maximum rate possible for the CPU. This means a omputer will haveto be very slow in order not to be able to play the game. It also means thatif one omputer is slow, it will not delay the server and the other lients (a3There is a number of other graphial side displays whih are not updated ontinuouslyhere, but instead by regular AWT/Swing repaints.14

problem whih is notied immediately in ertain games suh as Command &Conquer: Generals), but it will be responsible for regaining the lost time itselfby sari�ing graphial smoothness in the meantime.In order to ensure that lients do not exeute updates too quikly suhthat instrutions from the server arrive too late (and thus bring the game outof synh), the lient ontinually reeives synhronization instrutions from theserver whih speify the amount of updates the lient is allowed to perform. Inthe event that the lient annot proeed exeuting updates beause it reeivesno synhronization instrutions from the server, it pauses the timer and waitsfor new instrutions. As soon as the new instrution is reeived, game updateswill be exeuted at the maximum possible rate until the game time is onsistentwith the real time elapsed. This means the game will stay in synh during lagspikes (small periodes of exeptionally high response times) or even if the playeraidentally rips out the able for a moment.2.2.2 Deterministi behaviourFor the moment we shall ignore the ativity of players and onentrate on thetasks performed deterministially as time progresses. There are some operationswhih are not desirable to do from the main update routine, i.e. those thingsthat do not happen all the time. For this reason there exists a frameworkfor sheduling tasks to be performed after a ertain delay (suh a frameworkis not stritly neessary sine anyone ould use if-sentenes and ountdownsfrom the main update method, but suh approahes would be umbersome andine�ient). Reloading of weapons is managed in this way: when a weapon �res,it shedules a reload event whih will in turn be exeuted at the proper time,allowing the weapon to �re again.Another problem is determining whih units an see enemy units. This isrelatively demanding, beause large amounts of terrain may have to be traversedto perform suh heks. An observation environment takes are of traversingthe relevant terrain e�iently. For eah observer registered in the observationenvironment, suh a hek is performed regularly, and the frequeny of theseheks is ontrolled � one again � by using the event sheduling framework.The unit AI uses the spotting heks to update targets: whenever a new targetis found whih is loser than the urrent one, the unit will automatially fouson destroying the loser target.When a unit has a target, it will aim its guns towards that target and �rethe guns whenever they are ready. When the target is destroyed, it will aquirea new target and ontinue. When a weapon is �red, the game will randomlyalulate a hit loation, �nd units near that hit loation and �nally alulatethe damage done to those units. Infantry and tanks at di�erently to inoming�re; infantry units an take a random amount of asualties based on the volumeof �re, whereas tanks use a more advaned (and realisti) model, taking intoaount armour plate thikness and slope (using historially orret values), theability of the weapon to penetrate armour, and several other things. Whena target is destroyed, it will be removed from the vision model and ollision15

detetor, but tehnially it is not entirely removed from the game. It still sitsin the unit tree, though it is now ounted as a asualty.Finally there are some updates to the GUI whih are performed at regularintervals (using the event sheduling framework). For example the sore boardupdates asualty and fore strength tallies as the game progresses, and theminimap is updated regularly.2.2.3 Player input and network instrutionsThe loation of the main display on the battle�eld is managed through theviewport. When the viewport is moved (there are multiple ways to do this), itwill alert any registered viewport-event listeners, whih ensures that the viewis updated orretly. The player an selet units using the mouse, and this ismanaged similarly by alerting a number of registered unit seletion listenerswhih an reat by updating displays to onvey information about the newlyseleted unit. Unit seletion and viewport srolling are the only non-triviallient-side ontrols.Suppose the player presses a key or uses the mouse. Either this ation a�etsthe loal lient only � for example, if the ation is just srolling the viewportaross the battle�eld, it an be resolved loally.If, however, the ation issues an order to one of the player's units, it is ne-essary to send that instrution aross the network. The appropriate instrutionwill therefore immediately be sent to the server, whih will relay that infor-mation along with a time stamp � information about when exatly that ordershould be exeuted � bak to all the lients. When the lients reeive this in-strution it will be enqueued, using the event sheduling framework, until itsexeution time whih the server spei�ed. Finally, when the time is up, theinstrution is interpreted and arried out (tehnially by invoking one of itsmethods: the instrution is responsible for exeuting itself). This proess isshown shematially on Figure 2.2.3.2.2.4 AI, orders and their exeutionEah unit, being either a formation onsisting of several sub-units (suh asa ompany ontaining several platoons) or a single physial entity suh as avehile, is equipped with a simple AI. Whenever a player issues an order toa unit (suh as a move order), and the networking framework has distributedit orretly on all lients, the unit's AI will interpret the order and exeute itaordingly. For example, if the unit is a formation it will pass on a move orderto its sub-units, making sure that the sub-units reeive di�erent destinationssuh that they line up in an orderly wedge-like fashion (similar to the initialsetup mentioned in Setion 2.1) instead of having all of them try to reah thesame point. If the unit is not a formation but instead e.g. a vehile it will invokethe path�nder to alulate a feasible path towards the destination (onsistingof a number of waypoints), then simply register its new destination and beginmoving towards it at every update (as desribed in Setion 2.2).16

Figure 2.1: Flowhart illustrating the proess of exeuting an instru-tion issued by a player. The player performs an ation whih results inthe networking ode writing the appropriate instrution identi�er anddata aross the network (dashed line). The server adds a time stamp tothe instrution and ehoes it (seond dashed line) to all lients, at whihpoint the instrution is sheduled for exeution at the spei�ed time.While orders an be given by the player, it is possible for di�erent AIs togive orders to eah other. This happens when a formation AI is passing on amovement order to its sub-units, but in a broader perspetive (not yet imple-mented funtionality) this an be used to ahieve sensible interation betweenelements of the same formation, ensuring e.g. that all platoons of a ompanyattak together properly, or that they wait together in an ambush without �ringbefore the time is right.2.2.5 ConlusionHaving read this, you should understand how the di�erent omponents in thegame interat at a high level. The entire situation is illustrated on Figure2.2. The rest of the report is devoted to explaining the individual omponents,analysing their requirements and deriving proper designs.

17

Timer

World (update)

Units (update) Unit AI

Unit movement

Rendering

Event scheduling

Firing Fog of war, vision

Networking

Collision detector

Targetting

Player
orders

Player
orders

Synch
instructions

Pathfinder

Update

Figure 2.2: Shemati overview of the �ow of ontrol. Blak ar-rowheads denote that one module a�ets the state of another atively,whereas white arrowheads denote a �ow of information from one om-ponent to another (requested by the omponent towards whih the arrowpoints). New information enters the system only via networking. The�ow of information from the world to the rendering ode enompassesall unit positions, in reality this is available through the ollision dete-tor. Not inluded on the graph: �ring an lead to elimination of unitswhih in turn removes them from the ollision detetor and results inthe invoation of relevant AI methods.
18

Chapter 3NetworkingWhile real-time strategy games traditionally inlude single-player ampaigns,experiee shows that the suess of a game is largely determined by its playabilityin multiplayer. The online playability of a real-time strategy game is thereforevery important, and the networking solution an have profound impat on this1.This hapter will explore the options available and in turn deide on a feasibledesign.3.1 Choosing a network modelThere are several di�erent arhitetures and protools used in multiplayer games,and di�erent genres have di�erent requirements regarding e�ieny and re-sponse times. Fundamentally we shall disuss two variables: �rst there is theamount of game data whih has to be synhronized aross the network, whileon the other hand there is the network response time, i.e. the ping or lateny.We an roughly ategorize real-time omputer games by their networkingrequirements:1. Small, fast-paed games suh as �rst-person shooters. These games requirelow ping but have small amounts of data to synhronize (e.g. the positionsand speeds of a few dozen game objets). For example the game Counter-Strike is usually played by around 10-20 people who eah ontrols oneperson, and network lateny an quikly ause deaths in the fast-paed�re�ghts.2. Large, slow-paed games suh as real-time strategy games. There arevery large amounts of data (hundreds or thousands of game objets), butthere are only lax requirements to response times sine the player is notonerned with suh low-level ontrol as above.1Command & Conquer: Generals is regarded by the authors of this text as one of the�nest real-time strategy games ever oneived, and yet this game remains largely unplayedonline. Even on a high-speed LAN the game speed will almost grind to a halt with just fourplayers. Our onlusion: they hose the wrong network implementation.19

3. Large, fast-paed games suh as massively multiplayer online role-playinggames. These require both fast response and involve very large amountsof data, and therefore demand very advaned networking ode. It is wellknown that this takes its toll even on modern games of the genre, butlukily this is none of our onern.We are obviously onerned only with the seond ategory. We note two waysto keep the game state idential aross a network: either we an beam theentire game state onsisting of every logially signi�ant game objet arossthe network with regular intervals. This approah obviously only aomodatesgames of the �rst ategory beause of sheer bandwidth requirements. Another� and to us better � way is to let every omputer simulate the entire game logideterministially in parallel, and only send aross the network those instrutionsthat are issued by the players.This approah is promising sine it requires next to no bandwidth eventhough thousands of units are on the battle�eld. However it is stritly requiredthat all omptuers on the network are able to perform exatly the same simula-tion given the player inputs reeived from the network, otherwise the game willgo `out of synh' and never reover. The next setion will desribe this approahin detail.3.2 SynhronizationWe shall now propose a omplete solution to managing the �ow of time (in thegame, that is). Suppose until further notie that the players have no ontrolof the game. We de�ne that the game starts at frame 0, or t = 0, in someinitial state whih is idential on all those omputers that partake in the game.Now, all the partaking omputers will perform a logial update (whih will allowentities to move or �re at eah other automatially and deterministially, i.e.without the player issuing instrutions) at regular (and equal aross the network)intervals, and when suh a logi update on some omputer is ompleted we saythat the frame ount t is inreased by one on that omputer. Thus, as timeprogresses every omputer will exeute further logi updates for t = 1, 2, 3 . . .until the game is over, and if the logi update routine is onsistent then theomputers will all be in the same state at all time.There is no network ativity yet sine the logi update routine is determin-isti and therefore requires only loal information. Note that the omputers donot need to exeute the same logi update at exatly the same physial time, theonly important thing is the relationship between frame ount and game state.3.2.1 Interativity: network instrutionsSuppose now that we will allow a player to a�et the game state, whih is hardlya deterministi endeavour. We will need to send the partiular instrution thatthis player has issued to all omputers in the game suh that they an exeute20

it. Furthermore it is obviously vital that all omputers exeute this instrutionwhile in the same frame, otherwise they will go out of synh forever.Let us say that some omputer ats as a server whih keeps trak of the frameount, while all players are lients onneted to the server2. The player whowishes to exeute an instrution then sends that instrution to the server. Theserver reeives this instrution while in frame number t0. Now, every omputeron the network must reeive this instrution and exeute it at the same time, sothe server ehoes the instrution to all lients along with the requirement thatthe instrution be exeuted later at frame number t0 + L, assuming that theinstrution will arrive to the other omputers before they have furhter exeuted
L updates (we shall refer to L as the lateny, even though adding the physialnetwork response time results in a slightly larger atual lateny). Now, eahlient will reeive the instrution and an enqueue it for exeution in the (t0 +
L)'th logi update.3.2.2 Synhronization instrutionsWhat happens if instrutions arrive late to one player, at time t0 +L+ δ? Thenthat omputer will no longer be able to exeute the instrution in time, and thegame is ruined forever. This must not happen, and we shall therefore requirethat the server provides as a guarantee to eah lient that they are allowed toexeute updates until some frame ount. If the server ontinously sends outsynh instrutions to all lients stating that they may proeed the updatingproedure until frame t where t 6 t0 + L, then a lient an halt the game �owif it reahes time t and not ontinue until reeiving a new suh instrution fromthe server. In the meantime any instrutions that arrive will be enqueued forexeution at times later than t, ensuring their eventual exeution at the orrettime.A game implementing the ideas presented here will not rely on a lassialgame loop whih performs updates at the highest possible speed, but insteaduse a timer whih updates only at regular intervals. It is still possible to renderat higher frequeny than the logial update rate, using interpolation, see setion4.1.4.3.2.3 ConlusionWe now have a ompletely synhronized model whih supports any numberinterating players and requires a server. The network ativity will be very low,perhaps few instrutions per seond for synhronization and a term proportionalto the player ativity. Sine the server will have to send eah instrution to nplayers, and n players will send O(n) instrutions, the bandwidth use will be
O(n2) unless speial ountermeasures are taken, but real-time strategy games2Servers and lients are not ompletely indispensable. Some games employ peer-to-peernetworking where no server is appointed. The lient-server model provides a entralizedmanner of handling and validating instrutions, whih is why we hoose this model.21

are traditionally played by no more than around 12 players, and with the lowper-player bandwidth requirement this remains aeptable.3.3 The networking APIThe objetive of this setion is to design a networking pakage adhering to therequirements spei�ed in the previous setion. This will be done in an event-driven manner whih exposes a ontinually updated non-bloking instrutionqueue to the programmer who an therefore easily integrate it in any timerbased or game-loop based implementation.The instrutions onsidered in the previous setions, both synh instrutionsand lient instrutions, obviously require guaranteed delivery in onsistent order.Both of these properties are ensured by the protool TCP/IP. UDP is anotherprotool ommonly used in games. It is generally used for more fast-paed gamesbeause it ahieves faster response times by sari�ing among other things theguarantee of delivery: pakages are sent almost without overhead, but some ofthem may never arrive, and those that do may do so in any order. The guaranteeof delivery is essential, and along with the lax lateny requirements this showsbeyond doubt that TCP/IP is a better hoie than UDP for our purposes.The previous setion established a lient-server model, along with the on-ept of instrutions. We shall further introdue the protool whih is simply aolletion of instrutions to be used by server as well as lients. The protoolonsists of all the instrutions that an be issued while the game is running,whih would in our ase inlude e.g. ordering the movement of a partiular unittowards a partiular loation, ordering a unit to �re at a partiular loation, orthe previously mentioned synh instrutions.Now we are in a position to propose the �nal layout of the networking pak-age.
• IOHandler. Responsible for sending and reeiving a partiular type ofinstrution (for example movement instrutions). An IOHandler has awrite method, whih writes the instrution-spei� data (this ould be anew movement destination for a unit along with that unit's identity) tothe server. It has an eho routine whih is invoked on the server when thatserver reeives the information, suh that the server may hek whether theinstrution is valid, thus preventing ertain heats. The server will thenmost likely just pass the instrution on to all lients after attahing anexeution time stamp. Finally the IOHandler has a read routine whihwill be invoked when the lient reeives the information ehoed by theserver. The framework will provide input and output streams whih theIOHandler an use in its methods.
• Protool. This is an unmodi�able olletion of IOHandlers whih isidential aross all omputers, lients as well as server. In order to usean IOHandler it must be registered with a Protool before onnetionis established. The protool internally assoiates eah IOHandler with a22

unique identi�er whih the lient and server employ to distinguish typesof instrutions on the network.
• Client. The lient an onnet to a server at a spei�ed IP address andport. The lient will keep a thread running whih listens for networkinput. Whenever input is reeived, the lient will onsult its protool toalert the appropriate IOHandler to handle the instrution. Output to theserver is written through the registered IOHandlers.
• Server. The server aepts onnetions from lients by listening on apartiular port. Every lient whih onnets will be registered, and theserver will spawn a thread to listen for input from that lient whih ter-minates when the lient leaves. Whenever input is reeived, the protoolis onsulted and the appropriate IOHandler is made to handle the input.The IOHandler an then write any information it likes to all lients (itwill most likely just pass on the instrution).Finally there are server- and lient event handlers whih an be attahed tothe server and lient respetively, whih an exeute ode on onnetion, dis-onnetion and player events (these are �red in the ase a player hanges nameor team).Using IOHandlers is quite easy: the write, read and eho methods mustbe implemented through sublassing. The framework will automatially passreferenes to relevant input and output streams as parameters to these methods(for example the read method is always provided with an output stream whihwrites information diretly to the server, and the read method is provided withthe input stream whih reads data reeived from the server), whih means theimplementation only has to deide whih data to write to them.3.3.1 Implementation notesThe binary format used to send instrutions onsists of two parts, namely aheader and a body. The body onsists of the information whih an IOHandlerwrites expliitly, while the header is managed automatially. There are twodi�erent headers, depending on whether the information is travelling from alient to the server or opposite. In both ases it is neessary to send the identi�erof the IOHandler whih is responsible for the instrution, suh that the orretIOHandler an be fethed to handle the instrution at the destination. Thisinformation is urrently written as a byte, though it has beome lear thatbandwidth is of suh little signi�ane that a 32-bit integer might as well beused.When the instrution travels from the server to the lient, an exeution-timestamp must be supplied as well suh that the lients know how long to enqueuethe instrution in order to exeute it at the same time as the other lients.The server will determine this timestamp based on a timer. Spei�ally thetime stamp is equal to the urrent time, whih the server reads from a timer,plus the server lateny (mentioned in Setion 3.2.1) whih an be set when the23

server is reated and adjusted at any later time. The time stamp is written as a32-bit integer. Thus the instrution overhead is a few bytes, plus the overheadindued by the underlying TCP/IP protool. The relatively small amount oftra� neessary to run the game renders this overhead unimportant.3.3.2 Random numbers and deterministi odeKeeping games synhronized requires some are while running the game sim-ulation. If the game uses (pseudo)random numbers, it is obvious that everylient must be able to generate the same sequene of numbers, meaning thatthey should use the same random seed and that suessive number generationshould be deterministi based on the seed. The game world, to be disussedin Chapter 4, exposes a single random number generator whih must be usedonly for events that are guaranteed to take plae on all lients. Examples ofoperations that di�er between lients are rendering. First of all the renderingrate is not �xed like the logial update rate, so random graphial e�ets shouldobviously use a loal random number generator instead.It is easy to transfer a random seed aross the network at the beginning of thegame (the lient- and server event handlers are designed for exatly suh pur-poses), suh that all lients an use the same seed, but at this point all randomseeds are still �xed to default values in order to ensure better reproduabilityin the event of bugs.It is also obvious that non-deterministi mehanisms suh as rendering rou-tines should not invoke any method that an a�et the game state. In ourexperiene it is not di�ult to distinguish between ode whih is deterministiand ode whih is not. During the development of JWars, we an proudlyannoune that we have on no oasion observed a game go out of synh unex-petedly.

24

Chapter 4World of JWarsThe JWars world is the entity responsible for handling the game logi at thehighest level. The world enompasses oordinate spae management, ollisiondetetor, vision model, event sheduling system and many other things whihwill be the subjets of this and several subsequent hapters. In this hapterwe will desribe some of the most fundamental properties suh game �ow andoordinate system management.4.1 Flow of ontrol and timingSetion 2.2 desribed how most games used a game loop, and went on to brie�ydesribe the logial and graphial update mehanisms. Reall that JWars runsby means of a timer whih performs updates with regular intervals, as opposedto an atual game loop. This setion explains in greater detail why this timeris bene�ial and what it does.Note that game is designed suh that the seleted update rate has minimalimpat on the game model. If a di�erent update rate is spei�ed (this is notyet possible at runtime, but a planned feature), units will still be seen to moveat the same speed aross the map, have the same reload time and so on, sinethe game generally spei�es time intervals in seonds and onverts this to frameounts internally.4.1.1 Game loop vs. timerA game loop serves to perform game updates at the fastest possible rate. Forevery update, units are moved slightly, e.g. by inrementing their positions bythe movement speed times how muh time elapsed sine last update. Also thegraphial display is updated, showing the new loations of units. If the updaterate is high, animations will appear smooth and beautiful whereas lower updaterates an make the game resemble a �slideshow� with movement ouring inlarge hunks. As game omplexity grows, an update will take longer time for25

the omputer, so units should move farther per update proportionally to thetime whih has elapsed. Using suh a variable update rate ensures the bestpossible use of CPU resoures.As we have seen in Chapter 3, every lient must ondut exatly the samelogial updates, whih fores us to use a �xed update rate instead of a variableone where entities would move based on the loal mahine's omputing power.We have seleted a frequeny of 50 Hz, sine this is su�ient for reasonablysmooth animations while not too demanding for slower omputers. Reall thatonly the game logi needs to be updated with this rate; graphial updates anbe skipped if the loal omputer has trouble keeping up with the �xed updaterate, resulting in less appealing graphis but preserving game integrity.4.1.2 The game timerThe timer provided with JWars is designed to synhronize the update rate ondi�erent lients by periodially notifying timer listeners. It thus has similaritieswith the timers provided with the java ore lasses, but in fat provides more�exibility.The listeners reeive information about whether the timer is behind shedule(e.g. if updates are taking too long) suh that they an deide to skip unnees-sary operations. It also expliitly supplies the frame ount whih is obviouslyimportant to the simulation. After being started, the timer an be either pausedor suspended. If the timer either paused or suspended, it will no longer performupdates until it is resumed. If it is suspended, then after being resumed it willtry to regain the time in whih it has been suspended by exeuting updates atthe maximum possible rate. This is useful if temporary network trouble requiresthe game to halt temporarily.The timer works on top of a wath. A wath is any entity whih an providethe urrent time in milliseonds elapsed after some �xed point1. The timer pollsthe wath periodially and adjusts its update rate suh that it never divergesfrom the wath.The timer uses a thread internally. It is possible to speify that the updatesshould take plae in the Swing event dispath thread (see Setion 9.1). In thisase the timer will wait for the other thread to omplete its update beforerequesting more updates. In other words the timer thread bloks until updateshave been ompleted; another possibility is to enqueue multiple events afteranother if updating still takes plae (the Swing timer will do this), but this doesnot provide the same �exibility: the former approah allows the next update totake into aount whether too muh time was spent during the last update.1The wath should generally be some kind of wrapper around the omputer's system lok.The java ore API provides System.urrentTimeMillis and System.nanoTime, where the lat-ter is more preise but only available in newer versions. Programmers an hoose the wathimplementation freely, inluding third party timers.26

4.1.3 Game performane disussionDuring testing, we have observed that slow omputers an have trouble keepingup with the required update rate during large battles where many units aremoving. This means the omputer will stop refreshing the display (exept forsparse updates inluded to prevent the player from thinking that the game hasrashed), and the lient will gradually lag farther and farther behind shedule.Any reeived network instrutions will then be enqueued for a very long timebefore the lient eventually reahes their atual exeution time, meaning theplayer will barely be able to ontrol his fores.This problem annot be ompletely avoided: there will always be a omputerwhih is too slow. The problem an, however, be remedied by optimization.Many of the operations arried out in the primary game update do not needa temporal resolution of 50 Hz. The �gure of 50 Hz was seleted beause itallows for smooth animation. Might it be possible to lower the logial updaterate without sari�ing smoothness? As we shall see in the next setion, yes.4.1.4 Interpolation during renderingSuppose the logial update rate is very low, perhaps one tenth of a seond.A unit whih is loated at r = (x, y) will in the next frame be loated at
r +dr = (x+dx, y +dy), and the distane between these points is so large thatthe graphial representation is no longer smooth.However it is possible to perform graphial updates with a larger frequenythan logial updates, while interpolating between the previous and urrent po-sition depending on how long time has elapsed between the last and the urrentframe. Thus, if �ve graphial updates are performed for eah logial update,eah suessive graphial update an depit the entity at positions r + 1

5
dr,

r + 2

5
dr up to r + dr, and then the animation will retain its smoothness eventhough the internal representation does not. We an thus use the weightedaverage between the previous position and the urrent position to derive newintermediate positions, andThis powerful trik an easily redue the CPU requirement of the logial sim-ulation by 80% of the urrent amount (e.g. if the logial update rate is reduedfrom 50 Hz to 10 Hz). But things get even better. The variable update ratedisarded in the last setion an be reintrodued in onnetion with rendering,meaning that no partiular graphial update rate is needed, but instead the ratean be dynamially adjusted aording to requirements.At present this optimization has not yet been implemented, but it is plannedfor the near future.4.2 Coordinate spaesIt is normal for a omputer game to utilize numerous di�erent oordinate sys-tems to represent information to the player (e.g. the sreen oordinate system),or to represent the game state internally. It is therefore desirable to provide a27

standardized notion of oordinate systems to be used in the game. This allowsfor ode reuse and redues the possibility of bugs during the numerous oordi-nate transformations whih would, laking a entralized onept of oordinatesystems, have to be oded manually throughout the game.The basi requirements of suh a system for our purposes an loosely beformulated already:1. Loations should be represented by artesian pairs of numbers (i.e. onlytwo-dimensional systems are onsidered).2. There must be a way to onvert oordinates from any oordinate systemto any other that represents the same spae. This might involve salingor other transformations.3. There should be tilemaps, whih we de�ne as a oordinate system in whiheah loation spei�ed by a pair of integers is assoiated with exatly onetile objet, the type of whih an vary depending on the irumstanes.Tilemaps thus resemble two-dimensional arrays whih support oordinatetransformations.The notion of tilemaps deserves some omments. While real oordinate systemsin mathematis tend to be ontinuous, i.e. have in�nitely many points betweenany two di�erent points, sometimes we desire purposely disretized represen-tations. A hess board an be represented by a 8 × 8 tilemap where eah tilean hold a piee. Similarly we shall �nd numerous uses for tilemaps in JWars,inluding terrain representation and ollision detetion.4.2.1 Coordinate data representationWhile it would be nie to represent the world in ontinuous oordinates, thisis obviously not possible using a omputer. We shall have to selet a way todisretize the world into some �nite number of hunks.Coordinate systems in games ould onveivably be implemented in one oftwo distint ways, representing positions either by �oating point numbers orintegers. Using �oating point oordinates generally ensures a higher preisionwhen alulating movement of units, while on the negative side it an be di�-ult to determine how numerially large oordinates may be before the �oatingpoint system loses preision. This an beome a problem on very large maps.More importantly, �oating point oordinates an be awkward in implementa-tions where tiles are used, sine tiles are naturally indexed by integers.Sine � as mentioned previously � we shall use systems of tiles for severalpurposes, whih an only be indexed logially by integers, we deide to useintegers as the basi datatype of world oordinates.A oordinate system must be assigned a width and a height, whih denotethe number of units aross horizontally and vertially, respetively. We shallrefer to the number width×height as the resolution of the system. Two oordi-nate systems must have the same width:height ratio in order to represent the28

he
ig

ht
=

5

width=4width=8

he
ig

ht
=

10

scale=2

Figure 4.1: Two oordinate systems. Axes are similar to those nor-mally used with sreen oordinates. The blak × in the left system istransformed to the × in the right system, but the inverse transformationyields the grey × in the left system beause of integer division.same spae. Figure 4.1 shows two oordinate systems related to eah other bya saling of 2. A oordinate in the �ne system is transformed to the oarseone by integer division, meaning several points in the �ne system orrespondto the same loation in the oarse one (like many pixels ould be part of thesame terrain tile), whereas the inverse transformation is simply a multipliation.Note that we have deided to use the same axes with whih pixels are normallyindexed on the sreen, but this hoie is somewhat arbitrary. Presently oor-dinate systems only use saling transformations with positive sale, but if theneed arises they an easily be extended to use o�sets or �ip the axes.Note to programmers: if a oordinate system's width or height is not divisibleby the sale of a more oarse system (for example width=9 and sale=2), theoarse system is extended to inlude a slightly larger area than the �ne system(orresponding to width=10). Under normal use this will not be a problemsine all well-de�ned loations in both systems an be transformed bak andforth safely, but arelessness an still lead to out-of-bounds errors.The drawbak of using integers instead of �oating points is that movementmust our in hunks. If, for example, a game runs with 50 updates per seond(whih happens to be the urrent framerate in JWars), there is no interme-diate step between a speed of 0 and a speed of 1 unit per frame, resulting ina quantization of speeds whih an produe odd e�ets in the simulation. Itwould surely be awkward to have a speed of 50 pixels per seond as a minimum.Eliminating this problem requires a very large resolution of the primaryoordinate system, suh that the range of possible movement speeds seems on-tinuous. For example, suppose the main oordinate system has a resolution of
221 × 221, whih means the map measures around two million disrete pointsaross. If there are 29 = 512 of these units for eah pixel on the main display,and the game runs with a 50 Hz framerate, then the minimum possible non-zero29

speed is 1

10
pixel per seond, whih is slow enough to depit a realisti-lookingphysial simulation.4.2.2 Important oordinate systemsMany of the following hapters will introdue new oordinate systems for onepurpose or other. We list here some of the oordinate systems that have1. Main oordinate system. This oordinate system ontains the logial o-ordinates of every entity and must have very high resolution.2. Pixel oordinates. This is used for the representation of entities on thesreen. For example an entity might be 20 pixels large, orresponding toseveral hundred units in the main oordinate system.3. Terrain map. This tiled map ontains large square hunks of terrain graph-is used in rendering. Typially eah suh tile would have a side length ofaround 30 pixels.4. Minimap. Most realtime strategy games use a minimap to represent ageneral overview of the situation, see Setion 1.1.2.There ould be several other suh maps, for example a oarse strategi mapwhih evaluates the fore strengths in regions for use by the AI or soring sys-tem.4.3 TerrainTerrain representation is perhaps the most obvious appliation of tilemaps.JWars uses two layers of terrain: there is a basi terrain type (suh as grass,whih happens to be the only suh terrain type yet inluded) and a vegetationlayer. The terrain is represented as terrain tiles, where eah tile must implementa draw method.Terrain tiles also possess an index of forestation, i.e. the density of treegrowth in the tile, whih presently a�ets the movement speed of units andinreases the toughness of infantry in those tiles.JWars o�ers the possibility of adding objets that are not organized intotiles, suh as buildings. These objets are referred to as terrain objets and willbe desribed later.Finally the random terrain generator allows reation of ontinuous 2D sur-faes suh as height maps by using the diamond-square algorithm. This algo-rithm was used to disperse trees throughout the world but ould be used togenerate hills and other kinds of terrain.30

4.3.1 Terrain in gamesHaving di�erent types of terrain in an RTS game is important for tatis. Ter-rain usually o�ers plae for onealment and maybe even provide over for units.In real life ombat tanks are the masters of open terrain due to their long �ringrange and heavy armour ombined the lak of over for their targets. A tankin a ity or a forest however does not have the visibility to keep enemies at adistane. A single soldier with the right weapon an disable a tank � if he getslose enough. To get lose to a tank however a single soldier will need over inthe form of a terrain as forests, trenhes or buildings. This is a single exampleon the impat terrain has on realisti simulations. A game onstruted purelyby the developers mind doesn't have to be realisti and an be onstruted tonot penalize terrain, but the JWars game engine however uses realisti al-ulations and statistis, so terrain will be needed for balaning. Otherwise weould simply balane out tanks by giving all infantry squads a futuristi weaponwhih would ounter tanks.Terrain usually takes on two forms. The natural terrain on the battle�eldlike forests, hills and rivers and the more speial terrain features in the form ofobjets like buildings, entrenhments or maybe even abstrabt objetive markers.This system should be seen as a layer system. First is the ground features andform like hills and trees, on top of this omes the buildings and units. Eahlayer will be generated seperately so the data will be divided as well.The terrain an have several impats on the gameplay. Hills an have thee�et of bloking line of sight onatenated to LOS as well as slowing downmovements for units going up hill. A standard military strategy is also to havehigher ground in both ranged as well as melee ombat as e�etiveness degradeswhen your target is on the high ground. Also forests an be implemented toa�et gameplay through the loss of visibility and over. A normal soldier in aforest would have plenty of ways to protet his body by standing behind a treeor lying behind a root stiking up from the ground. All these examples needsome kind of terrain data representation for being implemented, and they anall have huge e�ets on the gameplay and tatis.4.3.2 Map designWhen reating terrain in any game there are two distint ways of handling themap making whih an either be ombined or work independently.Pre-made maps. Manually reate all maps on whih to play � possibly inludea terrain editing tool for this purpose.Generated maps. Implement a terrain generator whih reates a unique mapfor eah game.Use of prede�ned maps an be neessary if it is ritial that no player hasterrain advantages. Few RTS games feature randomly generated terrain due tothis obvious disrepany onerning the game setup whih makes the game un�tfor tournements and other organized events.31

In order for maps to be valid for tournement play they will have to be fairfor all players in all starting loations. Maps reated randomly will never o�erthe players equal opportunities or the same strategi options as a handmademap with a reative designers touh. With a seletion of maps to use, manyplayers also ome to favorise some maps whih they exel in - these features willbe stripped by using random generators. Many games today rely on designedmaps over generated terrain. Most of these however also inlude a map editorwhih gives players a hane to reate maps themselves.However there are positive things to be said of generated maps as well. Pre-de�ned maps will tend to foster pre-de�ned strategies. The strength of randomterrain generation is that players will have to adapt to the irumstanes, im-provise and devise new tatis for every battle.In a game like JWars both options are viable. In this projet reating mapshowever is not high on the priority list, and reating maps manually wouldrequire a vast amount of time whih ould be spent elsewhere on the projet.We therefore deided to develop a tool whih ould be used for random terraingeneration using a partiular seed2. The fous on this tool is not to reate aomplete map generator whih will give a total map solution but merely anassistant for reating terrain features suh as forests and height maps.4.3.3 Random terrain generatorWhat we need is a way to displae height values on a two-dimensional grid ina somewhat random order whih looks �natural� and not e.g. entirely randomsuh as noise. We shall use the term height displaement map to refer to suh amap. In real life, a forest will usually be a luster randomly dispersed around aenter � natural displaement � the same goes for hills. A height displaementan be obtained by using mid-point displaement. The mid-point displaementmethod works by starting with a straight line, the end points of whih are atthe same height, see Figure 4.2. The middle point between the two end pointsis then displaed by a random number, for example between 0 and 1. Thereare now three equally spaed points forming two line segments, and the nextstep onsists of again displaing the points that are at the middle of eah linesegment by new, limited random amounts. Continuing this, we get �rst 3 points,then 5, 9, 17, 33 and so on. In general if we stop after n steps, the line will bedivided into 2n+1 points. As �gure 4.2 shows, this method ensures a ontinuouslandsape urves instead of random jaggy spikes.In theory what is needed is a two-dimensional surfae where eah point has aheight. This third dimension an be interpreted to be height displaement (ob-viously), vegetation density and any other onept whih an be haraterizeda funtion R×R 7→ R. Our present problem it is not immediately obvious howthe mid-point displaement method an be used to generate a two-dimensionalgrid.2Using a seed for reating terrain allows us to reate random maps but still save promisingseeds whih an be used to reonstrut those maps32

Figure 4.2: The mid-line displaement used on a one-dimensional mapOne algorithmwhih applies mid-displaement to generate a two-dimensionalgrid is the diamond-square algorithm, whih we have hosen to implement. Thealgorithm, shown in work on Figure 4.3, is again based on steps - starting withthe large sale displaements and then with suessive iterations reating smallerdisplaements. The algorithm works by �rst displaing the orners of the grid,orresponding to the end points in the one-dimensional ase, and the enter, torandom initial values. Then the four points at the entres of the map edges areintrodued, by assigning a height value equal to the average height of the nearestneighbouring points that already exist, plus a small random amount. The edgemid points atually have four neighbours if we onsider the map wrapping, i.e.the leftmost points are neighbours of the rightmost points (thus theoretiallyresulting in a toroidal topology).The algorithm earns its name beause it suessively displaes points whihare loated on a grid (squares) and in diamond shapes. Implementation-wise westart with two-dimensional grid of �oating point numbers, where the grid sidesmust have a length of one plus a power of two. Now, the algorithm onsistsof the following steps, illustrated on Figure 4.3 (traversing in this ase alwaysinvolves setting the a�eted points' heights to the average of the neighbours plusa small random amount as mentioned before):1. Set a step value equal to the width of the map.2. Traverse the map using steps of that size (this results in the orners beingtraversed on the �rst run, as in Figure 4.3a) and the entral point on the�rst iteration (Figure 4.3b.3. Traverse the map in a diamond pattern using the same step size, Figure4.3.4. Divide step size by two, and inrement the origin of the grid by a quarterof the step size for the next iteration (this means traversals otherwisestarting in (0,0) will now start in (step/4, step/4). Go to step 2 unless allpoints have been traversed. 33

Figure 4.3: The diamond square algorithm running on a 5x5 grid untiltermination. If the grid were larger, the �rst steps would be idential,but the algorithm would ontinue by halving the step size and performingthe same operation over and over.
Figure 4.4: This is a 3D model of a diamond-square algorithm runningon a NxN map. It learly illustrates how jagged maps ome to look morenatural.This method eventually gets to traverse the entire grid. Figure 4.3d and e showthe seond iteration. An example 3D model of a generated map is seen on Figure4.4. Two-dimensional map representations generated by our implementation areseen in Figure 4.5.In the urrent version of JWars, the growth of trees is deiding by inter-preting a generated �height� map as a tree density.In the terrain generator uses a lass is alled a FloatBuffer to store thetwo-dimensional grid. It wraps array of �oats and it is on this array that weperform the diamond-square algorithm. The �oat bu�er has several funtionsthat an be used to modify generated maps:1. utOff : takes a �oat as argument. All elements in the array get the �oatvalue subtrated from them. If the new value is below zero we round ito� to zero. This is used for reating the forests � at many loations theforest density should be exatly 0, and this is ahieved by �attening themap with utOff.2. smoothify : evens out the terrain more by traversing all non-boundaryelements and setting them to the average of the elements neighbours. Weuse this funtion several times on the map used for reating the forestationlevels.3. saleToFit : Takes a minimum and a maximum value as arguments.Sales and translates all the values in the bu�er by the same amounts,34

(a) (b)Figure 4.5: These are two maps randomly generated by the terraingenerator. It is not immediately notiable but both maps are periodi,i.e. their edges wrap.suh that the smallest and largest values are as spei�ed. This methodguarantees that the �oat bu�er does not ontain elements larger or smallerthan the maximum or minimum.The height generator algorithm and the �oat bu�er onstitute a powerful toolwhen used together.4.3.4 Terrain objetsAfter having all the natural terrain have reated we an add the seond layer ofterrain features to the world. These are alled terrain objets. Terrain objetsan take the form of forti�ations, buildings impassable mountain peeks, roadsor even lakes.For reating terrain objets we impemented the blueprint lass. Blueprintsare used in JWars as blueprints in the building industry. A blueprint ontainsall tehnial data onerning a spei� objets, and when you have a blueprintyou an make a building as spei�ed by the blueprint anywhere - even buildseveral buildings based on the same blueprint. The blueprint ontains all rele-vant data for an objet exept the loation and an angle. At this moment allblueprints and terrain objets are reated in the StrutureFatory lass whihontains methods for generating objets and disperse them on the battle�eld.For reating a blueprint it will need a shape and some ollision properties.The shape is reated by onsisting of oordinates in an array, where eah oordi-nate designates a orner on the objet, while the ollision properties are handledlike on an unit � it an be massive or not. For upholding the ideals of JWarsthe blueprint an have any shape and size. The oordinates are plaed in anabstrat oordinate system entered on the blueprints enter (0,0). Along with35

the oordinate array the blueprint reates the ollision properties aording tothe developers wish. For reating a terrain objet we feed the onstrutor withan image3, a blueprint, an angle, and the loation within the world. After theterrain objet has been reated we an add it to the world by registrering it inthe detetor.For making buildings usable by the path�nder we reate a path�nding node,and attah it to eah orner of the objet. The path�nding nodes are onlyreated for the path�nder usage. All polygon objets will be treated as onvexhulls by the path�nder even though they might be in the shape as a hourglass.4.3.5 Terrain appereaneI this setion we will disuss the appearane of terrain JWars. The appearaneof terrain randomly generated. The terrain onsists of grass, whih serves asthe ground, and eah tile has a forestation level whih designates the amountof trees in that tile. Eah terrain tile ontains referenes to two images � onefor the ground and one for the vegetation. Most of the images are shared bymultiple tiles. For example there are sixteen di�erent images of grass to beshared by hundreds, maybe thousands of tiles on a map. The sixteen variationsare used to make the terrain look less monotonous. For eah forestation level,six di�erent images are reated for this purpose.Both grass and forest images are referened within eah terrain tile, beingused by the tile's draw method whenever the tile should be rendered to thesreen. The tile thus knows how to draw itself, and it would therefore be possibleto use terrain tile implementations that do not rely on images along with thosethat do.Creating the terrain map, along with the generi grass bakground and thedi�erent amounts of forestation is done in the MapFatory lass. Spei�allythe map fatory distributes the tiles, using di�erent variations of the images,randomly in a terrain tile double array. Figure 4.6 shows how hard it is to seeany repetitive pattern in the bakground. When examining the bakground thesame image an be spotted several times on the sreen but it will not annoy theplayer or make the bakground layer seem �too� generated.We have found a speial ombination of olours with an added amount ofrandomness yield a satisfying result - eah pixel in a grass image has the fol-lowing pro�le in RGB � the RGB values are (18,96,6) plus random numbers upto (128,72,72). The grass images thus ontain only noise, and therefore seem to�t beside eah other.For reating the forest graphis we use the same priniple. Instead of reatinga single array as with the bakground images we need several di�erent images forthe di�erent amount of forestation. The default amount of levels in forestationis 6 and we have hosen to reated 6 di�erent images of eah level. By movingthe RGB sale to the darker greenish area small irles representing trees are3Images an be attahed to objets but at this moment in development we simply �llpolygons with a olour instead of making images for all buildings.36

Figure 4.6: Terrain graphis. Though the terrain onsists of tiles, 32pixels on eah side, this is not learly visible due to the amount of varyingtile images. Some trees are visible in the right side of the piture.painted onto the image. By �rst alling a terrain tiles draw funtion and thenthe drawVegetation we get all the layers in plae.The tehnique desribed here ould be expanded to support di�erent terraintypes by using the appropiate RGB odes for eah wanted graphi set. This ishowever of minor importane for the development of the projet and is still afeature designated for future implementation.One of the original thoughts was to let the terrain generator reate a heightmap and inlude it in game engine. This would have made the game engine morerealisti but would also rise a new problem: how do we illustrate it? Heighturves are not implemented in the urrent version of JWars, but they areplanned for the future. Using 2D graphis make illustrating a third dimensionin a map somewhat di�ult. The solution has been around for some time inreal-life map making where height urves illustrating terrain di�erenes wouldbe a viable, but ugly solution.4.4 Event handlingMany if not most real-time games inlude a game loop, whih is a loop in whihthe entire model and graphial display of the game are updated repeatedly.This normally involves traversing all the dynamial entities and updating theirpositions, veloities and other variables. These updates might inlude opera-tions suh as the reation or removal of entities from the game, whih an beinonvenient while the list of entities is being traversed. It is therefore desirableto handle updates in one loop, then store the more ompliated operations as37

events to be resolved later, just after the game state has been updated. Thisapproah an prevent bugs and ensure that things are done in a onsistent order.Fundamentally we shall here refer to an event as something whih an be putin a queue and then exeuted at some later time. Note that in this model, theevent serves simply as enqueueable exeutable ode, whih is in ontrast withthe AWT/Swing event term, where events are short-lived objets that onveyspei� information to event listeners.4.4.1 Types of eventsThere are three distint event onepts whih will prove useful.
• Peripheral input. The user an typially ontrol the game by mouse,keyboard or typing ommands into a onsole. It an prove troublesome toinvoke the ode assoiated with these ations immediately: if the playere.g. hanges the view of the battle�eld while the battle�eld is being drawn,this will result in graphial tearing. This should not happen, and this kindof event should therefore be stored and the orresponding ode exeutedonly when graphial and logial update operations have been �nished.
• Network events. As we shall see in Chapter 3, instrutions reeived fromthe network are sheduled to be performed at spei� times. Thereforethese instrutions should be enqueued until that time.
• Delayed events. If weapons are �ring, then their reload progress must betraked somehow. This ould be done by polling eah and every singleweapon (of whih there are probably hundreds) one per update, but ifthey reload equally quikly then it is simpler and more e�ient to insertreload events into a queue suh that it is su�ient to poll that queue ofevents one per update.4.4.2 Performane onsiderationsWhile the storing of multiple events in the same queue (like in the reloadingexample above) an eliminate most of the heks otherwise neessary, there willstill be an abundane of events to be alloated in memory and released. It istherefore desirable to save some of the frequently used events suh that they anbe used multiple times. Following the earlier example with weapons reloading,it would be expensive to reate a new reload event every time a weapon �res.It would be more sensible to save the old reload event and enqueue it again thenext time that weapon �res, beause the weapon obviously annot �re beforeits reload event is released from its queue.4.4.3 Queueing systemThe preeding disussion leaves us with two primary onerns, namely an eventand a queue whih an store events. The event should have an exeute routineand it should know the time at whih it is supposed to be exeuted.38

The queue should have an update routine whih polls the next event in thequeue for whether it should be exeuted, then exeutes it (and possibly anyfollowing events) if the time is right.This is enough to handle the delayed and network-type events as noted before.In the example regarding reload of weapons, it will be neessary to use one queuefor eah di�erent reload interval. For example, if ri�es an shoot one every 100frames then all ri�e reload events an be stored in a ri�e reload queue, andall grenade launher reload events an be stored in another queue representinganother reload time.Finally, peripheral input events should generally be handled immediately (i.e.within the same update as it is generated), but this kind of input ould originatefrom another thread than that in whih the game updates are performed. It istherefore neessary ommendable to use a thread-safe approah (in java this isdone simply by delaring the relevant methods synhronized).In onlusion we now have two speial queues, namely the peripheral input(synhronized) queue whih exeutes the events stored in them immediatelywhen polled, networking queue whih stores instrutions reeived from the net-work until suh time as they should be exeuted, and any number of delayed-exeution queues that handle weapon reloads and other things whih we shallsee in other hapters, suh as vision heks and targetting.

39

Chapter 5Collision detetionThis hapter will after an introdution to ollision detetion formulate the designand apabilities of the JWars ollision detetor. It is designed to handle largenumbers of geometrially simple olliding entities without onstraints on entitysizes.5.1 Basis of ollision detetionThe most important objetive of this setion is to deide on an overall approahto an e�ient and reasonably simple ollision detetor bearing in mind the re-quirents of real-time strategy games. There is by no means an optimal suhollision detetor sine requirements invariably will di�er greatly with applia-tions. We shall further shall restrit the disussion to two-dimensional ollisiondetetion seeing as JWars does not need three dimensions.In a real-time strategy game there is generally a large amount of units,possibly more than a thousand. It is therefore of the utmost importane thatthe ollision detetor sales well with the number of units in the game.5.1.1 Divide and onquer approahLet n be the number of units present in some environment. In order to hekwhether some of these overlap it is possible to hek for eah unit whether thisunit overlaps any of the other units, and we will assume the existene of somearbitrary heking routine whih an perform suh a unit-to-unit omparisonto see whether they ollide. While the amount of suh heks an easily beredued, for example noting that the hek of unit i against unit j will produethe same result as the hek of unit j against unit i, this method invariablyresults in O(n2) heks being performed. This approah is �ne if there are veryfew units, but this is obviously not the ase in a normal real-time strategy game.The amount of heks an, however, be redued by registering units in lim-ited subdomains of the world and only heking units in the same subdomain40

aganst eah other (for now assuming that units in di�erent subdomains an-not interset). Suppose, for example, that the world is split into q parts eahontaining n

q
units. Then the total amount of heks, being before n2, will beonly number of heks ≈ q

(

n

q

)2

= n2/q.It is evident that within eah subdomain the omplexity is still O(n2), butdereasing the size of the subdomains an easily eliminate by far the mostheks, partiularly if the division is made so small that only few units anphysially �t into the domains. The applied approah thus employs priniplesof a divide-and-onquer method (see [2, pp. 28-33℄), though it is not expliitlyreursive.The best ase senario where all units are in di�erent tiles runs in O(n) timesine no ross-heking takes plae. The worst ase senario, where all units arein the same tile is extremely unlikely, beause only a handful of units should �tphysially into a tile.5.1.2 Tile registration strategyThis approah still needs some modi�ations in order to work. Spei�ally,units may oneivably overlap multiple subdomains, neessitating heks of unitsagainst other units in nearby subdomains. Assuming square subdomains willprove both easy and e�ient, and we shall therefore do so. Consider a gridonsisting of w × h elements, or tiles, de�ning these subdomains. We shalldesribe two ways to proeed.1. Single-tile registration. Register eah unit in the tile T whih ontainsits somehow-de�ned geometrial enter. In order to hek one unit it isneessary to perform heks against every unit registered in either T orone of the adjaent tiles. Thus every unit must be heked against theontents of nine tiles. This approah is simple beause a unit only has tobe registered in one tile, yet muh less e�ient than the optimisti aseabove and requires that the units span no more than one tile size (in whihase they ould overlap units in tiles even farther away).2. Multiple-tile registration. Register the unit in every tile whih it touhes(in pratie, every tile whih its bounding box overlaps). Cheking a unitnow involves heking it against every other unit registered in any one ofthose tiles it touhes. This means that a unit whose bounding box is nolarger than a tile an interset a maximum of four tiles. Units of arbitrarysize an over any amount of tiles and therefore degrade performane,but the ollision detetion will obviously not fail � also in most real-timegames the units are of approximately equal size and for the vast majoritythis approah will be su�ient. 41

Figure 5.1: The ollision grid visualized. The number of units regis-tered in eah tile is listed inside the tile. This is an in-game sreenshot;the debug grid an be enabled by passing -d as a runtime parameter.For the JWars ollision detetor we have hosen the seond approah, whihis illustrated on Figure 5.1.2, primarily beause it does not restrit unit size toany partiular sale. This approah will also likely be more e�ient sine it inmost ases will require less than half the number of tiles to be visited (as noted,
4 tiles would be a bad ase in this model whereas the former model onsistentlyrequires heking 9 tiles). However there is one possible problem, namely thattwo units whih oupy two of the same tiles will (unless arefully optimizedout) be heked against eah other in both of those tiles1.5.1.3 Shapes and sizes of olliding entitiesThe best-ase time of suh a tiled ollision detetor is O(n) orresponding tothe ase where all units are in separate tiles. The tiles should be sized suhthat only a few units (of a size ommonly found in the game) an �t into eah,but they should not be so small that every unit will invariably be registered inmultiple tiles. Every time a unit moves the tiles in whih it is registered willhave to be updated, whih beomes time onsuming eventually.As an example, this model should easily aommodate a battle�eld withmany tanks (around 6m in size) and at the same time provide support for a fewwarships (around 100 − 300 metres). If neessary, it is possible to improve themodel by allowing variably-sized tiles, suh that the tiles are made larger at sea1The present implementation does not optimize this, sine this an hardly degrade e�ienyonsiderably. 42

than at land, for example. This approah will, however, not be implementedsine suh extreme di�erenes in sales are very unommon in the genre.Having overed the methods neessary to minimize the number of heks, itis time to brie�y mention the heking routine itself. It is obvious that a large-sale game an not realistially provide ollision detetion between arbitrarilyomplex shapes. In the realtime strategy genre units are ommonly modelled asirular or square, sine a larger degree of detail would hardly be notiable on therelevant sale. We have therefore deided to provide only ollision detetion forirular units. However the ollision detetor does provide an esape mehanismensuring that units an implement a ertain method to provide any ustom-shapeollision detetion. Using irular shapes provides the bene�t of simpliity ande�ieny, and is su�ient for most basi entities. However there are presentlystati objets (see Setion 4.3.4 on terrain objets) whih are polygonal and anbe very large, and they make use of this esape mehanism.5.2 Design of the ollision detetorThe ollision detetor manages a basi kind of entity whih we shall refer to asa ollider. The most basi properties of a ollider are its loation (x, y) and theradius r of its bounding irle (it has a few more properties whih are irrelevantto this setion but will be mentioned later). Whether or not a ollision has beendeteted is determined solely by these properties.5.2.1 The heking routineThe entire heking routine for a single ollider whih wishes to move to a ertainloation now reads:1. Determine whih tiles the ollider will overlap in its new position2. Traverse these tiles, and for eah other ollider found here, perform thefollowing steps.(a) Chek whether the bounding irle of the moving ollider intersetsthe bounding irle of the other ollider.(b) If the irles interset, invoke user-de�ned heking routine.() If the shapes interset, invoke user-de�ned ollision handling routineon the moving unit. The moving ollider will not be moved to itsdesired position, and the heking routine is terminated.3. If at no point above the heking routine has been terminated, the movingollider will have its position updated to its desired loation. The ollisiontiles overlapped by the ollider in question will be updated aordingly.This routine works well in the realtime strategy genre when the primary fun-tion of ollision detetion is to prevent entities from overlapping. There is no43

partiular way of handling a ollision other than anelling the movement re-quest (unless the user spei�es this manually in the handling routine), and thisapproah would therefore be bad if realisti physis (onservation of momentumor elasti ollisions, for example) were desired. These things are not partiularlyrelevant in the realtime strategy genre where the behaviour of a single unit isnot losely monitored.5.2.2 The ollision gridIn order to represent the ollision grid, the ollision detetor uses the map util-ity pakage whih is desribed in setion 4.2. It fundamentally requires twooordinate systems: a main oordinate system (the x,y and r properties of ol-liders are presumed given in this system) and a more oarse ollision grid. Thelatter is a tile map onsisting of ollision tiles, where a ollision tile is apableof storing a list of olliders.Registration of a unit in the ollision grid uses the oordinates and radiusof the ollider to derive a bounding box, whih is easily ompared � throughthe oordinate transform provided by the map pakage � to the grid elementsof the ollision map. The heking routine desribed in the previous setion iseasily implemented by traversing the tiles thus overlapped by the ollider, thenand for eah tile omparing the radii of present olliders.The atual heking routine, hek, takes a ollider and a desired loation
(x, y) as parameters and returns whether the spei�ed loation is legal (i.e. doesnot overlap with any other ollider registered in the ollision grid).The ollision detetor further has a move method whih takes similar argu-ments, and whih will also move the spei�ed entity instead of only performinga hek.5.2.3 Further featuresFinally a few utilities of the ollision detetor should be mentioned.First, some entities may naturally be able to move past another while othersare not. For example, infantry units onsisting of multiple men would be able toenter a building whih would be impassable by larger objets suh as vehiles.Also infantry squads would be able to walk through eah other, whereas aninfantry unit would not be able to move past a tank (whih is massive), andtwo tanks would not be able to drive through eah other. Therefore the ollidershould also speify a boolean whih determines whether the objet is massive.If either of two olliding olliders is massive, then the ollision detetors hekwill return false. Thus infantry squads an easily be made to pass through eahother or buildings (all non-massive entities).Finally it is sometimes desirable to �heat�, i.e. not perform strit ollisiondetetion in order to make the gameplay smoother. For example if it is desiredthat a new unit should enter the map, but there is no spae at the desiredloation, it might be best to disable the ollision detetor and allow that unitto overlap others until suh time as the unit no longer overlaps them (when44

they or the unit have moved). Colliders may therefore be delared as ghosts, inwhih ase the ollision detetor ompletely ignores them until they are delarednon-ghosts.Regarding implementation, these two properties, whether olliders are mas-sive or ghosts, are onveniently enapsulated in a set of ollision propertieswhih every ollider must have. The ollision properties may be retro�tted inlater versions to support an abstrat notion of height (a �2.5 D� approah wherea two-dimensional world is arti�ially equipped with a few layers representingdi�erent heights) or other onepts that an desirably be modi�ed.The onept of olliders is ontained programmatially in the interfae Collider,suh that any lass an implement it.There is one more funtion that an advantageously be inluded with theollision detetor, even though it does not relate diretly to ollision detetion:Setion 9.3 desribes how entities are rendered to the main JWars display. Inorder to loalize the entities that are atually present on the display, it is desir-able to traverse the tiles used by the ollision detetor. The ollision detetorshould therefore also have aess to the terrain map. When an entity is moved,the ollision detetor is in this ontext responsible for dirtifying the a�etedterrain tiles, meaning that those tiles should be redrawn during next graphi-al update. This proess, traversing the overlapped terrain tiles, is ompletelyequivalent to that of traversing ollision tiles. With this in mind, eah ollidermust also possess a sprite, the onept of whih is desribed later in Setion 9.3.The ollision detetor thus traks the movement of sprites on the sreen, suhthat redrawing an be skipped in regions where no movement takes plae.5.2.4 E�ieny and optimizationAt an update speed of 50 Hz, the present implementation of the JWars gamean on the authors' test systems support approximately 1000 simultaneouslymoving units before lagging behind in logial framerate. It is, however, possibleto run a logial framerate of e.g. 10 Hz (see Setion 4.1.4) and perform interpola-tion to ensure graphial smoothness between logi updates (thus using a highergraphial than logial update rate). Using suh an approah the performaneould be enhaned 10-fold, and would allow the ollision detetor to handle atleast 10, 000 moving entities on our test system, but this �gure an be reduedif ustom geometries are used or if other parts of the logi are omputationallyheavy.5.2.5 Using the ollision detetorThe programmatial interfae of the ollision detetor is very simple and an beonisely desribed in only few terms:
• The ollision detetor is instantiated by supplying three oordinate sys-tems, namely the high-resolution main oordinate system of Setion 4.2,a tile map of ollision tiles and a terrain map (Setion 4.3).45

• An entity, tehnially anything whih implements the Collider interfae,an be added by alling the register method, passing a referene to theollider in question as parameter.
• If an entity is to be moved, the move method should be alled, speifyingthe relevant entity and its proposed new loation. This method will, asdesribed above, hek the validity of the new loation for the entity andmove the entity aordingly. If a ollision is deteted, ollision handlingmethods on the olliders in question will be invoked as required. Finallythis method returns whether the move was suessful.
• An entity an be removed from the ollision detetor by alling the removemethod.If for some reason the loations of entities are hanged without notifying theollision detetor, this may result in that entity being registered in inorret tiles.Thus that unit might overlap other units without a ollision being reported. Thisissue an be remedied by overtly enapsulating the positions of entities withinthe ollision property suh that it is impossible to tinker with it from outside;at present we have not deemed this preaution neessary.5.3 ConlusionThis hapter has introdued the JWars ollision detetor, and seleted a tile-based approah to ensure that the detetor aomodates large amounts of enti-ties e�iently.It works by registering entities in appropriate tiles using axially alignedbounding boxes. Collision heks are done using the radii of the entities, mean-ing that all units are onsidered irular. However an esape method is providedthat allows arbitrary geometry.Performane-wise the ollision detetor is optimized for large amounts ofunits eah with simple geometry, but even if omplex geometries are used theombined use of bounding boxes and bounding irles is likely to eliminate mostof the expensive heks.

46

Chapter 6Path�ndingThe JWars path�nder is a modi�ation of the well-known A* algorithm, whihis speialized to handle large and open maps.Path�nding is an essential part of any real-time strategy game as it enablesthe player to ontrol units without wondering if they make it to the seleteddestination or not. Requiring the player to �nd the suited paths for all his untisis out the question, as it would beome infeasible for any human when the unitount reahes a large enough number. The best solution is to let the omputeralulate a path for the unit through the world, whih would satisfy the player.The best way is not neessarily the fastest, sine it an, for example, be moredangerous to walk on a road when enemies are nearby. It is probably better toselet the geographially shortest, whih may lead through rough terrain, butthis behaviour is more preditable for the human player.6.1 Path�nding in general and in JWarsMoving units in RTS games require a path�nding algorithm to navigate aroundimpassable obstales. Most game path�nders today extend the normal `single-soure shortest path problem' solution to inorporate unit-to-unit relations,whih make units apable of interating in order to navigate around eah otherdynamially. For this projet we need a path�nder to work on the world ofJWars, while it should still be a viable solution in other world representations.Given the world representation in JWars the path�nder will likely be used onlarge maps, and with no restritions on terrain objets shape and size: it willhave to be very adaptive.When moving units in the world of JWars a navigational problem ariseswhen �nding the shortest paths between to points. There exists a range of solu-tions when �nding the shortest path between to points, these solutions howeverhave di�erent requirements for the map in whih to navigate.Many ontemporary RTS games solve the problem by using a tilesystem.When using a tilebased path�nder the world is strutured in to tiles and units,47

buildings or other entities take up spae by having the ability to oupy tiles.The map used for path�nding designates tiles with either �used� or �free� asmarkers when sanning through the map with an algoritm1. This approahhas several advantages, like high and onsistent speed, while it requires a map-struture supporting this to searh in. As desribed in Setion 4.3, we wishbuildings and other terrain objets to have a ertain amount of �exibility (forexample, small buildings should not have their shape determined by an in�exiblegrid), thus having minimal restritions on shape and size. We therefore hooseto allow polygonal terrain objets, and thus relying solely on a tile struture tosimplify the problem is no longer feasible.For JWars a di�erent approah must therefore be used. In order to devisean algorithm we look at the basi path�nding problem � an objet is blokingyour path. The shortest way around an objet is to walk around it, either leftor right. Using this idea the algorithm should �walk� (or shoot) in a straight linefrom the starting point towards the destination point until it meets an obstale.It will then examine the obstale and generate paths left and right around theobstale, then shoot again from eah side of the obstale. Note that when usingpolygonal objets, it will be optimal to walk along the obstale's line segmentsuntil reahing the orner from whih the destination is again �visible�: ornersan be used as intermediate waypoints. Eventually it should either reah itstarget or deide that the target is unreahable.6.1.1 The algorithmWe will here as a general overview summarize the workings of the derived algo-rithm. More detailed, but di�ult, observations will be postponed to the nextsetions, along with a full desription.While running, the algorithm maintains a list of potential waypoints (ornodes) alled the open list, whih works as a priority queue. The priority queuekeeps trak of the nodes immediately reahable by the algorithm and sorts themusing a heuristi evaluation in order to estimate whih way will most likely bethe fastest; this will allow the algorithm to guess the orret way without havingto try all ombinations of left and right whih ould take a long time if it has towalk around many buildings. The example in Figure 6.1.1 shows the algorithmat work in a simple setup. The list of nodes is updated and sorted after eahiteration in the algorithm, and nodes whih have been aepted as waypointsare removed from the list (they are no longer potential waypoints).Let us go through the steps taken by the algorithm:1. See Figure 6.1(a). The algorithm is about to shoot from s to t. Having notyet started, the open list ontains one element, being the starting point s.1Although these are not open soure games, meaning that we annot know for sure, severalobservations support this assertion. For example, buildings an typially be plaed only indisrete loations, and in some games units in lose lusters (notably zerglings in Starraft)are learly plaed aording to a grid. 48

s

t

Open list s(a) About to start. s

t

Open list q p

p

q

(b) An obstale bloks theway; either walk towards q orp. s

t

Open list

p

q

t p() q is slightly shorter.Figure 6.1: A simple path�nding problem.2. On its way the algorithm disovers an obstale. It determines the �left-most� and �rightmost� points q and p as seen from the starting loation.Having stepped onto the starting loation, s is removed from the open listwhile p and q are now potential waypoints. The algorithm �guesses� thatthe distane s-q-t is smaller than s-p-t and therefore it sorts the open listwith q before p, meaning that it will hek the most promising path �rst.This is shown on Figure 6.1(b).3. Now q is removed from the open list, as the algorithm shoots from thatloation. Note that p remains in the queue in ase another obstale isdisovered whih makes the urrent path longer than expeted. Howeverno other obstale is found, and thus t is reahed and added to the openlist whih now reads (p,t). The algorithm sorts the list, determining thatthe distane travelled (s-q-t) plus the remaning distane (0) is still smallerthan s-p-t, then sorts the list whih now reads (t,p), see Figure 6.1().4. The algorithm �nally terminates when t is removed from the open list.This largely explains how our algorithm works. However there are still uner-tainties, suh as the exat strategy used to �guess� whih distane is the shortest.This shall beome lear in the next setions.Logially this method favours sparsely populated areas sine fewer objetswould reate fewer obstales and result in more straight lines. A path�nderbased on a grid system (where the individual tiles serve as nodes) would havesmaller searh areas if lots of buildings are oupying spae, thus leaving less freespae to be searhed through. Our path�nder will have the opposite problem:in large, sparse areas there are few nodes, but a labyrinth would be a mess torepresent beause of the sores of orners: our hosen algorithm is spei�allydesigned to represent large, outdoors areas.49

6.1.2 Data strutureMost people pro�ient within the path�nding area hoose to run their algorithmson graphs. A good example of an algorithm using graphs is the A* algorithmwhih is a shortest path graph algorithm. For �nding a shortest path usinggraphs for data representation, history has shown that the A* algorithm is aviable hoie.In any situation we will need a way to represent possible future waypointsof a moving objet as �xed points so e.g. a move order an be broken downinto multiple segments represented as a graph. Given a graph represented asfollows:
G = (V, E).

V is a list or other representation of all the verties (or nodes) in the graph.
E is a representation of the edges in the graph. An edge is best seen as a linkbetween two verties - meaning that you an go from vertex v1 to vertex v2 ifthey are onneted by the edge e(v1, v2). We shall also introdue the weight ofan edge, orresponding to the amount of time (or the ost) it takes to traverseit, whih is given by a weight funtion w : E 7→ [0, infinity].Given a graph with a hosen data struture there are several possibilites tosolve the single-soure shortest path problem from vertex A to B. Most of thesealgorithms are based on seletive expansion of the searh area, as these have thebest running times with the fewest verties visited � like the A* algorithm.The path�nding in JWars has some requirements to the algorithm whihwe must take into aount before �nally hoosing a solution. The most pressingissue is to handle the dynami and rather limitless implementation of units andother objets in the world (reall that the ollision detetor, Chapter 5, allowsarbitrarily sized units and obstales). We have hosen a very open approahwhih imposes only limited restritions on unit and building loation, size andgeometry, whih however ompliates the �nal form of a path�nding solution.Any building or unit an be plaed anywhere on the almost ontinuos map andwill thus not e.g. �ll out a prede�ned amount of tiles in the world. In orderto perform path�nding we need aess to the units and obstales plaed in theworld. Therefore the most obvious data to use for path�nding are the atualobjets stored in the ollision detetor, Chapter 5.If we are to use the objet data some rules have to be de�ned, or the amountof di�erent senarios is limitless. An e�etive yet relatively simple way to thisis, as mentioned in the preeding example, to represent objets as polygons.More spei�ally it proves neessary to allow only onvex hulls. Convex hullshave many properties whih make the basis of handling and alulating a loteasier. If we do not establish ground rules like this the more eentri objetswill be impossible to handle.In this projet it is the data representation and requirements for the worldmodelling whih fores us away from the normal path�nding implementations.For this game we will have to ome up with a rather unique path�nding solution.50

As stated above the best data for these alulations are the terrain objets sinethey alone ontain the relevant data. A solution to a path�nder using only theterrain objets an be as simple as walk towards the goal, if you enounter anobstale walk around it and ontinue towards the original goal. On this basis wehave developed a path�nder whih is based on the A* algorithm and employsa heuristi estimation of the distane from any node to the goal. The JWars-path�nder is meant for 2D purposes only and in this ase a straight line towardsthe goal will result in the most optimisti evaluation a node an get.6.2 ImplementationFor using the path�nder some unique lasses have been implemented. Thepath�nder is designed to work on objets of the lass TerrainObjet. Allterrain objets have a list of path�nding nodes whih the path�nder uses asverties. In order to work on the path�nding nodes using the A* algorithm,the vertex must possess several attributes. These attributes are as follows: areferene to the anestor of the vertex (i.e. the previous node in the path)and three integer values whih we all f ,g and h. The three integers are allmeasurements of distane. The variable f holds the distane travelled duringthe algorithm to the urrent node. g holds a heuristi evaluation (or guess) ofthe distane to the goal from the urrent vertex, and h is the sum of f and g.The attributes of the path�nding node are essential for understanding the moretehnial desription of the path�nder.The implementation we have hosen for the path�nding is to transform thedynami/open implementation of the JWars-world to a graph-system on whihwe an perform a searh algorithm. For aomplishing this we have implementeda dynami graph with the following rules and de�nitions.For every path needing to be found we start with the given graph for theurrent map G = (V, E). V onsists of all orners of stati objets � onvexhulls � on the map. This data is stored in the ollion map. E is an empty list.2The start and goal loations are onsidered verties3 whih are spei�ed foreah run of the algoritm.6.2.1 Expanding and searhingThe algorithm is started by alling the method findPath with an end oor-dinate and the unit for whih a path should be found. As explained later thepath�nder returns unique solutions to spei� settings. Calling the method withtwo di�erently sized units an yield two di�erent results. This will be desribedto depth later in this hapter.2If it were to be a pre-de�ned list for E it should onsist of all possible routes betweenany verties on the map. This amount of data would be hard to handle and if the amount ofstati objets were large enough it would require a lot of memory spae.3The path�nder ontains a spei� lass for this purpose alled Target. This lass extendsthe the PathFindingNode lass and an also be registrered in the ollision detetor.51

Given the start oordinates as the unit's urrent loation and the end oor-dinates as argument to the method, we an reate the start vertex and add itto the priority queue. The path�nder uses the standard loop from A*, whihmeans it expands the searh area from the �rst element of the priority queue;it will therefore be fored to selet the start node for the �rst iteration. In astandard implementation of A* the priority queue will be referred to as the openlist.Taking into aount that all distanes travelled are straight lines, we analways be sure that we have the shortest possible path between any two givennodes if we use the �relax�-onept as in [2, p. 586℄ when desribing Dijkstra'salgorithm. A path�nding node's g-sore is simply alulated as the distanefrom the urrent node to the goal loation. The g-potential will ensure that anode having travelled less than others and having the possible result of gettingdiretly to the end node will be next in the priority queue. This approah meanwe an safely terminate the algorithm upon reahing the goal loation andhave the shortest path possible without further extending the searh area. Forextending the searh area we let the algorithm draw a line between two nodesand hek the line for ollisions. This is done using the expand funtion in thepath�nder. Having the loop seleting a new node to expand by eah iterationwe will now explain the expand funtion and how this works in the world ofJWars. When expanding a node we seek ativate nodes whih an be reahedin a straight line from the urrent node. We do not seek all possible nodes,merely those who will prove bene�ial for further searhing. When expanding anode we expand it towards another node - this being either the target node orthe orner of an objet. The expand funtion is used for expanding the searharea of the algorithm as it adds newly disovered nodes to the priority queue. Ifthe path between two nodes is not bloked by any objet, we an safely add thetarget node to the priority queue, as we an guarantee a diret path betweenthe two nodes exist. If an objet is bloking the route between the two nodes,we try to �nd a way around the objet by alling the expand reursively.The expand method determines how to expand the searh tree, by �ndingobstales and reursively searhing the paths left or right around them. Writtenin pseudoode, reads:expand(soure, destination, unit){[use Bresenham's algorithm℄tileList = getTileList(soure, destination)obstaleList = getObstales(tileList)for eah obstale in obstaleList{ if(path might interset obstale){ angle = angle from soure to destinationminAngle = angle from soure to obstale's leftmost ornermaxAngle = angle from soure to obstale's rightmost orner52

if(minAngle < angle < maxAngle){ expand(soure, leftmost orner of obstale, unit)expand(soure, rightmost orner of obstale, unit)}}}} If we hit the wanted path�ndingnode while �nding min and max valuesthe node will be added to the priority queue and is then ativated for futureexpansion aording to the heuristi evaluation.The reursive all to the expand funtion enables the funtion to ativateseveral edges leaving one node thus ativating all relevant edges for leaving theurrent node. A single node expanded ould follow Figure 6.2Every time a position (path�ndingnode) is grey, Figure 6.2, it has beenadded to the priority queue by the expand funtion. When the expand funtionsuesfully makes ontat with the targetted node we update the target nodewith the relevant data for the A* algorithm to run as intended. The updatemethod will reevaluate the three values needed for sorting and evaluating nodesin the list so we an expand further aording to the heuristi evaluation. Finallyit will set the anestor of the given node to the node from whih we ame. Intheory no edges are represented in E. When a node is expanded we get a setof edges based on the urrent path�nding problem. The expand funtion isessential for this path�nder as it is the major di�erene between our path�nderand a more onvenitonal path�nder with de�ned edges for eah vertie.In JWars the lass PathFindingNode has been implemented solely for thepurpose of path�nding and has all the needed attributes for being handledas a vertie. A path�nding nodes settings is alulated from the blueprintwhih determines the objets size, shape and positioning. A very importantfeature of a path�ndingnode is the ability have a stati oordinate and a dynamioordinate. This ability is neessary for the path�nder to �nd a path based onthe Moveable's radius. When reating a PathFindingNode a vetor is alulatedbased on the two adjaent orners in the objet reating an indent diretion.When multyplying this indent diretion with the unit radius we get an indentedloation. This loation is the dynami oordinate whih will be alulated in eahrun through the path�nder for all relevant nodes. In order to loate obstalesin a line between two points, the path�nder uses a speially endowed tilemapalled a LineDrawCapableMap.The LineDrawCapableMap omes with a method whih utilises Bresenham'sline drawing algorithm to �nd a list of tiles based between two points on the map.A LineDrawCapableMap an be onstruted on top of an ordinary tilemap,providing the line drawing apability to a tilemap whih originally ould noto�er this funtionality. Spei�ally we want to endow the ollision map (seeChapter 5) with the ability, sine this is an obvious way of �nding obstales on53

(a) By �rst expanding towards the targetobjet A is found to blok the path (b) When expanding towards the ornersof A, one all is suesfull and an addA's orner to the priority queue while theother �nds objet B to blok

() With B bloking the searhed route to-wards A's seond orner we need to estab-lish routes towards B's orners. (d) Both expands towards Bs orners aresuessive and they are added to the pri-ority queue.Figure 6.2: A single iteration in the loop of the path�nder. The expandfuntion alls it self repeatedly so all needed nodes are found.
54

the path. From the LineDrawCapable map a list will be returned onsisting ofCollisionTile's from the ollision map. The line drawn between the two pointsan be ordered in any thikness (measured in ollision tiles) required for unitslarger than the standard ollision tile. Using the list of ollision tiles we haveaess to all registrered objets in the vainity of the searhed path.When heking a building for ollision we take several steps before onludingthat a ollision will our. The free positioning and shape of objets makes asimpel point-to-line distane worth alulating. This will ensure that buildingswith no hane of interfering with the searhed path will be exluded from thehek early on. The seond step is to alulate all angles to the the indentedloations in the urrent objet. Calulating the largest and smallest angle wean perform a hek wether the line is between these two angles. If we deteta ollision with the objet, we enfore the rule about all objets being onvexhulls for path�nding issues. If we need to go around the objet we referenesto the largest and smallest angle to the objet. Now we simply expand towardsthese nodes as stated in the pseudoode for the expand funtion.By using the dynami expand duntion we have a new setup and all nodesould produe a new set of edges everytime we use the path�nder. We do notstore the individual edges but merely ativate those disovered by the algorithmupon expanding a node. Using this approah we expand the graph aordinglyto the A* and update the nodes found by the expand funtion. 4 The operationthat makes this algorithm stand out is the expand funtion whih ativatesverties/edges while searhing for the path.An important aspet of the hosen solution is that it is only dependant onthe game implementation of the ollision detetor. If a developer wants to usethis path�nder it is fairly easy to onvert to a di�erent setup - a onversionwould need a funtion apable of deteting a ollision between a game objetand a straight line from point A to B.When running the algorithm we have some settings whih is restored aftereah usage. Initial settings:
• All nodes are initialized with h = g = ∞.
• The list of verties to expand - the open list - is initialized empty.6.3 Final designThe algorithm is designed for terrain with a sparse objet population. Withfewer objets we get a shorter runtime as the hane of hitting an objet blokingthe searhed path diminishes. When there is fewer objets the path�nder has toexamine and get around it will redue the runtime signi�antly as the expandfuntion an be alled reursively. This is the exat opposite when using theearlier mentioned path�nders based on a grid layout for the graph. In a gridwhere a ertain amount of spae taken by objets the graph will be diminished4A more formal word for the update method is to relax the edges adjaent to the node �in this ase we update the nodes found by the expand funtion55

Figure 6.3: The illustration shows the path�nder traking around thelarge objet on its way to the target zone. The fastest route however is toignore the large objets and go straight for the smaller building, around,and then for the goal.and making the path�nder runtime shorter. This make the path�nder in JWarssomewhat speialized as it favourites a ertain type of terrain but will stillfuntion on densely objet populated terrain.The expand funtion su�ers one fatal error. It an fail in �nding all theneessary edges leaving it. An example of this situation is shown in Figure 6.3.It is learly that aquiring the nodes on the smaller building would be thefastest route to the target X . The path taking the moveable loser to the objethowever, �ts a standard tatial manouvre, where overs means safety fromenemy �re. In the real world objets on the battle�eld would be used by unitsto hide their positions or make up defenable position. One other error whihan be fored by a programmer is reate a single struture from multiple onvexhulls. We have already stated that in order to have non-�awed data objets mustbe onvex hulls. If a programmer hose to make reate a 'U' formed buildingonsisting of 3 retangles, the path�nder would not return a path to the target,merely a path inside the 'U' where it would remain stationary.The �aw in the expand funtion ould be �xed by adding in a do/while-loopin the update funtion or a similar �tting plae.urrent = this;do(if(expand(this, urrent.anestor)){ 56

this.update(urrent.anestor, goal);}else{ urrent = urrent.anestor; })while{ urrent != start }Plaing this pseudoode in the implementation would make the path�nderhek all nodes leading to node whih we just found. It would ut some ornersand make the implementation �nal but have not been inluded in this �nalrelease.Some path�nders have been expanded to foreast other units walk patterns,and to take these into their own alulations when searhing for a path. Thispossibility do not arise in a world whih is not grid-based sine the possibiltyto �rent� map spae is not available. Unfortunately this option will never beavailable to a path�nder based solely on the terrain objets themselves. Inthe real world however it does make sense not to let all allies know whereyou are all the time. This general rule should apply to all RTS games aimingfor realism. For solving the issue with units sharing knowledge and optimisingpaths another type of data would be needed. Implementing a system for units toommuniate and plan their movements soially an be implemented. Currentlythe walkAround method in the MoveableAI lass makes up for ollisions. Thismethod should be extended to take unit-to-unit ommuniation into aountfor smarter move patterns on the small sale. We have experiened some issuesonerning two di�erent systems both apable of giving orders to units as theyhave a tendeny to work against eah other.

57

Chapter 7Dynamial game objetsUntil now we have desribed several omplex modules, notably the ollisiondetetor and path�nder. This hapter will desribe the atual inhabitants ofthis world, how they are organized, whih variables they must have and theirbehaviour.7.1 Unit organizationA entral onept of all strategy games is the basi ontrollable unit, rangingfrom individual men and vehiles in some games to division-sale (as in theCivilization series). The onept of units in JWars di�ers fundamentally fromthe orresponding onepts in other realtime strategy games, borrowing featuresfrom turn-based strategy games and real-world military hierarhies. This hap-ter will provide reasons for and desription of the JWars unit organization andits advantages. The ideas presented below onstitute the most important singlereason for the existene of JWars, distinguishing it from all strategy gamesknown by the authors, and this is therefore the most likely feature to makeJWars �famous� if suh a thing should happen.7.1.1 Real-world military organizationAll modern militaries are remarkably similar in their organizational struture.More or less onsistently, the armed fores are divided into several armies whihare suessively divided into orps, divisions, brigades, battalions, ompanies,platoons and individual vehiles or squads of infantry. Commanding o�ers areassigned on eah of these levels, and the organizational struture allows largeamounts of fores to be ontrolled as a single entities. The high-level entities aregenerally referred to as formations whereas the lower-level ones (whih omprisee.g. purely infantry) are alled units.In most ases, eah unit omprises three or four units of the next smallertype. For example a battalion might ontain four infantry ompanies plus sup-58

porting anti-tank or mortar units. Infantry ompanies usually onsist of threeinfantry platoons and possible further support. A platoon an onsist of three10-man infantry squads, eah man being armed with a ri�e exept for a lightmahine gunner and an anti-tank team.Generally it is pratial for the ommanding o�er at a partiular level oforganization to diretly ontrol units up to two levels down in the hierarhy.Thus a divisional ommander exerts diret ontrol of a number of brigades, andto a limited degree the battalions. The individual formations and battalionsare assumed apable of ontrolling their own omponents. It is obviously notpratial for a ommander at a very high level to ontrol vast amounts of singletanks.7.1.2 Military ommand in omputer gamesThe ategory of omputer games in whih the player ontrols a large militaryfore with the objetive of defeating a similar fore in battle an be divided intotwo primary groups: real-time and turn-based strategy (or tatial) games. Inany ase the player usually has a fore whih onsists of units.Some turn-based games, suh as the Steel Panthers series, attempt to ahievevery high degrees of realism, inluding realisti weapon spei�ations, provide astruturing of units into a true military hierarhy, and sometimes these gamesinlude senarios that aurately depit the orders of battle (the unit strutureand equipment) of the historially involved formations. In Steel Panthers, forexample, the player has unlimited time to ontrol every single entity no matterthe size of the entire army. For very large battles, the player who spends themost time is likely to win. While the units may be organized into platoonsand ompanies, the player still has to ontrol the fores at the single-vehileor single-squad level, and platoons are thought of as abstrat entities and notatually units.In real-time games the situation is di�erent. First and foremost, the degree ofrealism is rarely very high, with tanks being able to shoot less than 100 metresand nulear weapons frequently being a native part of the battle�eld. Asidefrom the ahistorial antis, the ontrollability of fores beomes very importantbeause the player annot take arbitrarily long time to issue orders. Generallythe units are not organized at all, meaning that the player has diret ontrolof every unit. This means that as the game grows in omplexity, ontrollingthe units beomes ever more demanding, and the player who is fastest withthe mouse frequently wins out due to the better ability to pull wounded unitsout of harm's way, bring reinforements forward quikly, and possibly manageresoures at the same time.To failitate somewhat e�ient ontrol, real-time games generally allow theplayer to drag a seletion box on the battle�eld with the mouse to obtain mo-mentary ontrol of whihever units are inside the box, and every order issuedwill apply to this seletion. Another feature is to organize units into ontrolgroups, suh that the player an use hot keys to selet i.e. a group of aeroplaneseven though they are not near eah other (and therefore di�ult to drag a box59

Figure 7.1: Example of a unit tree. Only the nodes with downwardpointing arrowheads are expanded. This is part of a sreenshot fromJWars.around). Control groups an be e�etive, but it an be di�ult to managethem partiularly if new units are produed ontinuously, sine they have to bemanually inluded in the groups.7.1.3 Tree-based unit representationMany proponents of turn-based games so� at the stress and dependene onquik mouse ation in real-time games, using niknames suh as real-time likfests, while many real-time players �nd turn-based games boring.JWars proposes the use of an expliit military hierarhy to help ontrolfores of arbitrary size in real time quikly and e�iently, reduing the need forquik mouse ations. Sine the fores an be almost arbitrarily large, the gameworld might as well be expanded past that of most games. This will furthermitigate the importane of fast mouse ation, sine the time sales involvedin most operations will inrease. On the other hand, the redued reliane onmouse ation inreases the relative importane of tatial thinking, whih willhopefully appeal to both turn-based and real-time players alike.There is one possible drawbak of this model, namely that the struturing ofunits may not be as the player wants, and that the expliit tree struture laksthe �exibility to use units individually. Nonetheless the struture is identialto that of real military units, whih makes it a marketable feature regardless ofontrollability.Figure 7.1 shows an example of a military hierarhy in the urrent version ofJWars. This battalion onsists of 116 individual entities (vehiles or separateinfantry squads), omprising 344 infantrymen and 36 tanks or assault guns.It has now been established that all ontrollable entities in JWars should60

be organized into a military hierarhy. This is the ornerstone of the entirephilosophy of JWars: the player should not need to distinguish between on-trolling single vehiles or larger units suh as ompanies. To help enfore thispriniple, the onept of a unit, whih in previous games has always referred tosingle physial entities (suh as tanks) shall in the JWars ontext refer to anyontrollable entity.With this in mind we have de�ned a base lass of ontrollable entities alledUnit, whih has the two sublasses Moveable and Formation, where the formerrepresents atual physial entities suh as vehiles while the latter represents anabstrat onept suh as a ompany or platoon, and an ontain any numberof sub-units (suh as platoons or vehiles, themselves being either subforma-tions or physial entities). Formations and moveables are diretly ontrollable,presenting the same interfae to the user.The game world ontains a single unit whih serves as the root of the hi-erarhy. Entities an be added to the world, meaning that they are added assub-units of the root unit. There are presently two teams in JWars, Germanyand the Soviet Union. The teams are examples of formations themselves. Eahteam ontains two battalions, and eah battalion is omposed of several di�erentinfantry and tank ompanies.7.1.4 Network distinguishability of unitsThe usage of a root and the unit tree give us onvenient referenes between unitsand their sub-units. Suppose we want to send a ommand aross the networkapplying to a partiular unit. We must be able to pik out the orrespondingunits on all lients in the game. A unit is uniquely identi�ed by its positionin the unit tree, whih makes it unneessary to devise another datastruture inorder to distinguish units over a network.This relationship has been implemented with a system whih we all a unittree ID. Eah unit in the game has a unique ID stored in a single integer whihenables us to send orders over the network regarding spei� subtrees. Whenan order is given a unit ID aompanies it, and the network ensures that whenexeuted the relevant unit ID is used. The ID tagging is ordered by a singleinteger split into 6 layers of 5 bits. Eah 5-bit layer designates whih sub-formation to hoose from the urrent formation � starting from the root. Thismeans that the limitations on the unit tree is maximum 311 sub-formations anda maximum total of 6 layers. It ould be argued that a using a long wouldsupport larger fores yield a more �exible unit tree, but this transformation hasnot been done yet.7.2 Game data managementThis setion desribes the data management strategy used in JWars. [1, p.55℄ de�nes a data-driven system as �...an arhitetural design haraterized by a1If the urrent layer reads �0� we have reahed the wanted formation61

separation of data and ode�. Suh an approah is useful for numerous reasons.First of all, trivial matters suh as hanging the range of a annon hardly warrantreompilation of the soure ode. It is preferable that the game ontent an behanged without even knowing the ode, suh that di�erent people an takeare of programming and game ontent.This will also make it possible for players to modify the game to providetheir own units and weapons. For example,Warraft III is highly reon�gurableand there exist large sub-ommunities of Warraft III players that play ustommodi�ations of the game2.JWars inludes a loading routine whih reads game data from external �les,then onverts the data into ategories whih are fatories for reating variousgame objets.a7.2.1 Inheritane versus data-based game objet lassi�-ationJWars ontains several di�erent types of units, suh as tanks and infantrysquads. Further there are di�erent types of tanks, suh as PzKpfw IV and T-34. We note two basi ways of dealing with suh variations, inheritane andpurely data-based lassi�ation.Common lessons in objet oriented programming desribe how the abstratlass Animal ould have an abstrat sublass Fishwhih ould have non-abstratsublasses suh as Anhovy or Lamprey. It would be possible to use a purelyinheritane-based hierarhy, meaning that there should be a lass alled PzKpfwIV.But even so there were made variations of this tank. Does this warrant yet an-other level in the inheritane hierarhy?On the other hand one ould use only one kind of unit, then provide alarge amount of data to ategorize the unit. For example type=infantry. Theproblem is that if �ying units are introdued, then every ground unit mustsomehow state that it annot �y. This an beome very umbersome.The natural solution is to use inheritane3 only in those ases where fun-tionality di�ers greatly. For example, sine infantry squads do not have a turretwhih an turn around, it makes sense to use a Tank lass whih has one, whereasthe other lasses need not. The inheritane relationship between di�erent typesof units in JWars is seen in Figure 7.2.7.2.2 Category modelModelling a tank requires a ertain amount of data. For example it has amovement speed, turning speed, a annon, any number (usually two or three)of mahine guns, front armour thikness, side armour thikness and the list goeson. It would be inonvenient for the programmer to supply all this data every2Notably there are ountless variations of �Tower Defense� maps where the players build de-fensive towers to defeat onoming omputer-ontrolled hordes, and the widely played �Defenseof the Anients� modi�ation.3Languages whih do not support inheritane an use delegation instead62

Unit

MoveableFormation

VehicleInfantrySquad

Tank AssaultGunFigure 7.2: Di�erent unit lasses by inheritane hierarhy.time a tank needs to be reated, espeially if hundreds of tanks are reated, andpartiularly beause most of these tanks are idential anyway.One solution is to use the fatory pattern, i.e. a software omponent whihan reate any number of units of some type. Suppose every type of unit hasits own fatory, alled a ategory. The ategory has to ontain all the data onwhih the units of that type rely, but the ategory does not have to provideany other funtionality than that of reating units. By letting units have diretaess to their ategory and its data, they need not store the data expliitlythemselves. The ategories thus serve as both fatories and data repositoriesfor the unit type they represent.To reapitulate, every unit type, that is, every on�guration of infantry squadand every model of vehile is represented by a unique ategory objet : there is aT-34 ategory for the T-34 tank, a Ri�e squad ategory for the Ri�e squad andso on.Note that when inheritane or delegation is used to distinguish types of unitssuh as infantry and tanks, their respetive ategories must be able to make thisdistintion too; it follows that ategories should be organized in a similar andparallel inheritane hierarhy, see Figure 7.3.It is not just physial entities (suh as tanks) whih bene�t from using ate-gories. Categories are used to lassify all omplex in-game omponents, inlud-ing tank hulls, tank turrets (it was not unommon for di�erent turrets to bemounted on the same hull type) and weapons. A tank ategory, for instane,holds referenes to its hull, turret and weapon ategories. Aside from enablinglogial struturing of data, this allows an SU-85 tank destroyer (whih histori-ally used the T-34 tank's hassis) to use the hull armour data of a T-34 tank.Also many of the infantry squads in the game use the same ri�es, mahine gunsand grenades. 63

Figure 7.3: Parallel inheritane hierarhy of unit lasses in JWarsand ategory lasses. The fully inked arrows denote inheritane rela-tionship, while the dashed lines denote orrespondene between a lassof unit and a lass of ategory.7.2.3 Content loading by ategoriesJWars provides a data manager whih serves as a entral data repository.As promised earlier, game ontent is read from external �les. The entraldata manager an onveniently be used to parse data�les ontaining game data,and ategories an be reated dynamially from data obtained in this way. Thedata�les are stored in a ustom, human-readable format, see Tables 7.1 and 7.2whih show examples of data�le entries.When the data manager loads a �le, it parses the words in the �le (separatedby whitespae) in sequene. First it reads the ategory type identi�er (�weapon�or �tank� in the above examples) and uses the type identi�er to determine theorret ategory lass (e.g. WeaponCategory or TankCategory). Then the datamanager invokes the orresponding ategory onstrutor whih is responsiblefor parsing the remaining text from a partiular data�le entry. Notie that oneof the top entries in eah data�le entry is an identi�er. When the data managerhas loaded a ategory, the ategory is stored in a ditionary, using the identi�eras a key. The ategory an then be aessed from the data manager by providingthat identi�er.Table 7.2, whih de�nes the PzKpfw-IV tank ategory, holds a list of weapons.The weapon names given in the list are the identi�ers of weapon ategories.Thus, as the PzKpfw-IV ategory loads, it an retrieve the spei�ed weaponategories from the data manager through the weapon identi�ers, and get holdof the weapon ategories.When �nally a PzKpfw-IV tank is reated, the PzKpfw-IV ategory an useits list of weapon ategories to reate the orresponding weapons for the tank.The military hierarhy is similarly reated by means of formation ategories.Formation ategories hold referenes to sub-unit ategories (so a ompany at-egory ould hold a list of platoon ategories, whih ould hold a list of infantrysquad ategories). When the formation ategory is used to reate a formation,it will automatially result in the reation of the sub-units too. For example,reating an infantry ompany will result in the reation of the four infantryplatoons of whih the infantry ompany onsists. The reation of eah platooninvolves the reation of the relevant infantry squads, whih again involves the64

Category

UnitCategory WeaponCategory

FormationCategory MoveableCategory

TankCategoryInfantryCategory AssaultGunCategory

Sturmgeschuetz
SU-85

T-34
PzKpfw-IV
Tiger
KV-1

Infantry squad
SMG squad
Panzerfaust team

75mm Kwk40 L48
76mm F-34 Gun
Karabiner 98k
Molotov cocktail

Battalion
Rifle company
Rifle platoon

Figure 7.4: Categories. The ontinuous boxes indiate ategory lasseswhereas the dotted boxes list examples of atual ategory objets of theorresponding lass. Arrows indiate inheritane.reation of weapons for eah squad.7.2.4 ConlusionWe have now developed a system to manage game ontent by editing text �les,i.e. without having to know or touh the ode. External data �les de�ne weapontypes, infantry squads of di�erent sizes using di�erent weapons, and tanks whihan be reated from a entral data repository whih is loaded at runtime. Thegame already inludes �ve kinds of infantry squads, four kinds of tanks and twoassault guns. The standard formations, suh as platoons and ompanies, intowhih the fores are organized are de�ned in a similar manner.7.3 Unit AIThis setion is devoted to the unit AI framework. In this ontext, AI meansrelatively simple odes for organized behaviour as opposed to e.g. omplex andunpreditable behaviour whih may be desired in other games.7.3.1 Hierarhial strutureMost realtime strategy games inlude two kinds of AI: �rst there is a simpleAI whih ontrols the low-level behaviour of the individual units. This AI is65

Type & identi�er weapon 75mmkwkFull name "75mm Kwk40 L48"Firing range 1.2 kmE�etive range 500 mReload time 8.1 sFirepower data ap 120 16Explosion type mediumexplosionSplash radius 5 mTable 7.1: The data�le entry de�ning the weapon ategory orrespond-ing to a German 75mm Kampfwagenkanone (tank gun). The right ol-umn ontains the atual lines in the data�le, while the left olumn isonly for desription. The �repower data omprises ammo type (armourpiering), armour penetration (in millimetres) and �kill index� (e�e-tiveness against infantry).
Type & identi�er tank pzivFull name "PzKpfw-IV"Radius 3.8 mSpeed 24 km/hTurn rate 1.4 /sBegin weapon list beginMain gun 75mmkwkMahine gun mg34Mahine gun mg34End weapon list endHull type pzivhullTurret type pzivturretTable 7.2: Data�le entry de�ning the German Panzer IV tank. Theentries in the weapon list are identi�ers of weapons. Notie the identi�erof the tank gun from Table 7.1. The other guns and the hull and turrettypes are also identi�ers of ategories. These inlude �lenames of imageswhih are used to display the omponents.

66

responsible for automatially doing tasks whih are trivial, suh as �ring atenemies within range or, if the unit is a resoure gatherer, gather resouresfrom the next adjaent path if the urrent path is depleted suh that theplayer needs not bother keeping trak of this. The other kind of AI is theseparate AI player whih ontrols an entire army, and whih is inompatiblewith the interferene of a human player. This AI is responsible for larger tatialoperations suh as massing an army or responding to an attak.In JWars, as we shall see, there is no suh lear distintion between di�erentkinds of AI. Beause of the hierarhial organization it is possible to assign anAI to eah node in the unit tree, meaning that while every single unit does havean AI of limited omplexity to ontrol its trivial ations, like in the above ase,the platoon leader has another AI whih is responsible for issuing orders to eahof the three or four squads simultaneously, and the ompany leader similarly isresponsible for ontrolling the three or four platoons. It is evident that thismodel an in priniple be extended to arbitrarily high levels of organization,meaning that it will easily be equivalent to the seond variety of AI mentionedabove: the entire army ould e�iently be ontrolled by AI provided that theAI elements in the hierarhy are apable of performing their tasks individually.There are numerous bene�ts of suh a model, the most important of whihwe shall list here.
• Tatially, if one unit is attaked the entire platoon or ompany will beable to respond. In lassial realtime strategy games this would result ina few units attaking while the rest were standing behind doing nothing.Thus, this promotes sensible group behaviour whih has been laking inthis genre sine its birth.
• It is easy for a human player to ooperate with the AI. For example it issensible to let the AI manage all ativity on platoon and single-unit levelwhile the player takes are of ompany- and battalion-level operations.This will relieve the player of the heavy burden of miromanagement whihfrequently deides the game otherwise (as asserted in setion 1.2.1). Thus,more fous an be direted on strategy and tatis instead of managingthe ontrols.
• The ontrols may, as we shall see below, be strutured in suh a wayas to abstrat the ontrol from the onrete level in the hierarhy. Thismeans the player needs not bother whether ontrolling an entire ompanyor a single squad: dispath of orders to an entire ompany will invoke theompany AI to interpret these orders in terms of platoon operations. Eahplatoon AI will further interpret these orders and have the individual unitsarry out the instrutions appropriately.
• A formation-level AI an hoose how to interpret an order to improve e�-ieny. For example the player might order a platoon to attak an enemytank, but the platoon AI might know that ri�es are not e�ient againstthe tank armour. Therefore it might oneivably hoose to employ only67

the platoon anti-tank setion against the tank while the remaining platoonmembers ontinue e.g. suppressing enemy infantry. These onsiderationsare easy for a human player, but annot be employed on a large sale sinethe human annot see the entire battle�eld simultaneously. One againthis eases miromanagement.There are, however, possible drawbaks of the system.The worst danger of employing suh an AI struture is probably that the AImight do things that are unpreditable to or on�iting with the human player.Care must be taken to ensure that human orders are not interfered with, andthat the behaviour is preditable to humans4.From a game design perspetive it might also be boring if the automatizationis too e�ient, leaving the player with nothing to do. This problem, of ourse,an be eliminated simply by disabling ertain levels of automatization. It is alsounlikely that the AI at higher levels of organization an ever outwit a humanommander, making sure that human interation is still required.7.3.2 Design onsiderationsIt was stated above that the ontrol of single entities versus large formationsould be abstrated suh that the player did not need to bother about the saleof operations. If this priniple is to be honoured, the user interfae must allowsimilar ontrols at every level of organization. At the software designing levelthis may be parallelled by providing a ommon interfae to be implemented bydi�erent AI lasses. It should be possible to give move orders, attak orders andso on, and eah of these should have its implementation hanged depending onthe ontext, i.e. whether the order is issued to a formation or a single entity.It is therefore reasonable to propose that every unit, whether it is an ab-strat formation or a physial entity, should possess an AI, and this AI shouldexpose an interfae whih allows a standardized set of instrutions. However theimplementation of these instrutions should be left open, suh that the di�erentkinds of units an freely interpret them appropriately.It further proves useful to have di�erent types of AI speialized in di�erentroles. The ode whih manages movement not neessarily have muh in ommonwith that whih manages shooting. Therefore it an be an advantage to holdsuh funtionality separate. Spei�ally, this will result in a MobileAI and anAttakAI, eah of whih provides the orresponding funtionality. Sine unitsmust provide the funtionality of both, the logial solution is to assign eah unita UnitAI whih onforms to the spei�ations of MobileAI as well as AttakAI.This design is obviously well-suited in an environment whih allows poly-morphism and inheritane, and for this reason the use of Java interfaes areideal for the ore AI lassi�ations.4Classial examples of this problem are when resoure gatherers deplete resoures andautomatially start harvesting from pathes too lose to the enemy, or when the player issuesa movement order and the unit moves the �wrong� way into the line of �re beause thepath�nder has determined that this way is faster.68

7.3.3 AI layering strutureAlong with the AI interfaes that speify the AI apabilities, some simple im-plementations exist whih an take are of spei� roles. The following examplewill illustrate the usefulness of this priniple.The MobileAI interfae spei�es an orderMove method whih is supposedto make the relevant unit move to a spei�ed loation. Also similar movementorders an be appended or prepended to a queue of suh orders. There is astandard implementation, MovementQueueAI whih takes are of all this queuemanagement. Suppose now that a path�nder should be used to break the moveorder into straight-line segments leading around some obstales. This fun-tionality an be provided by wrapping the MovementQueueAI and providing aPathFindingAI with an orderMove method whih invokes the path�nder, thenenqueues the way points by using the underlying MovementQueueAI. The player,however, does not need to know that the AI responsible for path�nding atuallywraps an AI responsible for enqueueing movement orders. The only informationwhih is important is that the AI provides the movement funtionality.In a ompletely unrelated matter, the BasiAttaker whih is an imple-mentation of AttakAI is responsible for keeping trak of a target and whetheror not to shoot. The implementations whih provide movement and targettingfuntionality an now be reused together. The AI of a physial entity suhas a tank (alled a Moveable) is an implementation of UnitAI whih wraps aMobileAI and a BasiAttaker. Thus the behaviour of a tank is ditated byinterhangeable AI �building bloks� that an be expanded as required.This example is of ourse dependent on the layout whih we have happenedto hoose for the AI API, and this might not be what another developer wants.Nonetheless the design shows a �exibility whih allows almost arbitrary ex-tensions. In onlusion, units have a partiular AI interfae whih is exposesattaking and movement funtionality, and the AI framework relies on delega-tion to various spei� implementations to provide this funtionality. Interfaesare used for polymorphism.7.3.4 Future AI workIt is no seret that the limited work whih has gone into the AI implementationsin JWars are not going to revolutionize the real-time strategy genre. Howeverthe unique tree-organization allows for muh more omplex and intelligent be-haviour whih an be implemented in the future. This setion will mention someof the more promising improvements whih an be done.
• Aggression modes. In some ases it is desirable that units �re at everynearby enemy. But otherwise this might not be a good idea. If a reon-naissane patrol opens �re on the enemy troops they are observing, theywill most likely be spotted and killed. If an infantry squad is waiting foran unsuspeting tank to ome lose enough to throw a grenade down theopen hath, then it is most unwise to open �re at a range of two hundredmetres. Thus, a good AI must know when to �re and when not to. When69

the squad opens �re it is important that the remaining squads of the pla-toon, or the entire ompany, open �re as well. It therefore makes sense tomake e.g. a ompany AI responsible for starting suh an ambush, thoughit requires that the AI supports, for example, an ambush state.
• Battle�eld-awareness. A ommon problem in ontemporary real-time strat-egy games is that an airstrike is ordered on an enemy fatory somewhere.While under way the planes are attaked by unseen anti-airraft batteriesand shot down. In this ase it would be bene�ial to all o� the attakentirely. But if there is only one anti-airraft emplaement, and if theattak involves twenty planes, alling o� would be silly. Assigning an AIto the entire attak wing would easily provide a means of evaluating andhandling suh threats.
• Morale-dependent AI. While under �re, people an pani and retreat. Thiskind of AI ould refuse to perform o�ensive ats if pani sets in. Oneagain this an be done by replaing the AI implementation temporarily.

70

Chapter 8Combat dynamisThis hapter deals with the ombat model provided with JWars. The ombatmodel enompasses di�erent modules pertaining to weapons and automati �r-ing routines, armour and damage. Following that, the vision model, whih isrelevant for automati targetting will be disussed.8.1 Firing and damageMost real-time strategy games use remarkably similar ombat models. Unitswill �re automatially at enemy units when the enemy units ome into range,wait for their weapons to reload and ontinue �ring until they or the enemiesdie (or until they reeive new orders and disengage).Every time a unit �res, it may or may not hit its target (in many games theywill even always hit the target), and do damage to the target and possibly thesurrounding units based on the weapon used and the type of target.The anonial way of representing damage and the health of an entity is touse hit points. A unit has a ertain number of hit points, and every time itgets hit by a weapon, a number of hit points based on the weapon type, target,luk or other fators, gets subtrated. If a unit reahes 0 hit points it dies. Thehealth state of a unit is typially represented graphially by the harateristigreen health bar, whih beomes shorter and hanges olour to yellow and redas things go downhill.This is a very simple basis model whih is used in most games. We anmention Warraft I-III, Starraft, Dune II, all Command & Conquer games,and the list goes on.For JWars, however, we have something more ambitious in mind. Realitydoes not deal in hit points. If a shell hits a tank, one of two things happen:either the shell bounes o� the armour doing no or very little atual damage,or else the shell penetrates the armour and will likely ause horrible damage.It does not take 7 hits or 5 hits like in the hit point model, but ould take anynumber of hits. If the tank is su�iently heavily armoured, no amount of hits71

from that annon will destroy it1.Suh realisti models have been used in the Steel Panthers series of turn-based strategy games. Our approah shall borrow some true and tested ideasfrom this highly realisti series of games.8.1.1 Combat rule setThe ombat rule set is the basis for the implementation. This does not meanevery implementation has to use this rule set � this is only the default.
• There are two primary types of entities: vehiles and infantry squads.
• Some vehiles are tanks, whih have a hull and a turret whih an tra-verse, whereas others are assault guns whih have a hull and an in�exiblesuperstruture with a annon. Hull and turret or superstruture eahpossess an armour table, whih lists the thikness of steel armour in mil-limetres and the angle of armour plating. This information is borrowedfrom Tashenbuh der Panzer 1945-54 [4℄ and sometimes Steel Panthers:World at War [6℄.
• Infantry squads have a strength, i.e. a number of men.
• Eah entity an have any number of weapons.
• A weapon has a maximum range, an auray, a �repower (determining itse�ieny against infantry), an armour penetration value (in millimetresof steel, numbers are borrowed from Steel Panthers: World at War [6℄), anammunition type and a reload time. A Weapon an �re at a loation butis not guaranteed to hit. Weapons an deal splash damage, i.e. ollateraldamage to units near the impat loation.
• Whenever an infantry squad is hit or nearly hit by a weapon, people maydie depending on luk, impat distane, weapon �repower and possiblyother fators.
• Whenever a vehile is hit diretly by a weapon, it might be destroyedbased on the weapon's armour penetration ability, the vehile's armourthikness and the angle of inidene.
• Enemy units will automatially �re at eah other if within range.We intend to expand the ruleset in the future, to support rewed weapons (e.g.infantry-operated anti-tank guns or FlaK), o�board artillery whih an ondutindiret bombardments of any part of the battle�eld and aeroplanes whih areo�board most of the time but an make bombing runs.1Anthony Beevor[3, pp. 90-91℄ notes a partiular oasion on whih German panzers �redmany shells at an immobilized Soviet KV-1 heavy tank. Finally the Soviet rewmen emergedto surrender, badly shaken, but unhurt. 72

8.1.2 �Weapon vs. armour�, or �armour vs. weapon�?There is a triky matter of evaluating di�erent ammunition types versus di�erentarmour types whih warrants a disussion of the way suh heks are handled.This setion will disuss real-life weapons systems in order to determine themost sensible way of handling shell impats.Suppose a shell hits a tank. We will want to ompare the steel penetration ofthe weapon with the thikness of the armour. If the shell uses kineti energy asa means of penetrating the armour (e.g. ommon armour piering ammunition)then its ability to penetrate armour should be redued with impat speed andthus travelling range. If the shell uses only explosive power (suh as HEAT,high-explosive anti-tank whih is ommonly used in infantry anti-tank weaponssuh as the bazooka, Panzershrek and Panzerfaust), then its steel penetrationis ompletely independent of impat speed.The ommon way of handling suh a problem in objet oriented languagesis to equip eah weapon with a di�erent method for alulating damage to steelarmour. The problem is that several types of armour an also exist, whih meansthe weapon will have to distinguish manually between target types anyway. Seebelow: should the implementation be provided by weapon or armour?armour.alulateDamage(weapon)//Allows armour lass to selet implementationweapon.alulateDamage(armour)//Allows weapon lass to selet implementationWe have deided that the omplexity of armour is generally greater thanthat of weapons, and that the implementation should therefore be left to thearmour lass.For example, diverse defensive tehnologies range from no armour (infantry)to steel and spaed armour. The previously mentioned HEAT ammunition usesa uriously shaped warhead to ahieve a direted explosion, forming a jet ofmolten metal[7℄ whih an travel a ertain distane largely una�eted by thetype of armour it penetrates. This an be negated by mounting a thin layerof armour on vehiles some distane away from the armour, meaning that thejet will disperse before reahing the inner armour layer. This is alled spaedarmour. Figure 8.1 shows a Soviet T-34 tank equipped with a mesh to detonatesuh warheads prematurely. A more modern tehnology alled explosive reativearmour or ERA uses explosive harges as part of the tank armour to obstrutthe jet, nullifying its penetrative apabilities[8℄.Thus we deide that weapons must be haraterized by a selet few param-eters, whereas armour has the bene�t of possessing the method whih deideswhat happens on impat, given the weapon parametres. This allows armoursystems arbitrary omplexity (they an provide any implementation) whereasweapons have to express their e�ieny in terms of a pre-determined set ofparameters. In order to distinguish di�erent types of weapons (whih is stillneessary), a few standard types are hardoded: high-explosive, armour pier-ing, HEAT and bullets. Bullet type weapons are onsidered speial: unlike the73

Figure 8.1: Soviet T-34 tank with wire mesh for protetion against thePanzerfaust anti-tank weapon.[9℄other types, they are onsidered to �re volleys onsisting of several shots (suhas from a mahine gun or a whole squad �ring several ri�es). Also, if the �rstweapon delared on an infantry squad has the bullet type, then it is onsid-ered issued to every member of the squad, meaning it will have its �repowermultiplied aording to the number of men. The other ammunition types haveno expliit meaning, but when alulating damage, the armour an distinguishthese types on an if-else basis.8.1.3 Struture of the weapons APIThere are four onepts whih are introdued in order to properly separate theode.
• Weapon. A weapon has a ategory (see Setion 7.2) whih stores its a-pabilities, and a state, being either loaded or not. The weapon has a �reroutine whih ultimately might result in people getting killed (no humanswere harmed during the making of this routine).
• WeaponModel. The weapon model serves as an interfae between the set ofweapons belonging to a unit and the ode whih attempts to ontrol theunit's more aggressive antis. The weapon model an be used to emulatethe weapon set independently of the atual weapons, whih allows theweapon ode to be substituted without breaking e.g. the unit AI.
• ArmourModel. Responsible for handling the (nearby) impat due to the�ring of a weapon. Present implementations inlude two armour models,being infantry- and vehile-spei�, respetively.74

• Damageable. Responsible for handling any damage aused when the ar-mour model reports that it ould not withstand the punishment. Presentlythis only serves to alert a unit of when it is destroyed, but is supposed totake are of destroyed radios, �re ontrol, suspension, engine et. if someday those onepts are implemented.8.1.4 Firing routineThe �ring routine orresponding to a partiular weapon takes the soure loa-tion and the target loation in the main oordinate system as parameters, andvalidates by heking whether the weapon is loaded and within �ring range of thedestination. It is desirable, though not presently implemented, that diret-�reweapons (as opposed to indiret-�re weapons whih are used for bombardments)should also on�rm that they are within line of sight of the target (line of sightis disussed later, in Setion 8.2.6).If �ring is possible, the atual impat loation is alulated, whih an bedi�erent from the target loation. If the weapon type is �bullet�, meaning thatit �res a volley of projetiles (suh as in the ase of mahine guns), then the hitloation is always exatly the targetted loation, sine this is where the bulletswill hit on average. Bullets are then assumed to hit randomly in a �loud�and not exatly on the entral point. Non-bullet weapons have their impatloation determined based on luk and the �e�etive range� of the weapon, butother fators may be inluded later.Finally, the set of all entities within the weapon's splash range of the impatloation is determined by using a utility method provided by the ollision dete-tor (Chapter 5) whih returns a set of olliders that are within a spei�ed radiusfrom a spei�ed loation. All units in this set are onsidered �hit�, though theymay not reeive any damage.For eah unit whih has been hit, the armour model belonging to that unithas its reportImpat method invoked, and this method deides what happensto the unit in question.8.1.5 Impat handling by armourThere are presently two types of armour model: infantry and vehile. As men-tioned previously, the armour model determines what happens to a unit whenhit. The infantry armour model alulates a number of asualties based on luk,the impat distane and the �repower of the weapon in question. The presentimplementation serves its purpose but an use adjustments for play balane.The vehile armour model is somewhat more ompliated. Vehile armouris spei�ed by ategories (the onept of whih is introdued in Setion 7.2). Avehile is onsidered divided into three setions: the front, the sides (assumingsymmetry) and the rear. For eah of these setions there is an armour thiknessin millimetres, plus the armour angle (sloped armour is important in tank war-fare and is therefore inluded in the model). Tanks, also having an armouredturret, have a similar set of numbers for that, see Figure 8.1.5.75

Figure 8.2: Armour statistis for a T-34 tank. This is part of a sreen-shot from the game.The vehile armour model �rst alulates whih setion has been hit. Thisis based on the travelling angle of the shell �red, ompared to the orientation ofthe vehile. For example if the shell is �red from diretly in front of the vehilethen it will hit the front armour with ertainty, but generally the probabilityof hitting a partiular setion of the vehile is determined (see Figure 8.1.5) byprojeting the relevant setions of the vehile on the normal plane of the impatdiretion, and the ratio of probabilities is equal to the ratio of projetion lengths.The armour penetration value of the weapon is ompared to the armourthikness at the hit loation, taking into aount the impat angle on the armourplating. For example, if the shell hits at an almost-parallel angle it will have topenetrate many times the length neessary if it hits at a perpendiular angle.More preisely, the e�etive thikness is equal to the atual thikness dividedby the osine of the impat angle on the armour, further divided by the osineof the armour slope (i.e. the angle between the armour plating and vertial).If the armour penetration is still larger than this e�etive armour thikness,the tank is destroyed.8.1.6 ConlusionWe have now explained how weapons �re and how armour models handle theimpat from weapons. Weapons are de�ned by a limited number of variablessuh as armour penetration, range, reload time and an abstrat notion of typewhih distinguishes bullets, high explosives and armour piering ammunition.Armour models, being more ompliated, ontain the ode for handling impats.8.2 VisionThe last setion desribed how weapons and armour work. But there remainsthe problem of deiding when to use them. We have mentioned earlier thatopposing fores should shoot at eah other automatially one the opponentshave been disovered. 76

Impact direction

Projection

F

S

N
orm

al

Tank hullFigure 8.3: Side hit or front hit? The projetion S of the tank sideon the normal of the impat diretion is about equal in length to theprojetion F of the front, so the probability of hitting the side is about50 %.We have also promised to implement a kind of fog of war, a ommon notionof RTS games meaning that units should not be able to see eah other at alltime. This setion will derive a framework for handling visibility of units toopposing units.8.2.1 Vision in gamesAs mentioned, the onept of not being able to see all enemy units is alled fogof war in referene to the smoke aused by e.g. artillery bombardments. Insome old games suh as Dune 2 and Command & Conquer, the entire map isblaked out by the beginning of the battle, and the player has to explore themap in order to loate the enemy. In the two mentioned games, terrain that hasbeen explored one will forever stay visible along with any enemy units in thoseareas. Newer games generally allow the player only to see the immediate areassurrounding friendly units, i.e. as soon as the units move away, the enemy unitsin that area are one again obsured. In most ases (Warraft III, Starraft,Total Annihilation et.) there is a maximum vision range, whih lets a unitobserve a irular neighbourhood of their loation, exept for obstrutions ofthe terrain suh as hills or buildings whih an blok the view. The maximumvision range is usually less than the size of the main battle�eld display, forexample around 50 metres.Bearing in mind the realisti approah of JWars we wish a model of visionwhih an support muh larger ranges, namely hundreds or thousands of metres.This is still shorter than realisti spotting ranges, yet onsiderably longer thanin ontemporary games. Furthermore it should be possible for terrain objetsto blok line of sight. Finally, we propose that units should be able to hideeven though they are well within diret line of sight. It is in reality easy forinfantrymen to hide in bushes or high grass (whih are not expliit game objets77

but rather types of ontinuous terrain, thus not diretly bloking sight), andthis possibility should be inluded in any realisti wargame2. Thus, there isno guarantee that the player's fores an see an enemy ambush, even thoughthe ambush is tehnially within line of sight. This �fuzzy� model of vision isommon in turn-based strategy games suh as the Steel Panthers series.While not yet suggesting a �nal way to perform this kind of hek, theprobability of spotting an enemy unit should be larger if the unit is lose, moving,large or lad in bright red lothes. It is also possible.The problem of determining whih units are visible to others an be takledin a number of di�erent ways, whih will be disussed in the following setionsalong with their pros and ons. We shall refer to entities apable of seeing andbeing seen as observers. With two teams in the game, an observer an be inone of two states: it is either visible or not visible to the opponent. Observerswhih are not visible to the opponent should obviously not be drawn to thatopponent's sreen, and his fores should not shoot at an observer unless it isvisible.8.2.2 Approah 1: diret observer-observer hekingSuppose that given two observers, there exists a method for heking whetherone an see the other (e.g. returning true or false after taking into aount alot of fators). The most obvious way of implementing vision is to ontinuouslyhek for every observer whether it an see every other observer. This is ex-tremely ine�ient beause the number of heks inreases with the square ofthe number of units. Atually this is exatly the same problem we enounteredwhen designing the ollision detetor in Chapter 5. It is obvious that a similarsolution an therefore be applied: dividing the map into tiles. If there is somemaximal vision range, then a vision hek is only needed if two observers arewithin that range of eah other, and if the size of a tile is omparable to thevision range, then it is su�ient to searh only the neighbouring tiles for otherobservers when heking visibility for a partiular observer.Using this method with whih we are already familiar, the problem an besolved leanly and e�iently, provided that the range of vision is relatively short.Unfortunately this may not be the ase. In real life the visibility extends manykilometres. Only if the map is muh larger than the visibility does this approahyield a signi�ant inrease in performane � otherwise we will have to hek theentire map or very large parts of the map anyway. It is partiularly bad in largebattles when many (n) observers are within vision range of eah other, thereforerequiring O(n2) heks.It is lear that the large distanes involved are our primary problem. How-ever there is an important optimization whih an be performed only beauseof the large distanes. Over short distanes, it is very important that observersrespond immediately to spotting an enemy. This is beause whoever shoots �rst2The lak of vision from World War II-era tanks is of partiular importane here: infantryunits ould hide only a few metres away and attak advaning tanks using molotov oktails,hoping that the volatile �uid would pour into the tank engines.78

will likely win. Movement over larger distanes takes a long time, and ombatis less heti. Sine observation heks generally involve large distanes, it anthus be expeted that the time sale on whih observers will be spotted anddisappear is relatively large, i.e. several seonds. Therefore it is not neessaryto hek whih observers an see eah other every frame. It is su�ient to hekone in a while, possibly one per seond or even less. Doing this an dereasethe amount of time taken by an order of magnitude or more.8.2.3 Approah 2: observer-terrain hekingWe have, however, onsidered an alternative approah whih holds some advan-tages and disadvantages. In most RTS games, units are visible if the terrain onwhih they stand is visible. Suppose an observer moves. It would be possible toregister all the terrain visible to the unit in its new position (this would requirea tilemap with a very �ne resolution if observers should be able to hide behindbuildings, et.). Any enemy observers within the visible area are then madevisible. This means the omplexity of the entire spotting funtionality for nobservers is redued to O(n), sine work has to be done only when observersare moving, and every observer has to do the same amount of work (registersurrounding tiles as visible).As mentioned, a very �ne tilemap is required for this approah. With largevision ranges this beomes a problem beause of the sheer amount of tiles it isneessary to traverse, namely O(r2) where r is the observation radius.We have seleted the �rst approah beause it an be implemented rapidlydue to its similarity with the ollision detetor, beause of its relatively highe�ieny in most ases (exept when very large fores are massed), and beausewith the suggested optimization it is not likely to be beome a bottlenek.8.2.4 The spotting routineTo reapitulate, we have seleted an approah to vision heking where all ob-servers should regularly hek whih other observers they an see. A full visionhek, i.e. heking for all observers whether whih other observers they ansee, will onsist of a number of separate steps.For eah observer O, do the following:1. Traverse all tiles within vision range of the urrent observer O.2. For eah of those tiles, traverse all observers within it.3. For eah other observer Õ found, if that observer is within the �xed maxi-mum vision range of O, perform an observer-observer vision hek betweenthe urrent observer O and the other observer Õ.The proess is illustrated in Figure 8.4.The exat implementation of the observer-observer vision hek is � as wementioned previously � left open. The partiular implementation used in the79

Figure 8.4: The spotting routine. The urrent observer is surroundedby a dashed irle, the radius of whih is equal to the maximum visionrange. The algorithm will traverse the four tiles that overlap the irleand expend no time heking the rest of the map. These four tiles ontaineight observers aside from the urrent one, four of whih are outside thevision range. The remaining four observers (exluding the urrent one)that are inside the vision range are subjeted to an atual observer-observer hek.
80

Collision detetor Observation environmentCollision map Observation mapCollision tile Observation tileCollider ObserverCollision properties Observer modelTable 8.1: Equivalent terms of ollision detetion and observation han-dling.present version of the game is very simple: the observer-observer ollision heksimply returns true, i.e. an observer is visible to the enemy if and only if it iswithin the maximum vision range (whih happens to be around 300 metres).The game therefore uses a simple �irular vision� approah.If an enemy observer leaves the line of sight it should beome invisible again.This is a trivial matter if the observer knows when it was last spotted by anenemy � in that ase it an regularly hek whether the time elapsed sine itwas last spotted is greater than some pre-de�ned relaxation time, then beomeinvisible as neessary. The relaxation time is presently around 5 seonds, thoughthe exat value is of little importane as long as it is longer than the intervalbetween spotting heks.8.2.5 Final designSine visibility is handled almost the same way as ollision detetion, it anhardly be surprising that a very similar design has been employed. Table 8.1shows an overview of the terms we use in the ontext of observation, along withthe orresponding term from ollision detetion.An observation environment serves as a entralized manager, hosting the ob-servation map whih onsists of observation tiles. The observation environmentan register Observers whih have a loation and have the observer-observerhek routine. Observer is tehnially a Java interfae, meaning the implemen-tation of is left open (perhaps infantry squads, having maybe 10 men whih anlook in di�erent diretions, would like an implementation di�erent from that ofa tank, where the rew an see only through a small opening unless they openthe top hath). Eah registered observer is assoiated with a partiular observermodel, holding inforamtion whih is used �under the hood� (suh as the time atwhih the observer was last spotted).Note: there are a few di�erenes between the ollision detetor and visionhandling. Whereas the ollision detetor will register a ollider in all the tilesthat overlap the ollider, the size of the tiles used in this setion are very largeompared to the atual observers, so there is no advantage in registering anobserver in more than one tile at a time. Thus, observers are only registered inthe tile at whih their enter is loated.There is another subtle di�erene: internally, the ollision detetor uses anarray-based list implementation to represent the olliders registered in eah tile.81

Removing elements requires that the entries with indies larger than that of theremoved ollider be opied to oupy lower indies in order to prevent �holes� inthe array. For n olliders this takes O(n) time on average. This is e�ient onlyfor very small lists, and indeed ollision tiles are not expeted to ontain manyolliders at a time. The important di�erene here is that the observation tilesare very large and an ontain hundreds of elements. Thus we have deided touse a linked-list implementation whih allows addition and removal in onstant(O(1)) time, sari�ing random aess whih is worthless for our purposes. Theobserver model serves as a reusable link for the linked list, thus eliminating theoverhead of reating link objets dynamially.8.2.6 Evaluation and disussionAfter having tested the vision system in ation with more than 400 observers inone battle, we have not seen any measurable impat on game performane. Weonlude that the seleted approah is e�ient enough for the simple irularvision model used presently and probably (though this has not been tested)somewhat more ompliated vision models as well.It is desirable to improve the observer-observer hek to the realism stan-dards proposed earlier in Setion 8.2.1. This takes long time to do well, and doesnot involve any tehnial problems of omptutationally interesting nature, whihis why we have deided not to implement it yet. The implementation shouldtake into aount range, the type of unit (infantry an hide more easily thantanks), the speed of the unit (it is easy to spot moving entities), the amount ofvegetation in the terrain, and it should inorporate a line-of-sight (LOS) heksuh that e.g. buildings or trees an blok the �eld of vision. Regarding theLOS hek, this an easily be implemented sine the path�nder (Chapter 6)has already implemented the Bresenham line drawing algorithm and used it totraverse the ollision map for obstales. This ode an be diretly reused to �ndobstales to LOS.

82

Chapter 9GraphisWhile graphial beauty is not one of the primary objetives of JWars, therendering system is designed with some are for performane and pratial us-ability. The system relies on Java2D and the Swing framework, as these shallprove reasonably e�ient for our purposes, not to mention the onveniene thatthey are inluded with the Sun Java Runtime Environment.There are numerous alternative graphis libraries whih ould likewise havebeen used, ranging from the low-level OpenGL wrapper, JOGL[10℄, to sene-graph implementations suh as Java3D[11℄, Xith3D[12℄ and the game libraryLWJGL[13℄. In the following we shall disuss a number of rendering strate-gies with the intent of applying them with AWT/Swing. However, importantly,these terms do not apply only to this framework; they are general priniplesused in rendering in many di�erent ontexts.9.1 Ative versus passive renderingAs mentioned in Setion 1.1.2, the user interfae of real-time strategy gamesnormally onsists of a entered main display whih displays the battle�eld andthe animated ation. Surrounding this display is typially an overview map anda number of status panels whih are not animated, or ontain relatively littlegraphially heavy ontent.The main battle�eld display will require ontinuous redrawing due to thedynamial nature of its ontent, and the rendering operations are expeted to beomplex and demanding for the omputer. Widget toolkits suh as AWT/Swingare not designed for this kind of rendering, and it will be neessary to manage therendering manually: the main display will use ative rendering, i.e. it will drawdiretly to the sreen when requested, and requests will be issued ontinuously.Note that most real-time omputer games issue suh requests at the max-imum possible frequeny to ensure the best smoothness of animations. Thisan be done from a rendering loop. We have deided to use a less aggressiveapproah and render only one every time the logi is updated; this will our83

at a 50 Hz rate, whih proves su�iently smooth for a 2D game where mostentities move reasonably slowly. However in fast-paed 3D games this is barelyonsidered su�ient by skilled players1.On the other hand, sine the surrounding panels are not generally animated,these omponents are ideally represented by Swing widgets using the normalpassive rendering, where repaints are sheduled as required and taken are ofwhen the omputer �feels like it�. Sine the panels are going to display datawhih depends on the internal game state and ontain buttons whih might a�etthat state, and sine AWT/Swing appliations run largely from a partiularthread, namely the so-alled Event Dispath Thread, it will be neessary eitherto synhronize the interation between the user interfae and the model, or toexeute all relevant ode in the Event Dispath Thread. Therefore the entiregame logi runs from this thread, but this is of little importane to the remainingparts of the program.9.2 Double bu�eringDouble bu�ering refers to a tehnique whih an be used to improve the per-eived performane of an appliation. A naïve implementation of a renderingloop would simply lear the rendering surfae, then perform the drawing op-erations and terminate. This will most likely ause the sreen to �iker. Theexplanation is that the drawing operations take so long time that the user no-ties the sreen being temporarily empty. Double bu�ering uses two drawingsurfaes: a on-sreen bu�er whih is displayed, and an o�-sreen bu�er whihresides somewhere in the omputer (or hopefully the graphis adapter) memory.A graphial update ould onsist of learing the o�-sreen bu�er and performingall the rendering operations onto it. Then the o�-sreen bu�er is drawn (or blit-ted, a partiular tehnique used for rendering images) onto the on-sreen bu�er,making the hanges visible in one sweep. The blitting an even be synhronizedwith the refresh rate of the sreen, though we shall not go into detail with this.There are other tehniques assoiated with double bu�ering, for examplepage �ipping whih interhanges the o�-sreen and on-sreen bu�ers simply byswithing a pointer. There are approahes that use even more bu�ers, althoughthis is hardly of interest here.Swing appliations are automatially double bu�ered. Only the main dis-play, whih is atively rendered (and whih therefore does not use the Swingrepainting mehanisms) annot automatially be double bu�ered. Implement-ing proper double bu�ering would require the alloation of the aforementionedbu�ers, preferably in video memory. Fortunately this is not neessary in ourpartiular ase beause AWT happens to provide a Canvas lass whih an haveits own BufferStrategy2. Double bu�ering is hene of little pratial onern,1It is ommonly known that televisions use muh lower framerates. Smoothness is in thisase ahieved beause the frames are blurred and perhaps interlaed.2A Swing-ompetent reader might notie that the JFrame an likewise use suh aBufferStrategy. But doing so would a�et the passively rendered panels in the GUI as84

though it remains important to any rendering system.9.3 Battle�eld rendering and layersAs it has previously been explained, the primary display shows some subset ofthe battle�eld, the ontent of the viewport, in high detail. There are severaltypes of graphis whih are to be displayed here, and it will prove advantageousto organize them in layers.1. First, there is the ground terrain. As desribed in Setion 4.3, the terrainis represented by a tile map of terrain tiles, alled the terrain map, andeah suh tile is apable of drawing itself to the sreen (provided an AWTgraphis ontext). Not all of the tiles need to be drawn � see Setion 9.4.2. The next step is to draw all the ground units, e.g. tanks and infantry. Sineit is umbersome to traverse all existing entities and determine whetherthey are inside the view, the ollision detetor omes in handy: onvertingthe viewport bounds to ollision grid oordinates allows the traversal ofonly those ollision tiles that overlap the viewport, and thus leanly pro-vides all the entities to be rendered. Eah entity, being a so-alled sprite3,is responsible for painting itself given its sreen oordinates.3. Having painted the ground and the entities on the ground, the next levelis vegetation (whih is presumed to be taller than those entities). Eahterrain tile is apable of drawing its vegetation to the sreen, and this willoverlap any units present4.4. When annons are �ring, there should be explosion animations to desig-nate the loations of impat. These should be visible to the player (even ifphysially situated below trees) sine they provide valuable information.There might be rokets or aeroplanes �ying through the air. All thesethings (although neither rokets or planes exist in JWars yet) an allbe rendered together. While airborne projetiles should theoretially berendered ordered by their altitude, this would be troublesome, and evenwhen aeroplanes are implemented in JWars, there will hardly be su�-iently many of them so lose together as to warrant suh an ordering.5. Finally it might be desirable to display information suh as text in themain display. When a unit is seleted, a green line indiates its diretionof travel, whereas a red line indiates its target. These e�ets whih arewell. Only the Canvas o�ers the desired ontrol over the rendering proess.3Sprites are single, �at graphial omponents suh as images or animations, several of whihan be drawn together in a ontext. In two dimensions it is di�ult to reate something whihis not a sprite. In three dimensional games, however, sprites an be used for e.g. smoke whihhas no need for a 3D struture.4When an entity stops moving it will be drawn on top of the trees. This makes sure thatthe entity annot go �missing� in the woods, whih would be a serious moment of irritationfor the player. Interestingly, this feature was originally a glith in the rendering routine.85

not physial entities serve to enhane the ability of the player to ontrolthe fores. Their purpose is to onvey information to the player withoutotherwise obstruting the battle�eld view. We shall refer to this kind ofe�ets as the Head-up display or HUD. This type of display is ommonlyused in military aeroplanes and omputer games.Some of these layers will mostly have stationary ontent, suh as the ground andtrees, the display of whih should be updated only when viewport is reloated.Others will have dynami ontent, suh as explosions and moving entities. Thefollowing setion will provide a solution to rendering these layers e�ientlytaking into aount their di�erenes.9.4 Optimization of the rendering routineObviously, a battle�eld display in whih no movement ours needs not expendany resoures rendering. However if a ar is driving aross the sreen, the areaimmediately around the ar will need to be updated as it moves. The terraindirti�ation system is designed to take are of this, ensuring that minimal timeis used to needlessly render terrain.Whenever an entity moves, the ollision detetor is responsible for traversingthe area and heking whether the entity ollides with others. Suppose everyterrain tile in the terrain map an be in one of two states, either dirty or not.The ollision detetor an then traverse the terrain tiles overlapped by the spritebelonging to that entity, and set the state of these terrain tiles to dirty, signifyingthat the tiles need to be redrawn. This will allow the painting routine to �lterout those tiles that are dirty and paint them, ignoring the rest. After havingbeen painted, the tiles are no longer onsidered dirty.There is one problem with this approah: while it will aommodate the �rstthree layers, the dynamial ontent suh as the HUD annot be rendered in thisway, beause the ollision detetor does not (and should not) know about this.This will result in the terrain not being repainted while the HUD hanges, thusleaving graphial artifats on the display.Our solution is to render the �rst three layers onto a seondary o�-sreenbu�er (whih needs only relatively little repainting work). The seondary o�-sreen bu�er is � every frame � then rendered onto the primary o�-sreen bu�erwhih we introdued in Setion 9.2. Finally the remaining layers, whih gener-ally need omplete repainting for every update, are rendered onto the primaryo�-sreen bu�er, the ontent of whih is �nally blitted to the sreen.While the introdution of this extra step takes some time, it still yields muhbetter performane. Drawing an image (suh as the seondary o�-sreen bu�erbeing drawn onto the primary one) is a very fast proess, whereas the remainingin-game graphis, involving rotations and possibly transpareny, are muh moretime onsuming. Modern omputers are apable of rendering images (withoute.g. rotation) hundreds, possibly thousands of times per seond depending onresolution, and normally this proess takes plae in the graphis adapter andtherefore requires no atual CPU ativity.86

Figure 9.1: The rendering routine. Di�erent steps are indiated bynumbers. Steps 4 and 7 are very fast on modern omputers and are notlikely to have signi�ant impat on performane.Finally, let us summarize the omplete rendering routine.1. Render any dirty terrain within the viewport to the seondary o�-sreenbu�er.2. Render any dirty entities within the viewport to the seondary o�-sreenbu�er.3. Render the vegetation of any dirty terrain within the viewport to theseondary o�-sreen bu�er.4. Render the seondary o�-sreen bu�er to the primary o�-sreen bu�er.5. Render any animated e�ets onto the primary o�-sreen bu�er.6. Render the HUD onto the primary o�-sreen bu�er.7. Render the o�-sreen bu�er onto the sreen.Figure 9.1 shows a visualization of these steps.9.5 ConlusionIn this hapter we have derived a double bu�ered ative rendering routine fortwo-dimensional top-down view game graphis. The routine saves time by usinga third bu�er to keep trak of the areas on the sreen in whih no movementours.
87

Chapter 10Game improvements10.1 Future workHere we will list areas designated for future improvements by the developersand known bugs in the version of JWars following this report. Here is a list offeatures and areas planned by the developers1. Terrain heights in the world. Hills should be implemented as fast as pos-sible for tatial gameplay2. Line-of-sight should form diret ontrols of forestation and other terrainobstales for tatial gameplay3. O�board artillery4. Fix urrent onboard artillery to something usefull5. Air bombardement and AA guns should be implented6. Di�erent formation patterns and GUI to support them � instead of thearrow formation7. Moving formations would make all sub-formations move with the samespeed8. Enable replays � save all registrered orders in a list9. Enable more terrain as sand, water and jungle10. Night/Daylight ombat mode11. Better seletion of targets by the AI88

10.2 Known issuesThis is a list of known bugs in the urrent implementation.1. When ordering formations to move it is possible to ause an IndexOutOfBoundsExeptionby moving large formations near the maps edges � some units will get or-ders outside the map. This an be orreted by translating o�-boardloations to sensible loations in the relevant ode, or by simply removingunits that leave the map. We onsider this a bug in the ode whih usesthe ollision detetor, and not the ollision detetor itself.2. When moving a unit away from a terrain objet while within the sameollision tile the path�nder thinks the terrain objet lies in the path of theunit and will return invalid move orders (no exeptions).3. Units do not reset their targets properly when the targets move out ofvision range. The unit keeps �ring at the now invisible target.4. The path�nder presently annot use mobile entities as obstales. A rudi-mentary system whih handles ollisions between units on an AI level willgive move orders along with the path�nder � on�it. This is solved byexpanding the path�nder to work on moving entities so only one authorityis needed for moving units.

89

Chapter 11ConlusionThe purpose of this projet was to reate a real-time strategy game whih bor-rowed elements from turn-based strategy games and implemented a realistimilitary hierarhy allowing better ontrol along with a level of AI group oor-dination whih is potentially unmathed among games of the genre. The hier-arhial struture has not been used before. The AI framework makes heavyuse of polymorphism and delegation to provide the possibility of dynamiallyhanging AI behaviour that an be made to adapt to hanging tatial irum-stanes. The urrent implementations of AI are only rudimentary and do notatually interat, but the framework ensures that relevant AI ode is invokedwhen appropriate.The most important API pakages that are neessary for suh a game arefully funtioning exept for minor bugs. The modules are designed spei�allyfor large game worlds and have proven e�ient, even without extensive opti-mizations, in handling hundreds of units engaged in battle at the same timeduring network play. Collision detetion and vision management use tiles toloalize entities and redue algorithm omplexity while retaining �exibility, al-lowing units of arbitrary size. Speial are is taken to allow programmers toimplement ustom ode for handling ollisions and ustom visibility heks whilethe framework an invoke the provided ode as required.The path�nder employs an approah speialized for large maps whih gen-erates a searh tree dynamially, being partiularly e�ient in open areas. Thisan redue memory onsumption and inrease e�ieny for large game worldsompared to onventional approahes using in�exible high-resolution grids.The ombat system is highly generi, and while the present implementationsstill need game balaning, the system uses partiularly realisti armour andweapon representations suh as in many advaned turn-based wargames, thusattempting to reate a hybrid genre.Most game data is loaded from external �les using simple sript-like syntaxwhih an be modi�ed by people without knowing the soure ode. This modelis ideal for normal game development where oders and game designers workseparately. 90

A two-dimensional rendering system has been developed to e�iently man-age tile-based maps by avoiding unneessary repaints through the use of separateo�-sreen bu�ers.The networking ode is based on a lient/server arhiteture and requiresvery small bandwidth. The game has been tested on Sun Solaris 10, MirosoftWindows XP and Ubuntu Linux 6.06.The goals de�ned for the projet have thus been reahed, exept for a singlefeature we have not had time to implement. JWars regretfully laks the notionof terrain height.

91

Bibliography[1℄ Sean Riley, Game Programming with Python (Charles River Media, 2004.ISBN 1-58450-258-4)[2℄ T.H. Cormen et al., Introdution to Algorithms, 2nd Edition (MGraw-HillBook Company, 2001. ISBN 0-262-03293-7)[3℄ Antony Beevor, Stalingrad (Penguin Books, 1999. ISBN 0-14-024985-0)[4℄ Senger u. Etterlin, Tashenbuh der Panzer 1943-1954 (J.F. LehmannsVerlag Münhen, 1954.)[5℄ Wikipedia entry on professional Starraft ompetition.http://en.wikipedia.org/wiki/StarCraft_professional_ompetition[6℄ Steel Panthers: World at War by Matrix Games.http://www.matrixgames.om/[7℄ Wikipedia entry on shaped harge ammunition.http://en.wikipedia.org/wiki/HEAT[8℄ Wikipedia entry on explosive reative armour.http://en.wikipedia.org/wiki/Explosive_reative_armour[9℄ Wikipedia entry on the T-34 tank.http://en.wikipedia.org/wiki/T-34[10℄ JOGL � Java OpenGL bindings.https://jogl.dev.java.net/[11℄ Java3D, senegraph based 3D API.https://java3d.dev.java.net/[12℄ Xith3D, senegraph based 3D API.http://xith.org/[13℄ LWJGL, Light-Weight Java Game Library.http://lwjgl.org/ 92

Appendix AGame manualBefore running the JWars program there are some requirements whih mustbe met by the omputer. We haven't tested the appliation on slower omputersystems, but we know that the following requirements are su�ient.- Java Runtime Environment 1.5.0- 1200 MHz- At least 50 MB free RAM (inl. virtual mahine)- One network port (7777 by default) must be available to run the programin multiplayerA.1 Running the programTo run the program you will ned the jwars.jar �le whih an be downloaded forfree athttp://www.student.dtu.dk/~s021864This is the homepage of Ask Hjorth Larsen, one of the developers. The home-page will have the newest stable version ready for download at all times.Having a Java Runtime Environment installed, the game an be run bydoubleliking on the .jar �le in MirosoftWindows or by using a similar funtionin other operating systems. Starting the program this way will run JWarswith the default settings. By using a ommand prompt it is possible to run theprogram using parameters whih hanges sreen size, looks and other optionsusing the ommandjava -jar jwars.jar <parameters>in the library ontaining the jwars.jar �le. The parameter string onsists of asingle dash followed by a number of letters. Here is the full list of availableparameters of the urrent version: 93

Figure A.1: The JWars launher.- o : Enable OpenGL pipeline. This greatly improves performane, butdoes not work on all graphis adapters.- f : Run in full-sreen mode.- h : Print this help and exit- m : Use Motif look-and-feel- n : Use native look-and-feel- d : Draw debug ollision grid- a : Bad ATI driver mode (disable window deorations)- v : Print version information and exitFor example, the ommandjava -jar jwars.jar -ofmwill run JWars using the OpenGL pipeline in full-sreen mode with the Motiflook-and-feel.On starting the program the JWars launher will appear, see Figure A.1.The launher is a tool for setting up a game in multiplayer by either reatinga server or joining a server speifying an IP address. The default entry in theIP �eld is loalhost whih will attempt to join a server reated on the loalmahine (this is useful for testing network support when only having aess toone omputer). In order to join games over the internet simply enter the IPaddress of the reator in the IP �eld and push join. If suesfull you will jointhe game at the wanted ip address if not an error message will be displayed. Itis not possible to onnet to a server who runs another version of JWars.If a new game is wanted simply press `Create Server'. Creating a server willexpand the JWars Launher to a lobby where all urrently onneted playerswill be displayed. The lobby an be used for exhanging messages in order toset up teams or to simple orrespondane, see Figure A.2.In the lobby all onneted players will be listed in the left side. The gamesupports any number of players but only two teams. A player an selet histeam by left-liking on his name. By doing this the team will hange to theopposite �ag. When joining the default name will be Manstein and team will be94

Figure A.2: The game lobby. Manstein and Rokossovsky are hattingbefore a friendly game of JWars.Germanny. The name an be hanged by right liking on a players own name- in this ase a text box will pop up and ask for the new name.The game reator an start the game at anytime by pushing the Launhbutton. When launhing the launher itself will lose and the game GUI will beopened in a window.A.2 In-game ontrolNow we will desribe the JWars GUI and how to use it. First we will fouson the di�erent panels and how to use them for getting information and thenhow to manage the units under your ontrol. Most of the players interationwill done by the mouse. The keyboard o�ers ertain ations but JWars an beplayed without using the keyboard.A.2.1 Using the panelsWhen the game is running the GUI will o�er the player all neessary tools forgathering information and ontrolling the units, see Figure A.3. In order toget an overview of the urrent positions and fores, look at the minimap plaedin the bottom left orner of the sreen. To manoeuver around on the minimapsimply left lik somewhere on it and the fous will move to that loation. Usingthe mouse on the minimap to move the main sreen in the game is an e�ientway to yle around the battle�eld.Holding down an arrow key will make the main view sroll in the arrow key'sdiretion. The minimap will show all known unit loation in olor ode (red forrussian army and blue for german army). Forests are dark green. The enemy is95

Figure A.3: The battle is raging between the Russian and Germanfores.most likely not visible from your start loation, so there should be only eitherred or blue fores visible presently.The lower right orner ontains a ommand line. Messages typed here willbe sent to all players in the game, unless they start with a slash harater, inwhih ase they will be interpreted as ommands. Here is a list of the usableommands.
• /ommands : Writes a list of di�erent ommands for the ommand line.
• /time : Prints the urrent time.
• /ountunits : Prints the total number of seleted units or, if no units areseleted, prints the total number of units in the urrent game.
• /lateness : Prints the number of milliseonds whih the game is urrentlybehind shedule (under normal irumstanes this should be no greaterthan 20).
• /exit or /quit : Quits JWars
• /lear : Clears all text from the onsole96

The upper left panel ontains the ORBAT, or order of battle, whih is a listof the available units on eah team. Clik on a partiular unit in the tree toselet it. The tree view will automatially expand nodes to provide informationabout the seletion. Units that are killed will have their names written in red.Cliking on the `Sore' tab will show the urrent fore strengths and asual-ties in terms of vehiles and infantry.The bottom middle panel ontains information about the urrently seletedunit, or is empty if no unit is seleted.If the seleted unit is a formation, this panel will list its sub-units. If theseleted unit is a single entity it will list the weapons of that entity. Cliking ona weapon in the list will write the weapon data to the onsole. If the seletedunit is an infantry squad, this panel will also show the number of men. If it is atank it will also show the armour thikness and angles on di�erent parts of thetank.A.2.2 Marking and moving unitsWhen a player wishes to move units the relevant unit must be seleted �rst.There are several di�erent ways of seleting units where eah an ful�ll a ertainneed for a situation.The simplest way to selet an unit is by left-liking with the mouse on itin the main display. In doing this the unit under the ursor will be seleted asthe only unit. Double liking on the unit will selet that unit's superformation,i.e. its platoon. Triple liking will selet its ompany, and quadruple-likingselets the entire battalion. It is not possible to selet formations larger than abattalion.There are several ways to selet the super-formation of a unit besides likingmultiple times on a unit. While having a unit seleted, rolling the mouse srollwheel upwards will suessively selet larger super-formations.Pushing the bakspae button has the same e�et as mouse wheel up. Eahadditional order to mark the superior formation will move the seletion one stepup the hain of ommand. This is an unique seletion ommand for JWarsprovided by the speial unit tree. This brings to the next speiel entry inJWars.On the left side of the sreen is the unit tree. The panel is a tree view of theformation struture whih an be expanded and minimized to provide detail oroverview. Cliking an entry in the unit tree will also selet that formation orunit and enter the view on it.When having seleted the wanted formation or unit simply right lik oneither the minimap or in the main panel. This will make all the seleted unitsmove to the seleted spot in formation, i.e. not all standing on the same spot.As units move aross the map they may eventually spot enemy units and willopen �re on the enemy if possible. This might result in units dying, beingremoved from the game, possibly in a big explosion. Units that are destroyedan no longer be seen or ontrolled.The game does not presently end even if a fore is deimated.97

Figure A.4: A green irle around units is a noti�ation about theplayers urrent seletion of troops. When troops are seleted their des-tination oordinates beome green lines on the ground to illustrate theirurrent heading.

98

You an order the seleted units to �re manually at a loation by holdingshift and pressing the left mouse button on the desired loation.If any questions arise when playing, feel free to email either of the developerson emails asklarsen�gmail.om or mihael_franker�hotmail.om. Ques-tions will either be answered diretly or by referene to this paper whih pageand line number.

99

Appendix BDevelopment planDuring the time developing this projet we have had numerous versions of thegame. We have used these earlier versions for reating a development plan whihdemonstrates the di�erent stages the game has been through. In doing this wehave reated a development timeline. Before the projet started we had a listof features we wished to implement in JWars and in the end of this setion wewill evaluate this list to the �nal produt.In this setion we will take the most important aspets of eah stage of theprojet, and supply them with an identi�er, marking the element's status atthat stage of development: �−� denotes the element as un�nished and requiresmore work, �+� means that the element is in an aeptable state for deliveringbut further development is open and �X� implies that this part of the programis as �nished as it will ever be.The fous in the �rst stage of development was having a world in whih toplay and test JWars. One of the important features was being able to playthe game online so a server/lient model had to be running. This is beausewe expeted synhronization to be di�ult and wanted it to work from thebeginning. Having an early version of the network it would also be possible toadjust the model to later needs. Another important aspet of the game to havein a useful state early on is the GUI. No �nal GUI model or look was hosen atthat time but we still needed it to test the network and world ode.
− Simple working GUI ready for extension
− A unit representation
− Element of ontrol � mouse listener
− Networking ode, Server/Client relationship in. Timer
+ World buildup � Coordinate systems and tile maps
+ Command line/Chat panel used for debugging100

When the elements above where working in union we had a base to build onand ould now extend the individual parts of the implementation.The seond stage of development entered around building frameworks. Dur-ing this time some needs beame obvious for further development and key areaswere reated. Espeially the ollision detetor took time during this stage.
− Moveable/Formation/Unit framework
− Basi AI framework
− Terrain dirty�ation framework
X Event handling framework
X Collision detetorAs the game began to take shape updates on ertain areas was needed. Whilestill extending the game engine the game ontent began reahing a satisfatorylevel.
+ Extended AI framework � Interfae set
+ AI implementation of low level ollision handling
X Networking improvements (lient/server event handlers)
X Better support for multiple unit types � data managament
X Support terrain implementation � forestation and objets
X Terrain generator � Height generator tool
X Rendering mehanism improvements - seondary bu�erAt this stage the game was playable and had ful�lled the minimum requirementsstated before the projet was started. With multiple types units and an atualterrain to play on, the game looked nie and simple (with room for improve-ments). At this time we were nearing the date of delivery and the remainingimportant game features would have to be implemented. The features imple-mented during the last and fourth stage are important for any RTS game, andwe foused on �nishing these partiular features instead of expending time one.g. game ontent whih is less ritial.
+ Combat dynamis
+ Final GUI layout
X Fany graphis (explosions)
X Path�nderDuring the fourth stage we managed to inlude most of the wanted featuresfor JWars. There is one feature we hoped for whih did not get to implement,and that was the onept of terrain height.101

