
JWars - A Generi Strategy Game in JavaMidterm projet � Informatis and Mathematial ModellingAuthors:Mihael Franker Christensen, s031756Ask Hjorth Larsen, s021864Supervisor:Paul FisherAugust 1, 2006

DTU - Tehnial University of DenmarkLyngby

Front page: Soviet T-34 tanks supported by infantry advaning aross the Rus-sian steppes

Abstrat

Contents
Abstrat iPrefae 11 Introdution 21.1 Introdution to the genre . 21.1.1 Bakground . 21.1.2 RTS ombat and ontrol 41.2 Why JWarsTM? . 61.2.1 Flaws in ontemporary real-time games 61.2.2 Military hierarhy . 61.3 Report overview . 72 Features of JWarsTM 82.1 Game dynamis . 82.2 Tehnial features . 83 Overview 103.1 Development plan . 103.2 Modular overview . 104 Arhiteture 114.1 Connetion and initialization . 114.2 Flow of ontrol . 124.3 Various deterministi ativities 134.4 Player input and network instrutions 145 Networking 155.1 Choosing a network model . 155.2 Synhronization . 165.2.1 Interativity: network instrutions 165.2.2 Synhronization instrutions 175.2.3 Conlusion . 175.3 The networking API . 185.3.1 Implementation notes . 19ii

6 World of JWars 206.1 Coordinate spaes . 206.1.1 Coordinate data representation 206.1.2 List of oordinate systems 216.1.3 Using oordinate systems 226.2 Game data management . 226.2.1 Inheritane versus data-based game objet lassi�ation . 226.2.2 Category model . 236.2.3 Content loading by ategories 236.2.4 Current game ontent . 246.3 Terrain . 246.3.1 Representation and apabilities 256.3.2 Terrain generator . 256.3.3 Appearane . 256.4 Event handling . 256.4.1 Types of events . 266.4.2 Performane onsiderations 266.4.3 Queueing system . 266.5 Vision . 276.5.1 Vision in games . 276.5.2 Performane disussion 286.5.3 Final design . 287 Collision detetion 297.1 Basis of ollision detetion . 297.1.1 Divide and onquer approah 297.1.2 Tile registration strategy 307.1.3 Shapes and sizes of olliding entities 317.2 Design of the ollision detetor 317.2.1 The heking routine . 317.2.2 The ollision grid . 327.2.3 Further features . 327.2.4 E�ieny and optimization 337.2.5 Using the ollision detetor 347.3 Conlusion . 347.4 Path�nding . 357.4.1 Implementation . 368 Unit organization 438.1 Real-world military organization 438.2 Military ommand in omputer games 448.3 Tree-based unit representation 45iii

9 Unit AI 479.1 Hierarhial struture . 479.2 Design onsiderations . 499.3 AI layering struture . 499.4 Future AI work . 5010 Combat 5110.1 Analysis of ombat dynamis . 5110.1.1 Combat rule set . 5210.1.2 �Weapon vs. armour�, or �armour vs. weapon�? 5310.1.3 Struture of the weapons API 5410.1.4 Firing routine . 5510.1.5 Impat handling by armour 5510.2 Spotting and targetting . 5511 Control 5612 Graphis 5712.1 Ative versus passive rendering 5712.2 Double bu�ering . 5812.3 Battle�eld rendering and layers 5912.4 Optimization of the rendering routine 6012.5 Conlusion . 6113 Conlusion 62Referenes . 63

iv

PrefaeDuring the development of JWarsTM many friends have taken the time andtrouble to test the ode on many di�erent platforms and hardware. This help hasbeen of immense value to us, partiularly for testing the graphial performaneusing di�erent drivers and graphis adaptors, not to mention the performaneof the networking ode under less-than-optimal (non-LAN) onditions. In par-tiular we would like to thank Dennis Dupont Hansen, Kasper Rek, PederSkafte-Pedersen and Kenneth Nielsen.Finally we are very grateful for the help of our supervisor Paul Fisher withwhom we have had numerous tehnial disussions about the various softwareomponents.

1

Chapter 1Introdution1.1 Introdution to the genreBefore reading on in this doument a formal introdution to the real-time-strategy (from now on referred to as RTS) genre an be neesary. This setionshould be seen as history of the genre as well as a opportunity to understandthe generel game struture as well as the more advaned onepts in the genre.First we will de�ne the genre and then a quik walkthrough around the history.In the end we will point out the importent features implemented in RTS gamesover the years. These features will be importent for our projet sine our goalis to develop a game whih engine live up to the time's standard.1.1.1 BakgroundWhen ategorizing Jwars it should be spei�ed as a Real-Time Tatial game.This genre however belongs under the broader type of games alled Real-TimeStrategy whih is normally used. The RTS genre ame about in the 80's onlybeing fully developed and formally seen as a single unique genre 10 years laterwith titles as Dune II and Blizzards Warraft and Warraft II. For the asualgamer a RTS game an be reognized by using some simple ground rules whihhas grown to distint the genre:1. Warplanning is essential � strategy2. The player has no 'Next turn' button � real-timeOther essential guidelines:1. Resoure gathering2. Building/unit loations are essential3. The manufatoring of spei� units4. The player has diret ontrol of his units/buildings2

The RTS genre was developed from the turn-based strategy games genre.One of the �rst RTS games, perhaps the most de�ning game for the genre,is dune II for whih the developers was inspired by Sid Meiers Sim City. Itshould be noted that while Sim City di�ers from the standard RTS game, it isalso reognized as a RTS game where the opponent is the game environmentitself and not an AI or another human player. As suh many diversities hasrisen in the RTS genre as game developers beome more inventive. Today RTSgames are in general build on a player vs player environment with single playerampaigns for the di�erent raes/fations.Most strategy games requires the player to understand basi military on-epts and most often a paper-rok-sissor approah on unit ombat. A unit andefeat some opponent units, while it in turn will be defeated by a suitable op-ponent unit. Often this is ombined with a development in the players armoryfor the ost of resoures and time. Resoures is mentioned as a basi oneptin RTS games sine eonomy leads to more higher military power whih in turnleads to higher resoure inome either by onquering land or holding strategiresoure areas. This have been the basi approah to strategy games, gatherresoures, build up military fores, gather more resoures or fousing on uttingof the opponent resoure inome. In this oktail of hoies for the player omesthe tatial maneuvres and strutural plaements if possible. Most games to-day try to inorporate terrain as a fator in the games and many aspets of realwarfare has ome in to play like high ground, bottlenek maneuvres, entrenh-ment and so on. As the omputer game industri grows so does the amount oftime and money spent on developing new features in strategy games. Many ofthe more suesfull games has found a �rm middleground in supporting alot offeatures but not making the game dependent on these. This will allow moresimple users apable of enjoying the game in a more relaxed playstyle whilethe hardore gamers an dive in to miromanagement of troops, exploitation ofgame engines et.The average RTS game normally uses the single player ampaigns as a linearstory introduing more and more di�erent units/onepts along the story. Of-ten a ampaign starts with the player only ontrolling few simple units with fewdegrees of freedom for the player as the mission is laid out. As the player om-pletes more missions more units and buildings or onepts will beome available- in this way a new bought produt will introdue units slowly and let the playerexplore game features in turn, thus not making the game seem to ompliated.In the JWars projet however we will not be inluding single player missions asit would be beyond the projet sope setting up senarios.In the last ouple of years RTS games has been improving greatly in onespei� area - graphis. Most of the popular older games relied on 2D graphiswhile the 3D environments in �rst-person-shooters blossomed. Not until theBlizzards release of Warraft III: The Frozen Throne did the standard graphiengines hange to 3D. Graphihs in�uened some games popularity though mostis based on gameplay and the univers in whih the game takes plae. Almost allnewer titles uses a 3D engine with hangeable view angles and zoom funtion,in this projet however we rely on 2D graphis and fous on gameplay and the3

gameengine itself.1.1.2 RTS ombat and ontrolRTS games fouses on large sale ombat. All ations made by a player isprimarily made with the thought of hightening his ombat e�orts. With this inmind an example of unit balaning and a brief explanation of a GUI will opensome doors for the inexperiened players. We have hosen these spei� areasdue the normal lak of understanding in them. In RTS games the player shouldbe able to hoose between a wide seletion of possibilities for ombining hisfores. This is where unit balane and the strategy idealism reates synergy andreates the dynami atmosphere in whih the genre unfolds its true gameplay.The term unit balane is used to determine an ordering of how units ompareagainst eah other in ombat. Some players reate a ratio between units inheads-up ombat like 2:1 or 7:2 as this would represent unit data in its rawestform when omparing. In this instane we generalize the onept for betterunderstanding. If we reate an example with 3 di�erent units being meassuredagainst eah other for example: a plane, a tank and a anti-airraft gun (AAgun). Logi would reate simple rules from this setup:- Plane beats tank- Tank beats AA gun- AA gun beats planeWe ould attah a ratio on eah instane if we wanted to use a measurement.This looks like a standard rok-paper-sissors setup and a player would neverbe able to selet a single strategy and be sure to win. By expanding this theoryinto ontaining more di�erent units with strengths and weaknesses the tatialgameplay is ensured in the game as the players will need to take steps ounteringeah other throughout the game. Unit balaning is one of the greatest fordevelopers and is often an ongoing proes after the game has been released.Games today whih base their playerbase on an online environment has theability to release updates when needed. More often than not the developers willrelease a game whih is unbalaned and only the testing done when selling thegame will �nd the issues whih need attention. Some developers has adoptedthe theory that there is no testing like releasing the game to a massive audiene.Next we will introdue one of the most lassi games in the genre as anexample of how a game GUI ould be reated. The example we have hosen isBlizzards Starraft inluding the expansion pak - Starraft: Brood War. Thisgame has been hosen beause it is seen as the best strategy to date by mostfans of the genre and beause both writers of this paper is pro�ient in thisgame.An easy way to spot a RTS game is often by the user interfae provided.Several designs with unique abilities and setups have ome up but most ontainsthe three most ommon features - a minimap, an infopanel and a fouspanel,4

Figure 1.1: Sreenshot from Starraft. The voraious Zerg swarm is overrunning aTerran settlement.ommonly named status-panels as a group. These are all tools for the playerto enhane his ontrol and the ability to gather information developed for easyaess and usage.The GUI is split into di�erent subsetions eah providing the player withinformation and options.As seen on this sreenshot from Starraft: Brood War the minimap is loatedon the bottomleft. The minimap is the primary soure for the player to swithhis fous on the battle�eld as well as obtaining a quik overview. The minimapusually shows the players own fores in green and opponents fores in red. Inthis way an enemy fore massing fores or approahing your territory will resultin red markers on the minimap. This is an e�etive way to aid the player insorting the information from on sreen. The minimap will never be the playersmain soure for information as the information it provides is always sparse andan even be misleading.Covering most of the sreen is the fouspanel1. The fouspanel will normallybe where the players attention will be entered. The panel is a zoom in fromthe minimap, but where the minimap only gives the most basi information thispanel gives the player a detailed overview of the area. He an point out spei�unit types, quantity et. The panel is simply showing the area of the playersurrent fous but is often used for evaluating tatial situations. Often the sizeof the fouspanel is balaned out with the standard size of a battle in the givengame for easying the players ontrol.The infopanel is a tool used by the player to gain optimal information aboutany given objet on the battle�eld. When a player has his dous on a spei�unit or objet all relevant information onerning the objet will be displayedhere. This is the most diret information the player an get from the game as1This is the most ommonly used display for information and an also be alled primarydisplay or main display 5

it will often display a single units statistis and urrent status.The user interfae in starraft is a standard example for the genre. Thesimpel three-step-information-interfae handles most situations very well andthis setup is used by most RTS games today. When the player an selet where,whih and a degree of information he want, only poor handling of the systeman make it di�ult to use. Most new players to a RTS game has a tendeny touse the fouspanel as the only soure for information while multitasking betweenall three is a must for players who wish to win.1.2 Why JWarsTM?This setion introdues JWarsTM and why the authors believe this is worthy ofa projet. First we shall onsider some �aws or features absent of ontemporarygames, then we shall see how these might be remedied.1.2.1 Flaws in ontemporary real-time gamesThere are some areas in whih the real-time strategy genre has not evolved muhover the years. Some of these are
• Individual units typially behave unintelligently unless the player takesare to ontrol eah (or very small groups) of them personally. For exam-ple, if an enemy approahes a group of friendly units then half the groupmight attak and be lured into an ambush whereas the other half staysidle. Also it is frequently observed that anti-tank weaponry will be au-tomatially direted at infantry even though enemy armour is nearby aswell.
• As the game progresses, omplexity grows greatly as units are produed,and the player annot hope to ontrol fores with suh attention to detail.This diretly bene�ts the player who is quikest with a mouse or keyboard,and not the player with superior strategi ability. Control, rather thanstrategy, thus beomes the primary point of onern during gameplay.
• While not neessarily a drawbak, most games use hit points (see Setion??) to represent a unit's health. When damaged, some hit points arededuted until the hit point ount reahes 0 at whih point the unit inquestion dies. Thus most games are deterministi in nature, or ontainonly negligible random fators in ombat.1.2.2 Military hierarhyMany of the drawbaks pointed out above an be eliminated by introduing atree-based means of ontrolling units. Suh a system is in reality a requirementof any working military as we an learly see in the world today, and it is therfore6

urious that no attempt has yet been done to inorporate suh a system in real-time strategy games. Table ?? shows the organization of something somethingFIXME2.Aside from easing the ontrol of large fores for the player, it is possible toprovide better AI support using this system. By using a tree hierarhy in thegame, a simple AI an be assigned to every military formation �leader�, suh thatthis AI is responsible for ontrolling the immediate subordinate formations. The�at unit struture in most real-time strategy games allows for little organizedinteration through unit AI, but by expliitly embraing a military struture,multiple platoons and ompanies an work together, ontrolled by automatedommanders.The AI-spei� possibilities implied by this system are almost endless, yetbearing in mind the time neessary to develop suh a system we an hardlyhope to ahieve any impressive results in this �eld sine the entire game has tobe built from srath. What we an do, however, is to provide API omponentsthat demonstrate the appliability of this model, and therefore opens the wayfor future development of the AI.The inreased ontrollability obtained by using a tree-based hierarhy al-lows players to ontrol nearly arbitrarily large fores. Consequently it an beexpeted1.3 Report overview

2�xme: onsult Antony Beevor's book and insert stu�7

Chapter 2Features of JWarsTM2.1 Game dynamisgame design regarding hierarhy2.2 Tehnial featuresThis setion lists brie�y the
• World representation. JWars uses a number of abstrat 2D oordinatespaes and provides utilities for onversions between these. Spei�allymany tile-based maps are required by the di�erent omponents of JWars.
• Collision detetion. An e�ient tile-based ollision detetor is apable ofdeteting ollisions between irular objets of arbitrary size.
• Path�nding. The path�nder implements an A* algorithm whih dynam-ially expands the searh area aording to requirements. This approahaomodates obstales of arbitrary size and plaement.
• Spotting system. The spotting system uses a tile-based approah whih ispartiularly e�ient if the map is large ompared to the visibility radius.
• Arti�ial intelligene. A simple but highly extensible
• Event handling model. A queueing system provides e�ient managementof timed exeution of game events avoiding unneessary ountdown timers.
• Data management. Sript-like �les an be used to store game data suhas unit and weapon statistis. These are loaded into ategories whihrepresent the abstrat onepts of those units or weapons. Finally entitiesan - in turn - be instantiated from ategories.8

• Server-lient based networking model. The TCP/IP based networkingmodel supports a ustomizable set of instrutions and provides base serverand lient lasses for managing player onnetions. This model has verylow bandwidth requirements, but requires perfet synhronization of thegame states aross the network.
• Multiplayer synhronization utilities. Synhronization on multiple lientsis done by means of a timer whih assures that lients follow the servertemporally losely.

9

Chapter 3OverviewFor reasons of extensibility, JWars onsists of several modules whih an be usedseparately or with a minimum of ross-pakage dependenies. The followinghapters will desribe eah of these modules in turn, but in order to ahieve aoverview of the struturing of these modules in an atual game, we shall herelist the main modules and then desribe their high-level interation.3.1 Development plan3.2 Modular overviewDesribe basi onepts suh as units

10

Chapter 4ArhitetureIn this hapter the arhitetureFIXME1 of JWarsTM will be desribed, i.e.the way in whih the di�erent omponents are made to interat. It should beoutlined that the desriptions in this hapter are kept brief. There are far moreoperations under the hood that noted here, but it would be too umbersometo desribe the less important routines. This hapter will only mention themost important steps. The subsequent hapters will then go into greater depthdesribing how the individual omponents are designed.4.1 Connetion and initializationAs the program is started, a small GUI is presented whih allows the user toreate a server or join an existing one. If the user wants to join a game, this willspawn a JWarsTM session whih attempts to onnet to the spei�ed server.Creation of a server will always result in a lient being spawned loally whihonnets to that server so as to allow the server's user to partiipate in the game.This lient is no di�erent than any other lient (onneting from remote), eventhough it is physially running in the same virtual mahine as the server. Thelient thus runs independently of the server, but the server uses some ommonfuntionality of the lient, suh as the timer and network instrution set. Thepratie of giving the server aess to the logi of the loal lient also allows theserver to hek the validity of orders issued by the players before relaying thatinformation to the lients. This redues the possibility of heating.When a lient session is spawned, the �rst thing done is to onnet to thespei�ed server whether it is loal or remote. This allows the lient to reeiveinitialization data from the server, suh as a random seed and the size of themap to be played2.1�xme: is this atually the arhiteture?2For reasons of debugging, the random seed is always 0 in the urrent implementation, andonly one map will presently be generated, but the order of initialization allows for dynamialspei�ation of game data 11

After onneting, the game world is generated. This involves a number ofsteps, namely reating oordinate systems and tile representations of terrain,along with the reation of a ollision detetor and an observation environment(whih is responsible for heking whether enemy units an see eah other onthe map). Notably this sted also involves registering the root unit, whih is theanestor in the tree hierarhy of all units (see Setion ??) whih will later beadded to the world.The following step reads all unit, weapon and formation data from external�les (though an easily be done through the network as well). This kind ofdata storage is obviously preferable to hardoding; in fat it allows people tohange the game ontent ompletely without looking at the soure ode, byentering data in a simple sript-like fashion. This information will be representedin ategory objets, whih hold data pertaining to spei� types of unit. Forexample, the information of a Panzerkampfwagen IV is read one, and thensores of panzers an be spawned using the ategory as ommon data.The �nal step is to build the main Swing GUI whih will be displayed duringthe game. Even though the game is not yet about to start (lients are still joiningthe server) it is preferable to generate the GUI now, suh that the GUI is readywhen the game is started.At this point the entire game setup has been loaded, but the game has notyet started. Rather the server will want to wait until a enough lients havejoined (even though this game only has two armies, several players an ontrolthe same army to inrease e�ieny), and meanwhile a list of the urrentlyonneted players is shown, displaying the player names and whih army theyontrol. This lobby frame is also equipped with a hat.The game starts when the server presses the launh button. This will resultin a launh instrution being sent to all lients. When reeived, it will disposeof the lobby frame and start the timer whih ontrols the �ow of time (in thegame). It will also make the main GUI visible. At this point the game is fullyrunning, and will remain in this state forever or until the players quit.4.2 Flow of ontrolMost real-time omputer games run by means of a game loop, i.e. a loop in whiheah iteration onstitutes an update of the game state and display as quiklyas possible. JWarsTM, too, runs by ontinuously applying updates. However,in order to ensure that the lients run equally fast, the update rate is instead�xed by the previously mentioned timer. The timer exeutes those updates fromthe AWT/Swing event dispath thread, whih means no synhronization withthe Swing-managed display is neessary. However the timer also provides thepossibility of using its own thread, whih might be desirable in non-AWT/Swinggames.The timer attempts to adjust the game �ow to that of the server. If anupdate is ompleted before it is time to perform the next one, the timer willsleep for the appropriate amount of time before invoking the next update. But if12

the game �ow lags behind that of the server, for example beause the omputeris too slow to perform updates at the required rate, the timer will report itsonerns by passing parameters to the update routine, whih will take note ofthis and attempt to regain lost time by skipping non-vital parts of an update.This brings us to the next point, namely the basi omponents of suh an update.One update onsists two steps.1. The game logi is updated. This means that all units move (using theollision detetor), turn around, take aim, �re and so on. Spei�ally,the update method of eah unit is invoked reursively down the unit tree.This will also perform various other tasks, suh as polling for networkinput and input from the keyboard. Importantly, this will also poll thequeueing system designed to manage delayed tasks � this will be treatedin the next setion.2. The primary graphial display is updated3. This involves redrawing anyparts of the terrain on whih there are moving entities (if no moving enti-ties are nearby the terrain is not redrawn sine no hanges have happened),then drawing all the visible entities.In ase the timer is lagging behind shedule, the latter step will automatiallybe performed only a few times per seond (suh that the display still appearsresponsive to the user) while logial updates will be performed at the maximumrate possible for the CPU. This means a omputer will have to be very slowin order not to be able to play the game. It also means that if one omputeris slow, it will not delay the server and the other lients (a problem whih isnotied immediately in ertain games suh as Command & Conquer: Generals),but it will be responsible for regaining the lost time itself by sari�ing graphialsmoothness in the meantime.In order to ensure that lients do not exeute updates too quikly suhthat instrutions from the server arrive too late (and thus bring the game outof synh), the lient ontinually reeives synhronization instrutions from theserver whih speify the amount of updates the lient is allowed to perform. Inthe event that the lient annot proeed exeuting updates beause it reeivesno synhronization instrutions from the server, it pauses the timer and waitsfor new instrutions. As soon as the new instrution is reeived, game updateswill be exeuted at the maximum possible rate until the game time is onsistentwith the real time elapsed. This means the game will stay in synh during lagspikes (small periodes of exeptionally high response times) or even if the playeraidentally rips out the able for a moment.4.3 Various deterministi ativitiesFor the moment we shall ignore the ativity of players and onentrate on thetasks performed deterministially as time progresses. There are some operations3There is a number of other graphial side displays whih are not updated ontinuouslyhere, but instead by regular AWT/Swing repaints.13

whih are not desirable to do from the main update routine, i.e. those thingsthat do not happen all the time. For this reason there exists a frameworkfor queueing tasks and exeute then after a ertain delay (suh a frameworkis not stritly neessary sine anyone ould use if-sentenes and ountdownsfrom the main update method, but suh approahes would be umbersome andine�ient). Reloading of weapons is managed in this way: when a weapon �res,it shedules a reload event whih will in turn be exeuted at the proper time.Another problem is determining whih units an see enemy units. This isrelatively demanding, beause large amounts of terrain may have to be traversedto perform suh heks. An observation environment takes are of traversingthe relevant terrain e�iently. For eah observer registered in the observationenvironment, suh a hek is performed regularly, and the frequeny of theseheks is ontrolled � one again � by using the event sheduling framework.The spotting or hiding of units is used by the AI to determine targets.Finally there are some updates to the GUI whih are performed at regularintervals (also using the event sheduling framework). For example the soreboard updates asualty and fore strength tallies, and the minimap is updatedregularly.4.4 Player input and network instrutionsSuppose the player presses a key or uses the mouse. Either this ation regardsthe loal lient only � for example, if the ation is just srolling the viewportaross the battle�eld, it an be resolved loally. If, however, the ation issuesan order to one of the player's units, it is neessary to send that instrutionaross the network. The appropriate instrution will therefore immediately besent to the server, whih will relay that information (along with a time stamp,information about when exatly that order should be exeuted) bak to all thelients. When the lients reeive this instrution it will be queued (using theevent sheduling framework) until its exeution time. Finally, when the time isup, the instrution is interpreted and arried out (tehnially by invoking oneof its methods: the instrution is responsible for exeuting itself).

14

Chapter 5NetworkingWhile real-time strategy games traditionally inlude single-player ampaigns,experiee shows that the suess of a game is largely determined by its playabilityin multiplayer. The online playability of a real-time strategy game is thereforevery important, and the networking implementation an have profound impaton this1. This hapter will explore the options available to JWars and in turndeide on a feasible design.5.1 Choosing a network modelThere are several di�erent arhitetures and protools used in multiplayer games,and di�erent genres have di�erent requirements regarding e�ieny and re-sponse times. Fundamentally we shall disuss two variables in this entire prob-lem. First there is the amount of game data whih has to be synhronized arossthe network, along with the and the response time, i.e. the ping or lateny.We an roughly ategorize real-time omputer games by their networkingrequirements:1. Small, fast-paed games suh as �rst-person shooters. These games requirelow ping but have small amounts of data to synhronize (e.g. the positionsand speeds of a few dozen game objets). For example the game Counter-Strike is usually played by around 10-20 people who eah ontrols oneperson, and network lateny an quikly ause deaths in the fast-paed�re�ghts.2. Large, slow-paed games suh as real-time strategy games. There arevery large amounts of data (hundreds or thousands of game objets), butthere are only lax requirements to response times sine the player is notonerned with suh low-level ontrol as above.1Command & Conquer: Generals is regarded by the authors of this text as one of the�nest real-time strategy games ever oneived, and yet this game remains largely unplayedonline. Even on a high-speed LAN the game speed will almost grind to a halt with just fourplayers. Our onlusion: they hose the wrong network implementation.15

3. Large, fast-paed games suh as massively multiplayer online role-playinggames. These require both fast response and involve very large amountsof data, and therefore demand very advaned networking ode. It is wellknown that this takes its toll even on modern games of the genre, butlukily this is none of our onern.We are obviously onerned only with the seond ategory. We note two waysto keep the game state idential aross a network: either we an beam theentire game state onsisting of every logially signi�ant game objet arossthe network with regular intervals. This approah obviously only aomodatesgames of the �rst ategory beause of sheer bandwidth requirements. Another� and to us better � way is to let every omputer simulate the entire game logideterministially in parallel, and only send aross the network those instrutionsthat are issued by the players.This approah is promising sine it requires next to no bandwidth eventhough thousands of units are on the battle�eld. However it is stritly requiredthat all omptuers on the network are able to perform exatly the same simula-tion given the player inputs reeived from the network, otherwise the game willgo `out of synh' and never reover. The next setion will desribe this approahin detail.5.2 SynhronizationWe shall now propose a omplete solution to managing the �ow of time (in thegame, that is). Suppose until further notie that the players have no ontrolof the game. We de�ne that the game starts at frame 0, or t = 0, in someinitial state whih is idential on all those omputers that partake in the game.Now, all the partaking omputers will perform a logial update (whih will allowentities to move or �re at eah other automatially and deterministially, i.e.without the player issuing instrutions) at regular (and equal aross the network)intervals, and when suh a logi update on some omputer is ompleted we saythat the frame ount t is inreased by one on that omputer. Thus, as timeprogresses every omputer will exeute further logi updates for t = 1, 2, 3 . . .until the game is over, and if the logi update routine is onsistent then theomputers will all be in the same state at all time.There is no network ativity yet sine the logi update routine is determin-isti and therefore requires only loal information. Note that the omputers donot need to exeute the same logi update at exatly the same physial time, theonly important thing is the relationship between frame ount and game state.5.2.1 Interativity: network instrutionsSuppose now that we will allow a player to a�et the game state, whih is hardlya deterministi endeavour (exept in Chartres' philosophy; however we shallhere de�ne deterministi as something whih a omputer an predit, seeingas the deeper philosophial onsiderations go beyond the sope of this text).16

We will need to send the partiular instrution that this player has issued toall omputers in the game suh that they an exeute it. Furthermore it isobviously vital that all omputers exeute this instrution while in the sameframe, otherwise they will go out of synh forever.Let us say that some omputer ats as a server whih keeps trak of the frameount, while all players are lients onneted to the server2. The player whowishes to exeute an instrution then sends that instrution to the server. Theserver reeives this instrution while in frame number t0. Now, every omputeron the network must reeive this instrution and exeute it at the same time,so the server ehoes the instrution to all lients along with the requirementthat the instrution be exeuted at frame number t0 + L, assuming that theinstrution will arrive to the other omputers before they have furhter exeuted
L updates (we shall refer to L as the lateny, even though adding the physialnetwork response time results in a slightly larger atual lateny). Now, eahlient will reeive the instrution and an enqueue it for exeution in the (t0 +
L)'th logi update.5.2.2 Synhronization instrutionsWhat happens if the instrutions arrives late to one player, at time t0 + L + δ?Then that omputer will no longer be able to exeute the instrution in time, andthe game is ruined forever. This must not happen, and we shall therefore requirethat the server provides as a guarantee to eah lient that they are allowed toexeute updates until some frame ount. If the server ontinously sends outsynh instrutions to all lients stating that they may proeed the updatingproedure until frame t where t 6 t0 + L, then a lient an halt the game �owif it reahes time t and not ontinue until reeiving a new suh instrution fromthe server. In the meantime any instrutions that arrive will be enqueued forexeution at times later than t, ensuring their eventual exeution at the orrettime.A game implementing the ideas presented here will not rely on a lassialgame loop whih performs updates at the highest possible speed, but insteaduse a timer whih updates only at regular intervals. It is still possible to renderat higher frequeny than the logial update rate, using interpolation, see setion??.5.2.3 ConlusionWe now have a ompletely synhronized model whih supports any numberinterating players and requires a server. The network ativity will be very low,perhaps few instrutions per seond for synhronization and a term proportionalto the player ativity. Sine the server will have to send eah instrution to nplayers, and n players will send O(n) instrutions, the bandwidth use will be2Servers and lients are not ompletely indispensable. Some games employ peer-to-peernetworking where no server is appointed. The lient-server model provides a entralizedmanner of handling instrutions, whih is why we hoose this model.17

O(n2) unless speial ountermeasures are taken, but real-time strategy gamesare traditionally played by no more than around 12 players, and with the lowper-player bandwidth requirement this remains aeptable.5.3 The networking APIThe objetive of this setion is to design a networking pakage adhering to therequirements spei�ed in the previous setion. This will be done in an event-driven manner whih exposes a ontinually updated non-bloking instrutionqueue to the programmer who an therefore easily integrate it in any timerbased or game-loop based implementation.The instrutions onsidered in the previous setions, both synh instrutionsand lient instrutions, obviously require guaranteed delivery in onsistent order.Both of these properties are ensured by the TCP/IP protool, and along withthe lax lateny requirements this shows beyond doubt that TCP/IP is a betterhoie than UDP (whih is generally used for more fast-paed games beause itahieves faster response times by sari�ing among other things the guaranteeof delivery) for our purposes.The previous setion established a lient-server model, along with the on-ept of instrutions. We shall further introdue the protool whih is simply aolletion of instrutions to be used by server as well as lients. The protoolonsists of all the instrutions that an be issued while the game is running,whih would in our ase inlude e.g. ordering the movement of a partiular unittowards a partiular loation, ordering a unit to �re at a partiular loation, orthe previously mentioned synh instrutions.Now we are in a position to propose the �nal layout of the networking pak-age.
• IOHandler. Responsible for sending and reeiving a partiular type ofinstrution (for example movement instrutions). An IOHandler has awrite routine, whih writes the instrution-spei� data (this ould be anew movement destination for a unit along with that unit's identity) tothe server. It has an eho routine whih is invoked on the server when thatserver reeives the information, suh that the server may hek whetherthe instrution is valid, thus preventing ertain heats. The server willthen most likely just pass the instrution on to the other lients afterattahing an exeution time stamp. Finally the IOHandler has a readroutine whih will be invoked when the lient reeives the informationehoed by the server.
• Protool. This is an unmodi�able olletion of IOHandlers whih isidential aross all omputers, lients as well as server. In order to usean IOHandler it must be registered with a Protool before onnetionis established. The protool internally assoiates eah IOHandler with aunique identi�er whih the lient and server employ to distinguish typesof instrutions on the network. 18

• Client. The lient an onnet to a server at a spei�ed IP address andport. The lient will keep a thread running whih listens for networkinput. Whenever input is reeived, the lient will onsult its protool toalert the appropriate IOHandler to handle the instrution. Output to theserver is written through the registered IOHandlers.
• Server. The server aepts onnetions from lients by listening on apartiular port. Every lient whih onnets will be registered, and theserver will spawn a thread to listen for input from that lient whih ter-minates when the lient leaves. Whenever input is reeived, the protoolis onsulted and the appropriate IOHandler is made to handle the input.The IOHandler an then write any information it likes to all lients (itwill most likely just pass on the instrution).Finally there are server- and lient event handlers whih an be attahed tothe server and lient respetively, whih an exeute ode on onnetion, dis-onnetion and player events (these are �red in the ase a player hanges nameor team).5.3.1 Implementation notesThe binary format used to send instrutions onsists of two parts, namely aheader and a body. The body onsists of the information whih an IOHandlerwrites expliitly. There are two di�erent headers, depending on whether theinformation is travelling from a lient to the server or opposite. In both asesit is neessary to send the identi�er of the IOHandler whih is responsible forthe instrution, suh that the orret IOHandler an be fethed to handle theinstrution at the destination. This information is urrently written as a byte,though it has beome lear that bandwidth is of suh little signi�ane that a32-bit integer might as well be used.When the instrution travels from the server to the lient, an exeution-timestamp must be supplied as well suh that the lients know how long to enqueuethe instrution in order to exeute it at the same time as the other lients.The server will determine this timestamp based on a timer. Spei�ally thetime stamp is equal to the urrent time, whih the server reads from a timer,plus the server lateny (mentioned in Setion 5.2.1) whih an be set when theserver is reated and adjusted at any later time. The time stamp is written as a32-bit integer. Thus the instrution overhead is a few bytes, plus the overheadindued by the underlying TCP/IP protool. The relatively small amount oftra� neessary to run the game renders this overhead unimportant.

19

Chapter 6World of JWars6.1 Coordinate spaesIt is normal for a omputer game to utilize numerous di�erent oordinate sys-tems to represent information to the player (e.g. the sreen oordinate system),or to represent the game state internally. It is therefore desirable to provide astandardized notion of oordinate systems to be used in the game. This allowsfor ode reuse and redues the possibility of bugs during the numerous oordi-nate transformations whih would, laking a entralized onept of oordinatesystems, have to be oded manually throughout the game.The basi requirements of suh a system for our purposes an loosely beformulated already: loations should be represented by pairs of numbers (i.e.only two-dimensional systems are onsidered), and there should be a way toonvert oordinates from any oordinate system to any other that representsthe same spae.6.1.1 Coordinate data representationWhile it would be nie to represent the world in ontinuous oordinates, thisis obviously not possible using a omputer. We shall have to selet a way todisretize the world into some �nite number of hunks.Coordinate systems in games ould onveivably be implemented in one oftwo distint ways, representing positions either by �oating point numbers orintegers. Using �oating point oordinates generally ensures a higher preisionwhen alulating movement of units, while on the negative side it an be di�-ult to determine how numerially large oordinates may be before the �oatingpoint system loses preision. This an beome a problem on very large maps.More importantly, �oating point oordinates an be awkward in implementa-tions where tiles are used, sine tiles are naturally indexed by integers.Sine � as it shall beome lear later � we shall use systems of tiles for severalpurposes, whih an only be indexed logially by integers, it is reasonable toonsider integers as the basi datatype of world oordinates.20

A oordinate system must be assigned a width and a height, whih denotethe number of units aross horizontally and vertially, respetively. We shallrefer to the number width×height as the resolution of the system. Assumingthat eah oordinate represents a small square (and not a retangle) of realspae, two oordinate systems must have the same width:height ratio in orderto represent the same spae, see Figure ??.The drawbak of this method is that movement must our in hunks. If,for example, a game runs with 50 updates per seond (whih happens to be theurrent framerate in JWarsTM), there is no intermediate step between a speedof 0 and a speed of 1 unit per frame, resulting in a quantization of speeds whihan produe odd e�ets in the simulation. It would surely be awkward to havea speed of 50 pixels per seond as a minimum.Eliminating this problem requires a very large resolution of the primaryoordinate system, suh that the range of possible movement speeds seems on-tinuous. For example, suppose the main oordinate system has a resolution of
221 × 221, whih means the map measures around two million disrete pointsaross. If there are 29 = 512 of these units for eah pixel on the main display,and the game runs with a 50 Hz framerate, then the minimum possible non-zerospeed is 1

10
pixel per seond, whih is slow enough to depit a realisti-lookingphysial simulation.6.1.2 List of oordinate systemsblahblah1. Main oordinate system. This oordinate system ontains the logial o-ordinates of every entity and must have very high resolution.2. Pixel oordinates. This is used for the representation of entities on thesreen. For example an entity might be 20 pixels large, orresponding toseveral hundred units in the main oordinate system.3. Terrain map. This tiled map ontains large square hunks of terrain graph-is used in rendering. Typially eah suh tile would have a side length ofaround 40 pixels.4. Minimap. Most realtime strategy games use a minimap to represent ageneral overview of the situation, see Setion ??.5. Collision detetion map. This tiled map serves to loalize olliding entitiesto di�erent subdomains of the world, see setion ??.6. Vision management map. This is equivalent to the ollision detetion map,but used for determining whether enemy units are visible, see Setion ??.7. There ould be several other suh maps, for example a oarse strategimap whih evaluates the fore strengths in regions for use by the AI orsoring system. 21

6.1.3 Using oordinate systems6.2 Game data managementThis setion desribes the data management strategy used in JWarsTM. [?℄de�nes a data-driven system as �...an arhitetural design haraterized by aseparation of data and ode�. Suh an approah is useful for numerous reasons.First of all, trivial matters suh as hanging the range of a annon hardly warrantreompilation of the soure ode. It is preferable that the game ontent an behanged without even knowing the ode, suh that di�erent people an takeare of programming and game ontent.This will also make it possible for players to modify the game to providetheir own units and weapons. For example, Warraft III is highly reon�gurableand there exist large sub-ommunities of Warraft III players that play ustommodi�ations of the game1.JWarsTM inludes a loading routine whih reads game data from external�les, then onverts the data into ategories whih are fatories for reatingvarious game objets.6.2.1 Inheritane versus data-based game objet lassi�-ationJWarsTM ontains several di�erent types of units, suh as tanks and infantrysquads. Further there are di�erent types of tanks, suh as PzKpfw IV and T-34.We note two basi ways of dealing with suh variations, inheritane and purelydata-based lassi�ation.Common lessons in objet oriented programming desribe how the abstratlass Animal ould have an abstrat sublass Fishwhih ould have non-abstratsublasses suh as Anhovy or Lamprey. It would be possible to use a purelyinheritane-based hierarhy, meaning that there should be a lass alled PzKpfwIV.But even so there were made variations of this tank. Does this warrant yet an-other level in the inheritane hierarhy?On the other hand one ould use only one kind of unit, then provide alarge amount of data to ategorize the unit. For example type=infantry. Theproblem is that if �ying units are introdued, then every ground unit mustsomehow state that it annot �y. This an beome very umbersome.The natural solution is to use inheritane2 only in those ases where fun-tionality di�ers greatly. For example, sine infantry squads do not have a turretwhih an turn around, it makes sense to use a Tank lass whih has one, whereasthe other lasses need not. Every type of tank will be distinguished only by data.1Notably there are ountless variations of �Tower Defense� maps where the players build de-fensive towers to defeat onoming omputer-ontrolled hordes, and the widely played �Defenseof the Anients� modi�ation[?℄.2Languages whih do not support inheritane an use delegation instead22

6.2.2 Category modelModelling a tank requires a ertain amount of data. For example it has amovement speed, turning speed, a annon, any number (usually two or three)of mahine guns, front armour thikness, side armour thikness and the list goeson. It would be inonvenient for the programmer to supply all this data everytime a tank needs to be reated, espeially if hundreds of tanks are reated, andpartiularly beause most of these tanks are idential anyway.One solution is to use the fatory pattern, i.e. a software omponent whihan reate any number of units of some type. Suppose every unique type of unithas its own fatory, alled a ategory. The ategory has to ontain all the dataon whih the units of that type rely, but the ategory does not have to provideany other funtionality than that of reating units. By letting units have diretaess to their ategory and its data, they need not store the data expliitlythemselves. The ategories thus serve as both fatories and data repositoriesfor the unit type they represent.To reapitulate, every unit, that is, every on�guration of infantry squadand every lass of vehile is represented by a ategory: there is a T-34 ategoryfor the T-34 tank, a Ri�e squad ategory for the Ri�e squad and so on.Note that when inheritane or delegation is used to distinguish types of unitssuh as infantry and tanks, their respetive ategories must be able to make thisdistintion too; it follows that ategories should be organized in a similar andparallel inheritane hierarhy, see Figure ??.It is not just physial entities (suh as tanks) whih bene�t from using ate-gories. Categories are used to lassify all omplex in-game omponents, inlud-ing tank hulls, tank turrets (it was not unommon for di�erent turrets to bemounted on the same hull type) and weapons. A tank ategory, for instane,holds referenes to its hull, turret and weapon ategories. Aside from enablinglogial struturing of data, this allows an SU-85 tank destroyer (whih histori-ally used the T-34 tank's hassis) to use the hull armour data of a T-34 tank,and many of the infantry weapons in the game use the same weapons.6.2.3 Content loading by ategoriesCategory reation, of ourse, still requires a lot of data. But only one ategory isreated for every type of unit in the game, and only one, namely when the unittype is �rst initialized. It therefore makes sense to manage the set of ategoriesin a entral data manager and repository whih the game an use while running.The JWarsTM data repository stores a ditionary whih assoiates namesof unit ategories (suh as �T-34�) with ategories (suh as the T-34 ategory).Categories for all units an be aessed through this ditionary, whether theyare tanks, infantry units, or even formations suh as platoons.Another ditionary stores the names of weapons and their orrespondingategories, and separate ditionaries are used to store tank hull and turret at-egories3.3At �rst sight the use of several ditionaries an be in�exible, sine adding new suh23

Type & identi�er weapon 75mmkwkFull name "75mm Kwk40 L48"Firing range 1.2 kmE�etive range 500 mReload time 8.1 sFirepower data ap 120 16Explosion type mediumexplosionSplash radius 5 mTable 6.1: The data�le entry de�ning the weapon ategory orresponding to a German75mm Kampfwagenkanone (tank gun). The right olumn ontains the atual lines inthe data�le, while the left olumn is only for desription. The �repower data omprisesammo type (armour piering), armour penetration (in millimetres) and �kill index�(e�etiveness against infantry).As promised earlier all this game ontent is read from external �les. Theentral data manager an onveniently be used to parse data�les ontainingunit data, and ategories an be reated dynamially from data obtained in thisway. The data�les are stored in a ustom, human-readable format, see Tables6.1 and 6.2 whih show examples of data�le entries. Notie that many variablesare written in terms of metres and seonds. The data manager automatiallyonverts human-readable quantities into the arbitrary system used internally.When the data manager loads a �le, it parses the words (separated by whites-pae) in sequene. First it reads the ategory type identi�er (�weapon� or �tank�in the above examples) and uses it fethes the orret ategory lass. Then itinvokes the orresponding ategory onstrutor whih is responsible for parsingthe remaining text from a partiular data�le entry.The military hierarhy is similarly reated by means of formation ategories.Formation ategories hold referenes to sub-unit ategories (so a ompany at-egory ould hold a list of platoon ategories, whih ould hold a list of infantrysquad ategories).6.2.4 Current game ontent6.3 Terrainterrain: possible e�et on movement, hiding, shooting etategories would require hanging the ode of the data manager. Sean Riley[?℄ warns expliitlyagainst this. However in this ase, sine weapons and units are vastly di�erent onepts itis logial to separate them in di�erent ditionaries. In JWarsTM all units, whether tanks,infantry or abstrat formations suh as platoons and ompanies are stored in the same (unit)ditionary, thus honouring a generi treatment of game objets.24

Type & identi�er tank pzivFull name "PzKpfw-IV"Radius 3.8 mSpeed 24 km/hTurn rate 1.4 /sBegin weapon list beginMain gun 75mmkwkMahine gun mg34Mahine gun mg34End weapon list endHull type pzivhullTurret type pzivturretTable 6.2: Data�le entry de�ning the German Panzer IV tank. The entries in theweapon list are identi�ers of weapons. Notie the identi�er of the tank gun from Table6.1. The other guns and the hull and turret types are also identi�ers of ategories.6.3.1 Representation and apabilities2D square grid system. Vegetation, possibly details regarding hiding, shootingand movement. Whether or not terrain an be passable (world bounds?).6.3.2 Terrain generatorDiamond-square algorithm. Bu�ers, smoothi�ation, et. Alternative uses ofthe terrain generator.6.3.3 AppearaneRandomly generated grass, trees. Rendering by means of images. Several typesof eah (to make the grid look non-grid-like).6.4 Event handlingMany if not most real-time games inlude a game loop, whih is a loop in whihthe entire model and graphial display of the game are updated repeatedly.This normally involves traversing all the dynamial entities and updating theirpositions, veloities and other variables. These updates might inlude opera-tions suh as the reation or removal of entities from the game, whih an beinonvenient while the list of entities is being traversed. It is therefore desirableto handle updates in one loop, then store the more ompliated operations asevents to be resolved later, just after the game state has been updated. Thisapproah an prevent bugs and ensure that things are done in a onsistent order.Fundamentally we shall here refer to an event as something whih an be putin a queue and then exeuted at some later time. Note that in this model, the25

event serves simply as enqueueable exeutable ode, whih is in ontrast withthe AWT/Swing event term, where events are short-lived objets that onveyspei� information to event listeners.6.4.1 Types of eventsThere are three distint event onepts whih will prove useful.
• Peripheral input. The user an typially ontrol the game by mouse,keyboard or typing ommands into a onsole. It an prove troublesome toinvoke the ode assoiated with these ations immediately: if the playere.g. hanges the view of the battle�eld while the battle�eld is being drawn,this will result in graphial tearing. This should not happen, and this kindof event should therefore be stored and the orresponding ode exeutedonly when graphial and logial update operations have been �nished.
• Network events. As we shall see in Chapter ??, instrutions reeived fromthe network are sheduled to be performed at spei� times. Thereforethese instrutions should be enqueued until that time.
• Delayed events. If weapons are �ring, then their reload progress must betraked somehow. This ould be done by polling eah and every singleweapon (of whih there are probably hundreds) one per update, but ifthey reload equally quikly then it is simpler and more e�ient to insertreload events into a queue suh that it is su�ient to poll that queue ofevents one per update.6.4.2 Performane onsiderationsWhile the storing of multiple events in the same queue (like in the reloadingexample above) an eliminate most of the heks otherwise neessary, there willstill be an abundane of events to be alloated in memory and released. It istherefore desirable to save some of the frequently used events suh that they anbe used multiple times. Following the earlier example with weapons reloading,it would be expensive to reate a new reload event every time a weapon �res.It would be more sensible to save the old reload event and enqueue it again thenext time that weapon �res, beause the weapon obviously annot �re beforeits reload event is released from its queue.6.4.3 Queueing systemThe preeding disussion leaves us with two primary onerns, namely an eventand a queue whih an store events. The event should have an exeute routineand it should know the time at whih it is supposed to be exeuted.The queue should have an update routine whih polls the next event in thequeue for whether it should be exeuted, then exeutes it (and possibly anyfollowing events) if the time is right. 26

This is enough to handle the delayed and network-type events as noted before.In the example regarding reload of weapons, it will be neessary to use one queuefor eah di�erent reload interval. For example, if ri�es an shoot one every 100frames then all ri�e reload events an be stored in a ri�e reload queue, andall grenade launher reload events an be stored in another queue representinganother reload time.Finally, peripheral input events should generally be handled immediately (i.e.within the same update as it is generated), but this kind of input ould originatefrom another thread than that in whih the game updates are performed. It istherefore neessary ommendable to use a thread-safe approah (in java this isdone simply by delaring the relevant methods synhronized).In onlusion we now have two speial queues, namely the peripheral input(synhronized) queue whih exeutes the events stored in them immediatelywhen polled, networking queue whih stores instrutions reeived from the net-work until suh time as they should be exeuted, and any number of delayed-exeution queues that handle weapon reloads and other things whih we shallsee in other hapters, suh as vision heks and targetting.6.5 Vision6.5.1 Vision in gamesThe onept of not being able to see all enemy units is alled fog of war inreferene to the smoke aused by e.g. artillery bombardments. In some oldgames suh as Dune 2 and Command & Conquer, the entire map is blak bythe beginning of the battle, and the player has to explore the map in order toloate the enemy. In the two mentioned games, terrain that has been exploredone will forever stay visible along with any enemy units in those areas. Newergames generally allow the player only to see the immediate areas surroundingfriendly units, i.e. as soon as the units move away, the enemy units in thatarea are one again obsured. In most ases (Warraft III, Starraft, TotalAnnihilation et.) there is a maximum vision range, whih lets a unit observe airular neighbourhood of their loation, exept for obstrutions of the terrainsuh as hills or buildings whih an blok the view. The maximum vision rangeis usually less than the size of the main battle�eld display, for example around50 metres.Bearing in mind the realisti approah of JWarsTM we wish a model ofvision whih an support muh larger ranges, namely hundreds or thousandsof metres. This is still shorter than realisti spotting ranges, yet onsiderablylonger than ontemporary games. Furthermore it should be possible for terrainobjets to blok line of sight. Finally, we propose that units should be able tohide even though they are well within diret line of sight. It is in reality easyfor infantrymen to hide in bushes or high grass (whih are not expliit gameobjets but rather types of ontinuous terrain), and this possibility should be27

inluded in any realisti wargame4.6.5.2 Performane disussion6.5.3 Final design

4The lak of vision from World War II-era tanks is of partiular importane here: infantryunits ould hide only a few metres away and attak advaning tanks using molotov oktails,hoping that the volatile �uid would pour into the tank engines.28

Chapter 7Collision detetionThis hapter will after an introdution to ollision detetion desribe the designand apabilities of the JWarsTM ollision detetor.7.1 Basis of ollision detetionThe most important objetive of this setion is to deide on an overall approahto an e�ient and reasonably simple ollision detetor bearing in mind the re-quirents of real-time strategy games. There is by no means an optimal suhollision detetor sine requirements invariably will di�er greatly with applia-tions. Further shall restrit the disussion to two-dimensional ollision detetionseeing as JWarsTM does not need three dimensions.In a real-time strategy game there is generally a large amount of units,possibly more than a thousand. It is therefore of the utmost importane thatthe ollision detetor sales well with the number of units in the game.7.1.1 Divide and onquer approahLet n be the number of units present in some environment. In order to hekwhether some of these overlap it is possible to hek for eah unit whether thisunit overlaps any of the other units, and we will assume the existene of somearbitrary heking routine whih an perform suh a unit-to-unit omparisonto see whether they ollide. While the amount of suh heks an easily beredued, for example noting that the hek of unit i against unit j will produethe same result as the hek of unit j against unit i, this method invariablyresults in O(n2) heks being performed. This approah is �ne if there are veryfew units, but this is obviouslyThe amount of heks an, however, be redued by registering units in lim-ited subdomains of the world and only heking units in the same subdomainaganst eah other (for now assuming that units in di�erent subdomains an-not interset). Suppose, for example, that the world is split into q parts eah29

ontaining n

q
units. Then the total amount of heks, being before n2, will beonly number of heks ≈ q

(

n

q

)2

= n2/q.It is evident that within eah subdomain the omplexity is still O(n2), butdereasing the size of the subdomains an easily eliminate by far the mostheks, partiularly if the division is made so small that only few units anphysially �t into the domains. The applied approah thus employs priniples ofa divide-and-onquer method[2, pp. 28-33℄, though it is not expliitly reursive.7.1.2 Tile registration strategyThis approah still needs some modi�ations in order to work. Spei�ally,units may oneivably overlap multiple subdomains, neessitating heks of unitsagainst other units in nearby subdomains. Assuming square subdomains willprove both easy and e�ient, and we shall therefore do so. Consider a gridonsisting of w × h elements, or tiles, de�ning these subdomains�see �gure ??.We shall desribe two ways to proeed.1. Single-tile registration. Register eah unit in the tile T whih ontainsits somehow-de�ned geometrial enter. In order to hek one unit it isneessary to perform heks against every unit registered in either T orone of the adjaent tiles. Thus every unit must be heked against theontents of nine tiles. This approah is simple beause a unit only has tobe registered in one tile, yet muh less e�ient than the optimisti aseabove and requires that the units span no more than one tile size (in whihase they ould overlap units in tiles even farther away).2. Multiple-tile registration. Register the unit in every tile whih it touhes(in pratie, every tile whih its bounding box overlaps). Cheking a unitnow involves heking it against every other unit registered in any one ofthose tiles it touhes. This means that a unit whose bounding box is nolarger than a tile an interset a maximum of four tiles. Units of arbitrarysize an over any amount of tiles and therefore degrade performane, butthe ollision detetion will obviously not fail�also in most real-time gamesthe units are of approximately equal size and for the vast majority thisapproah will be .For the JWarsTM ollision detetor we have hosen the seond approah, pri-marily beause it does not restrit unit size to any partiular sale. This ap-proah will also likely be more e�ient sine it in most ases will require lessthan half the number of tiles to be visited (as noted, 4 is a bad ase in thismodel whereas the former model onsistently requires 9). However there is onepossible problem whih is illustrated in �gure ??, namely that two units whih30

oupy two of the same tiles will (unless arefully optimized out) be hekedagainst eah other in eah of those tiles1.7.1.3 Shapes and sizes of olliding entitiesThe best-ase time of suh a tiled ollision detetor is O(n) orresponding tothe ase where all units are in separate tiles. The tiles should be sized suhthat only a few units (of a size ommonly found in the game) an �t into eah,but they should not be so small that every unit will invariably be registered inmultiple tiles. Every time a unit moves the tiles in whih it is registered willhave to be updated, whih beomes time onsuming eventually.As an example, this model should easily aommodate a battle�eld withmany tanks (around 6m in size) and at the same time provide support for a fewwarships (around 100 − 300 metres). If neessary, it is possible to improve themodel by allowing variably-sized tiles, suh that the tiles are made larger at seathan at land, for example. This approah will, however, not be implementedsine suh extreme di�erenes in sales are very unommon in the genre.Having overed the methods neessary to minimize the number of heks, itis time to brie�y mention the heking routine itself. It is obvious that a large-sale game an not realistially provide ollision detetion between arbitrarilyomplex shapes. In the realtime strategy genre units are ommonly modelled asirular or square, sine a larger degree of detail would hardly be notiable on therelevant sale. We have therefore deided to provide only ollision detetion forirular units. However the ollision detetor does provide an esape mehanismensuring that units an implement a ertain method to provide any ustom-shapeollision detetion. Using irular shapes provides the bene�t of simpliity ande�ieny, and no ustom shape handling will be disussed in this text.7.2 Design of the ollision detetorThe ollision detetor manages a basi kind of entity whih we shall refer to asa ollider. The most basi properties of a ollider are its loation (x, y) and theradius r of its bounding irle (it has a few more properties whih are irrelevantto this setion but will be mentioned later). Whether or not a ollision has beendeteted is determined solely by these properties.7.2.1 The heking routineThe entire heking routine for a single ollider whih wishes to move to a ertainloation now reads:1. Determine whih tiles the ollider will overlap in its new position1The present implementation does not optimize this, sine this an hardly degrade e�ienyonsiderably. 31

2. Traverse these tiles, and for eah other ollider found here, perform thefollowing steps.(a) Chek whether the bounding irle of the moving ollider intersetsthe bounding irle of the other ollider.(b) If the irles interset, invoke user-de�ned heking routine.() If the shapes interset, invoke user-de�ned ollision handling routineon the moving unit. The moving ollider will not be moved to itsdesired position, and the heking routine is terminated.3. If at no point above the heking routine has been terminated, the movingollider will have its position updated to its desired loation. The ollisiontiles overlapped by the ollider in question will be updated aordingly.This routine works well in the realtime strategy genre when the primary fun-tion of ollision detetion is to prevent entities from overlapping. There is nopartiular way of handling a ollision other than anelling the movement re-quest (unless the user spei�es this manually in the handling routine), and thisapproah would therefore be bad if realisti physis (onservation of momentumor elasti ollisions, for example) were desired. These things are not partiularlyrelevant in the realtime strategy genre where the behaviour of a single unit isnot losely monitored.7.2.2 The ollision gridIn order to represent the ollision grid, the ollision detetor uses the map utilitypakage whih is desribed in setion ??. It fundamentally requires two oordi-nate systems: a main oordinate system (the x,y and r properties of ollidersare presumed given in this system) and a more oarse ollision grid. The lat-ter is a tile map onsisting of ollision tiles, where a ollision tile is apable ofstoring a list of olliders.Registration of a unit in the ollision grid uses the oordinates and radiusof the ollider to derive a bounding box, whih is easily ompared � throughthe oordinate transform provided by the map pakage � to the grid elementsof the ollision map. The heking routine desribed in the previous setion iseasily implemented by traversing the tiles thus overlapped by the ollider, thenand for eah tile omparing the radii of present olliders.The atual heking routine, hek, takes a ollider and a desired loation
(x, y) as parameters and returns whether the spei�ed loation is legal (i.e. doesnot overlap with any other ollider registered in the ollision grid).The ollision detetor further has a move method whih takes similar argu-ments, and whih will also move the spei�ed entity instead of only performinga hek.7.2.3 Further featuresFinally a few utilities of the ollision detetor should be mentioned.32

First, some entities may naturally be able to move past another while othersare not. For example, infantry units onsisting of multiple men would be able toenter a building whih would be impassable by larger objets suh as vehiles.Also infantry squads would be able to walk through eah other, whereas aninfantry unit would not be able to move past a tank (whih is massive), andtwo tanks would not be able to drive through eah other. Therefore the ollidershould also speify a boolean whih determines whether the objet is massive.If either of two olliding olliders is massive, then the ollision detetors hekwill return false. Thus infantry squads an easily be made to pass through eahother or buildings (all non-massive entities).Finally it is sometimes desirable to �heat�, i.e. not perform strit ollisiondetetion in order to make the gameplay smoother. For example if it is desiredthat a new unit should enter the map, but there is no spae at the desiredloation, it might be best to disable the ollision detetor and allow that unitto overlap others until suh time as the unit no longer overlaps them (whenthey or the unit have moved). Colliders may therefore be delared as ghosts, inwhih ase the ollision detetor ompletely ignores them until they are delarednon-ghosts.Regarding implementation, these two properties, whether olliders are mas-sive or ghosts, are onveniently enapsulated in a set of ollision propertieswhih every ollider must have. The ollision properties may be retro�tted inlater versions to support an abstrat notion of height (f. the �2.5 D� geometry,setion ??) or other onepts that an desirably be modi�ed.The onept of olliders is ontained programmatially in the interfae Collider,suh that any lass an implement it.There is one more funtion that an advantageously be inluded with theollision detetor, even though it does not relate diretly to ollision detetion:Setion ?? desribes how entities are rendered to the main JWarsTM display.In order to loalize the entities that are atually present on the display, it isdesirable to traverse the tiles used by the ollision detetor. The ollision de-tetor should therefore also have aess to the terrain map. When an entityis moved, the ollision detetor is in this ontext responsible for dirtifying thea�eted terrain tiles, meaning that those tiles should be redrawn during nextgraphial update. This proess, traversing the overlapped terrain tiles, is om-pletely equivalent to that of traversing ollision tiles. With this in mind, eahollider must also possess a sprite, the onept of whih is desribed in Setion??. The ollision detetor thus traks the movement of sprites on the sreen,suh that redrawing an be skipped in regions where no movement takes plae.7.2.4 E�ieny and optimizationAt an update speed of 50 Hz, the present implementation of the JWarsTM gamean on the authors' test systems support approximately 1000 simultaneouslymoving units before lagging behind in logial framerate. It is, however, possibleto run a logial framerate of e.g. 10 Hz and perform interpolation to ensure33

graphial smoothness between logi updates2 (thus using a higher graphialthan logial update rate). Using suh an approah the performane ould beenhaned 10-fold. This is not quite neessary in the JWarsTM appliation.The ollision detetor therefore supports around 10, 000 moving entities, butthis �gure an be redued if ustom geometries are used or if other parts of thelogi are omputationally heavy.7.2.5 Using the ollision detetorThe programmatial interfae of the ollision detetor is very simple and an beonisely desribed in only few terms:
• The ollision detetor is instantiated by supplying three oordinate sys-tems, namely the high-resolution main oordinate system of Setion ??,a tile map of ollision tiles and a terrain map (Setion ??).
• An entity, tehnially anything whih implements the Collider interfae,an be added by alling the register method, passing a referene to theollider in question as parameter.
• If an entity is to be moved, the move method should be alled, speifyingthe relevant entity and its proposed new loation. This method will, asdesribed above, hek the validity of the new loation for the entity andmove the entity aordingly. If a ollision is deteted, ollision handlingmethods on the olliders in question will be invoked as required. Finallythis method returns whether the move was suessful.
• An entity an be removed from the ollision detetor by alling the removemethod.If for some reason the loations of entities are hanged without notifying theollision detetor, this may result in that entity being registered in inorret tiles.Thus that unit might overlap other units without a ollision being reported. Thisissue an be remedied by overtly enapsulating the positions of entities withinthe ollision property suh that it is impossible to tinker with it from outside;at present we have not deemed this preaution neessary.7.3 ConlusionThis hapter has introdued the JWarsTM ollision detetor, and seleted atile-based approah to ensure that the detetor aomodates large amounts ofentities e�iently.2Note that if the update rate is further redued it will most likely beome visible to thehuman player even if graphial interpolation is performed as desribed in Setion ??, sinethe logial framerate governs �ring and other things that are diretly visible to the player.34

It works by registering entities in appropriate tiles using axially alignedbounding boxes. Collision heks are done using the radii of the entities, mean-ing that all units are onsidered irular. However an esape method is providedthat allows arbitrary geomtry.Performane-wise the ollision detetor is optimized for large amounts ofunits eah with simple geometry, but even if omplex geometries are used theombined use of bounding boxes and bounding irles is likely to eliminate mostof the expensive heks.7.4 Path�ndingFor moving units in RTS games the need for a path�nding algorithm arises.Path�nders were implemented in the earliest RTS games and have improvedthrough the years. Most path�nders today extends the normal 'single-soureshortest path problem' solution to inorporate unit-to-unit relations whih makeunits apable of interation for �nding the optimal paths. For this projet weneed a path�nder to work on the world of JWarsTM while still be a viablesolution in similar worlds. With this in mind we will form an algorithm thatan be used in other systems as well but using the JWarsTM world as anexample.When moving units in the world of JWarsTM a navigational problem ariseswhen �nding the shortest paths between to points. There exists a range ofsolutions when �nding the shortest path between to points. These solutionshowever have di�erent requirements for the map in whih to navigate and somemight be inonsistent in speed.Many of todays RTS games solve this problem by using a tilesystem for themap used for path�nding and designating tiles with either 'used' or 'free' asmarkers when sanning through the map with an algoritm3. This approah hasseveral advantages, like high and onsistent speed, while it requires a prede�nedmap-struture to searh in. A good example is the A* algorithm whih is ashortest path graph algorithm. For �nding a shortesth path using graphs fordata representation history has shown that the A* algorithm is viable hoie.In any situation we will need a way to represent possible positions of a movingobjet as �x points so a moveorder an be broken down to to multiple move-orders. The most ommonly used approah is the graph representation whensolving path�nding problems. Given a graph represented as follows:
G = (V, E).

V is a list or other representation of all the verties in the graph E is arepresentation of the edges in the graph. An edge is best seen as a link between3Although these are not open soure games, meaning that we annot know for sure, severalobservations support this assertion. For example, buildings an typially be plaed only indisrete loations, and in some games units in lose lusters (notably zerglings in Starraft)are learly plaed aording to a grid. 35

two verties - meaning that you an go from vertex v1 to vertex v2 using theedge e(v1, v2). The weight of an edge, orresponding to the amount of time/ostit takes to traverse it, is given by a weight funtion w : E 7→ [0, infinity] sinea distane already travelled an not be negative.Given a graph with a hosen data struture there are several possibilitesto solve the single-soure shortest path problem from vertex A to B. Most ofthese algorithms are based on seletive expansion of the searh area sine thistype has the best running times with the fewest verties visited - like the A*algorithm.The path�nding in JWarsTM has some requirements to the algorithm whihwe must take into aount before hoosing a �nal solution. The most pressingissue is to onvert the dynami and rather limitless implementation of unitsand other objets in the world of JWarsTM see setion ??. We have hosena very open approah in the area of unit and building loation, size and form,whih ompliates the �nal form of a path�nding solution. Any building or unitan be plaed anywhere on the map and will not �ll out a prede�ned amountof tiles in the world. The option of letting objets take spae on the map,like a hesspiee on a hessboard oupying the �eld [A,2℄ an not be used inJWarsTM, sine the data strutures allows objets of any size in JWarsTM.With the prede�ned restrition in mind we an not use the map alone for writingan e�etive path�nder as the amount of information would be laking. Thereforethe most obvious data to use for path�nding are the atual objets.If we are to use the objet data some rules has to be de�ned or the amountof di�erent senarios would beome infeasible to omprehend. If the objetdata is to be used, the most e�etive way to use them is to treat all objetsas onvexhulls. Convexhulls has many properties whih makes the basis ofhandling and alulating a lot easier in this projet.In this projet it is the data representation and requirements for the worldmodelling whih fores us away from the normal path�nding implementations.For this game we will have to ome up with a rather unique path�nding solution.As stated above the best data for these alulations are the terrain objets sinethey alone ontain the relevant data. A solution to a path�nder using onlythe terrain objets an be as simple as walk towards the goal, if you enounteran obstale walk around it and ontinue towards the original goal. On thisbasis we have developed a path�nder whih is based on the A* algorithm whihemploys a heuristi estimation of the distane from any node to the goal. TheJWarsTM-path�nder is meant for 2D purposes only and in this ase a straightline towards the goal will result in the most optimisti evaluation a node anget.7.4.1 ImplementationThough a tile-based system is inapable of handling the path�nding in JWarsTM- the aspet of path�nding on graphs is still viable and the most e�ient method.The implementation we have hosen for the path�nding is to transform the dy-nami/open implementation of the JWarsTM-world to a graph-system on whih36

we an perform a searh algorithm. For aomplishing this we have implementeda dynami graph with the following rules and de�nitions.For every path needing to be found we start with the given graph for theurrent map G = (V, E). V onsist of all orners on stati objets - onvex hulls- on the map. This data is stored in the ollion map. E Is an empty list. 4The start and goal loation are onsidered verties5 whih is spei�ed foreah running of the algoritm. In general path�nding A* is onsidered the moste�etive searh algorithm on the single soure shortest path problem. Thereexist a number of algorithms to solve the problem but the A* algorithm has theshortest running time and �ts or problem pro�le well in the expansion of thesearh tree.In theory no edges are be represented in E. When a node is expanded weget a set of edges based on the urrent path�nding problem. This means thateverytime we use the path�nder we have a new setup and all nodes ould produea new set of edges. We do not store the individual edges but merely ativatethose disovered by the algorithm upon expanding a node. Using this approahwe expand the graph aording to the A* and updates the nodes found by theexpand funtion. 6 The operation that makes this algorithm stand out is theexpand funtion whih ativates verties/edges while searhing for the path.An important aspet of the hosen solution is that it is not a�eted by anyother part of the game implementation than the ollision detetor. If a developerwants to use this path�nder it is fairly easy to onvert to a di�erent setup - aonversion need a funtion whih an detet a ollision between an game objetand a straight line from point A to B.When running the algorithm we have some settings whih is restored aftereah usage.pre-settings:all verties/pathfindingnodes have been initialized with h = g = infinityC the list of verties to expand - the openlist - is initialized empty.The algorithm is started by alling the �ndPath with a end oordinate andthe spei�ed unit. As explained later the path�nder returns unique solutionsto spei� spei�ations. Calling the method with two di�erent sized units anyield two di�erent results. This will be desribed to depth later in this hapter.Given the start oordinates as the units urrent loation and the end asargument to the method the standard loop for an A* is implemented. Theloop selets a node to expand based on a heuristi evaluation whih orrespondsto a priority queue. The term priority queue will be used throughtout this4If it were to be a pre-de�ned list for E it should onsist of all possible routes betweenany verties on the map. This amount of data would be hard to handle and if the amount ofstati objets were large enough it would require alot of memory spae.5The path�nder ontains a spei� lass for this purpose alled 'Target'. This lass extendsthe the path�ndingnode lass and an also be registrered in the ollision detetor - this makesus apable of shooting towards and ollide with it.6A more formal word for the update method is to relax the edges adjaent to the node -in this ase we update the nodes found by the expand funtion37

hapter. In a standard implementation it will be referred to as the openList.The heuristi evaluation is based on an evaluation in a 2D environment forpath�nding. Taking into aount that all distanes travelled are straight lines,we an always be sure that we have the shortest possible path to any givennode if we use the method normally alled 'Relax' as in ?? when desribingDijkstra's algorithm. The g-sore for a node is simply alulated as the distanefrom the urrent node to the goal loation. The g-potential will ensure that anode having travelled less than others and having the possibility to result ingetting diretly to the node will be the next expanded. This approah meanwe an safely terminate the algorithm upon reahing the goal loation and havethe shortest path possible without further expansion of the algorithm.Having the loop seleting a new node to expand by eah iteration we willnow explain the expand funtion and how this works in the world of JWarsTM.Upon expanding a node we only ativate nodes whih an be reahed in astraight line from the urrent node. This ensures that all values alulated willdistanes either already travelled - h value - or the minimum distane - g value- to the goal given that no objets is bloking the line. When expanding a nodewe expand it towards another node. In JWarsTM the lass PathFindingNodehas been implemented solely for the purpose of path�nding and has all theneeded attributes for being handled as a vertie. A path�ndingnodes settingsis alulated from the blueprint whih determines the objets size, shape andpositioning. A very important feature of a path�ndingnode is the ability havea stati oordinate and a dynami oordinate. This ability is neessary forthe path�nder to �nd a path based on the moveables radius. When reating apath�ndingnode a vetor is alulated based on the two adjaent orners in theobjet reating an indent diretion. When multyplying this indent diretion withthe unit radius we get a indented loation. This loation is the dynami oordi-nate whih will be alualted in eah run through the path�nder for all relevantnodes. When expanding a node it will always be expanded towards an othernode. The path�nder has a speial tileMap alled a LineDrawCapableMap.This map is derived from the standard tilemap as explained in ?? and takes theollision map as argument. The LineDrawCapableMap omes with a methodwhih utilises Bresenhaum's line drawing algorithm to �nd a list of tiles basedbetween two points on the map. This list will onsist of CollisionTile's fromthe ollision map and an be expanded to draw a line of ertain thikness basedon the unit radius. The thikness is alulated as CollisionTile.size / move-able.radius . Using this formula the tiles returned by the funtion would be thetiles the moveable has a theoritial hane to touh. From the list of ollisiontiles we aquire a list of terrain objets whih should be heked for ollision.When heking a building for ollision we take several steps before onludingthat a ollision will our. The free positioning and shape of objets makes asimpel point-to-line distane worth alulating. This will ensure that buildingswith no hane of interfering with the searhed path will take more resoures.The seond step is to alulate all angles to the the path�ndingnodes indentedloations in the urrent objet. Calulating the largest and smallest angle wean perform a hek wether the line is between these to angles. If we detet a38

ollision with the objet, the rule about all objets being onvexhulls gives usthe two path�ndingnodes for �nding a path around the objet. The pseudoodefor the expand funtion show this prinip rather well.Expand(from, to, unit)min = max = null;List = getTileList(from, to);TOList = getTOList(List);for eah objet in TOList{ if(pointLineDist < unit.radius + building.radius){ set min, max anglesif(min != null max != null){expand(from, min, unit);expand(from, max, unit);}}} If we hit the wanted path�ndingnode while �nding min and max values thenode will be added to the priority queue and is the ativated for future expansionaording to the heruristi evaluation. The reursive all to the expand funtionenables the funtion to ativate several edges leaving one node thus ativatingall relevant edges for leaving the urrent node. A single node expanded ouldfollow this series.Everytime a position (path�ndingnode) is grey it has been added to thepriority queue by the expand funtion. When the expand funtion suesfullymakes ontat with the targetted node we update the target node with therelevant data for the A* algorithm to run as intended. The update method willreevaluate three values needed for sorting and evaluating nodes in the list so wean expand further aording to the heuristi evaluation. Finally it will set theanestor of the given node to the node from whih we ame. We use values f,gand h. 'f' for the travelled distane to this node, 'g' for the heuristi evaluationto the goal and 'h' as the ombined values.The expand funtion su�ers one fatal error. It an fail in �nding all theneessary edges leaving it. En example of this situation follow here.It is learly that aquiring the nodes on the smaller building would be thefastest route to the target X . The path taking the moveable loser to the objet�ts a standard tatial manouvre, where overs means safety. In the real worldobjets on the battle�eld would be used by units to hide their positions or makeup defenable position. One other error whih an be fored by a programmeris reate a single struture from multiple onvexhulls. We have already statedthat in order to have non-�awed data objets must be onvexhulls. If a pro-grammer hose to make reate a 'U' formed building onsisting of 3 retangles,39

(a) test1 (b) test2

() test3 (d) test4Figure 7.1: test
40

Figure 7.2: blahblahthe path�nder would not return a path to the target, merely a path inside the'U' where it would remain stationary.The �aw in the expand funtion ould be �xed by adding in a do/while-loopin the update funtion or a similar �tting plae.urrent = this;do(if(expand(this, urrent.anestor)){ this.update(urrent.anestor, goal);}else{ urrent = urrent.anestor; })while{ urrent != start }Plaing this pseudoode in the implementation would make the path�nderhek all nodes leading to node whih we just found. It would ut some ornersand make the implementation �nal but have not been inluded in this �nalrelease.Some path�nders have been expanded to foresee other units walk patternsand to take these into their own alulations when �nding a route. This possibil-ity do not arise in a world whih is not grid-based sine the possibilty to 'rent'map spae is not available. Unfortunately this option will never be availableto a path�nder not based on the map struturing. In the real world it makessense not to let all allies know where you are all the time. This general rule41

should apply to all RTS games aiming for realism. For solving the issue withunits sharing knowledge and optimising paths another type of data would beneeded. Implementing a system for units to ommuniate and plan their move-ments optimally an be implemented. Currently the walkAround method in theMoveableAI lass makes up for ollisions. This method should be extended totake unit-to-unit ommuniation into aount for smarter move patterns on thesmall sale.

42

Chapter 8Unit organizationThe onept of units in JWarsTM di�ers fundamentally from the orrespondingonepts in other realtime strategy games. This hapter will provide reasons forand desription of the JWarsTM unit organization and its advantages. Theideas presented below onstitute the most important single reason for the ex-istene of JWarsTM, and this is the most likely feature to make JWarsTM�famous� if suh a thing should happen.8.1 Real-world military organizationAll modern militaries are remarkably similar in their organizational struture.More or less onsistently, the armed fores are divided into several armies whihare suessively divided into orps, divisions, brigades, battalions, ompanies,platoons and individual vehiles or squads of infantry. Commanding o�ers areassigned on eah of these levels, and the organizational struture allows largeamounts of fores to be ontrolled as a single entities. The high-level entities aregenerally referred to as formations whereas the lower-level ones (whih omprisee.g. purely infantry) are alled units [?℄.In most ases, eah unit omprises three or four units of the next smallertype. For example a battalion might ontain four infantry ompanies plus sup-porting anti-tank or mortar units. Infantry ompanies usually onsist of threeinfantry platoons and possible further support. A platoon an onsist of three10-man infantry squads, eah man being armed with ri�es exept for a lightmahine gunner and an anti-tank team.Generally it is pratial for the ommanding o�er at a partiular level oforganization to diretly ontrol units up to two levels down in the hierarhy.Thus a divisional ommander exerts diret ontrol of a number of brigades, andto a limited degree the battalions. The individual formations and battalionsare assumed apable of ontrolling their own omponents. It is obviously notpratial for a ommander at a very high level to ontrol vast amounts of singletanks. 43

8.2 Military ommand in omputer gamesThe ategory of omputer games in whih the player ontrols a large militaryfore with the objetive of defeating a similar fore in battle an be divided intotwo primary groups: real-time and turn-based strategy (or tatial) games. Inany ase the player usually has a fore whih onsists of units.Some turn-based games, suh as the Steel Panthers series, attempt to ahievevery high degrees of realism, inluding realisti weapon spei�ations, provide astruturing of units into a true military hierarhy, and sometimes these gamesinlude senarios that aurately depit the orders of battle (the unit strutureand equipment) of the historially involved formations. In Steel Panthers, forexample, the player has unlimited time to ontrol every single entity no matterthe size of the entire army. For very large battles, the player who spends themost time is likely to win. While the units may be organized into platoonsand ompanies, the player still has to ontrol the fores at the single-vehileor single-squad level, and platoons are thought of as abstrat entities and notatually units.In real-time games the situation is di�erent. First and foremost, the degree ofrealism is rarely very high, with tanks being able to shoot less than 100 metresand nulear weapons frequently being a native part of the battle�eld. Asidefrom the ahistorial antis, the ontrollability of fores beomes very importantbeause the player annot take arbitrarily long time to issue orders. Generallythe units are not organized at all, meaning that the player is in diret ontrolof every unit. This means that as the game grows in omplexity, ontrollingthe units beomes ever more demanding, and the player who is fastest withthe mouse frequently wins out due to the better ability to pull wounded unitsout of harm's way, bring reinforements forward quikly, and possibly manageresoures at the same time.To failitate somewhat e�ient ontrol, these games allow the player to draga seletion box on the battle�eld to obtain momentary ontrol of whihever unitsare inside the box, and every order issued will apply to this seletion. Anotherfeature is to organize units into ontrol groups, suh that the player an use hotkeys to selet i.e. a group of aeroplanes even though they are not near eahother (and therefore di�ult to drag a box around).Many proponents of turn-based games so� at the stress and dependene onquik mouse ation in real-time games, using niknames suh as real-time likfests, while many real-time players �nd turn-based games boring.JWarsTM proposes the use of an expliit military hierarhy to help on-trol fores of arbitrary size in real time quikly and e�iently, reduing thedependene on quik mouse ations. Sine the fores an be almost arbitrarilylarge, the game world might as well be expanded past that of most games. Thiswill further mitigate the dependene on fast mouse ation, sine the time salesinvolved in most operations will inrease. On the other hand, the redued de-pendene on mouse ation inreases the relative importane of tatial thinking,whih will hopefully appeal to both turn-based and real-time players alike.There is one possible drawbak of this model, namely that the struturing of44

Figure 8.1: Example of a unit tree. Only the nodes with downward pointing arrowheadsare expanded. This is part of a sreenshot from JWarsTM.units may not be as the player wants, and that the expliit tree struture laksthe �exibility to use units individually. Nonetheless the struture is identialto that of real military units, whih makes it a marketable feature regardless ofontrollability.Figure 8.1 shows an example of a military hierarhy in the urrent versionof JWarsTM. This battalion onsists of 116 individual entities (vehiles orseparate infantry squads), omprising 344 infantrymen and 36 tanks or assaultguns.8.3 Tree-based unit representation

45

Unit

Formation Moveable

InfantrySquad Vehicle

Tank AssaultGun

Battallion

Infantry company

Infantry platoon

Tank company

Tank platoon

etc

Sturmgeschuetz

SU−85
PzKpfw−IV

T−34

Tiger

KV−1

Rifle squad

SMG squad

PzFaust team

Figure 8.2: Types of units. The boxes with rounded orners indiate onrete examplesof the partiular unit type.

46

Chapter 9Unit AI(mention that AI more or less translates to `behaviour' in this ase)9.1 Hierarhial strutureMost realtime strategy games inlude two kinds of AI: �rst there is a simpleAI whih ontrols the low-level behaviour of the individual units. This AI isresponsible for automatially doing tasks whih are trivial, suh as �ring atenemies within range or, if the unit is a resoure gatherer, gather resouresfrom the next adjaent path if the urrent path is depleted suh that theplayer needs not bother keeping trak of this. The other kind of AI is theseparate AI player whih ontrols an entire army, and whih is inompatiblewith the interferene of a human player. This AI is responsible for larger tatialoperations suh as massing an army or responding to an attak.In JWars, as we shall see, there is no suh lear distintion between di�erentkinds of AI. Beause of the hierarhial organization it is possible to assign anAI to eah node in the unit tree, meaning that while every single unit does havean AI of limited omplexity to ontrol its trivial ations, like in the above ase,the platoon leader has another AI whih is responsible for issuing orders to eahof the three or four squads simultaneously, and the ompany leader similarly isresponsible for ontrolling the three or four platoons. It is evident that thismodel an in priniple be extended to arbitrarily high levels of organization,meaning that it will easily be equivalent to the seond variety of AI mentionedabove: the entire army ould e�iently be ontrolled by AI provided that theAI elements in the hierarhy are apable of performing their tasks individually.There are numerous bene�ts of suh a model, the most important of whihwe shall list here.
• Tatially, if one unit is attaked the entire platoon or ompany will beable to respond. In lassial realtime strategy games this would result ina few units attaking while the rest were standing behind doing nothing.47

Thus, this promotes sensible group behaviour whih has been laking inthis genre sine its birth.
• It is easy for a human player to ooperate with the AI. For example it issensible to let the AI manage all ativity on platoon and single-unit levelwhile the player takes are of ompany- and battalion-level operations.This will relieve the player of the heavy burden of miromanagement whihfrequently deides the game otherwise (as asserted in setion ??). Thus,more fous an be direted on strategy and tatis instead of managingthe ontrols.
• The ontrols may, as we shall see below, be strutured in suh a wayas to abstrat the ontrol from the onrete level in the hierarhy. Thismeans the player needs not bother whether ontrolling an entire ompanyor a single squad: dispath of orders to an entire ompany will invoke theompany AI to interpret these orders in terms of platoon operations. Eahplatoon AI will further interpret these orders and have the individual unitsarry out the instrutions appropriately.
• A formation-level AI an hoose how to interpret an order to improve e�-ieny. For example the player might order a platoon to attak an enemytank, but the platoon AI might know that ri�es are not e�ient againstthe tank armour. Therefore it might oneivably hoose to employ onlythe platoon anti-tank setion against the tank while the remaining platoonmembers ontinue e.g. suppressing enemy infantry. These onsiderationsare easy for a human player, but annot be employed on a large sale sinethe human annot see the entire battle�eld simultaneously. One againthis eases miromanagement.There are, however, possible drawbaks of the system.The worst danger of employing suh an AI struture is probably that the AImight do things that are unpreditable to or on�iting with the human player.Care must be taken to ensure that human orders are not interfered with, andthat the behaviour is preditable to humans1.From a game design perspetive it might also be boring if the automatizationis too e�ient, leaving the player with nothing to do. This problem, of ourse,an be eliminated simply by disabling ertain levels of automatization. It is alsounlikely that the AI at higher levels of organization an ever outwit a humanommander, making sure that human interation is still required.1Classial examples of this problem are when resoure gatherers deplete resoures andautomatially start harvesting from pathes too lose to the enemy, or when the player issuesa movement order and the unit moves the �wrong� way into the line of �re beause thepath�nder has determined that this way is faster.48

9.2 Design onsiderationsIt was stated above that the ontrol of single entities versus large formationsould be abstrated suh that the player did not need to bother about the saleof operations. If this priniple is to be honoured, the user interfae must allowsimilar ontrols at every level of organization. At the software designing levelthis may be parallelled by providing a ommon interfae to be implemented bydi�erent AI lasses. It should be possible to give move orders, attak orders andso on, and eah of these should have its implementation hanged depending onthe ontext, i.e. whether the order is issued to a formation or a single entity.It is therefore reasonable to propose that every unit, whether it is an ab-strat formation or a physial entity, should possess an AI, and this AI shouldexpose an interfae whih allows a standardized set of instrutions. However theimplementation of these instrutions should be left open, suh that the di�erentkinds of units an freely interpret them appropriately.It further proves useful to have di�erent types of AI speialized in di�erentroles. The ode whih manages movement not neessarily have muh in ommonwith that whih manages shooting. Therefore it an be an advantage to holdsuh funtionality separate. Spei�ally, this will result in a MobileAI and anAttakAI, eah of whih provides the orresponding funtionality. Sine unitsmust provide the funtionality of both, the logial solution is to assign eah unita UnitAI whih onforms to the spei�ations of MobileAI as well as AttakAI.This design is obviously well-suited in an environment whih allows poly-morphism and inheritane, and for this reason the use of Java interfaes areideal for the ore AI lassi�ations.9.3 AI layering strutureAlong with the AI interfaes that speify the AI apabilities, some simple im-plementations exist whih an take are of spei� roles. The following examplewill illustrate the usefulness of this priniple.The MobileAI interfae spei�es an orderMove method whih is supposedto make the relevant unit move to a spei�ed loation. Also similar movementorders an be appended or prepended to a queue of suh orders. There is astandard implementation, MovementQueueAI whih takes are of all this queuemanagement. Suppose now that a path�nder should be used to break the moveorder into straight-line segments leading around some obstales. This fun-tionality an be provided by wrapping the MovementQueueAI and providing aPathFindingAI with an orderMove method whih invokes the path�nder, thenenqueues the way points by using the underlying MovementQueueAI. The player,however, does not need to know that the AI responsible for path�nding atuallywraps an AI responsible for enqueueing movement orders. The only informationwhih is important is that the AI provides the movement funtionality.In a ompletely unrelated matter, the BasiAttaker whih is an imple-mentation of AttakAI is responsible for keeping trak of a target and whether49

or not to shoot. The implementations whih provide movement and targettingfuntionality an now be reused together. The AI of a physial entity suhas a tank (alled a Moveable) is an implementation of UnitAI whih wraps aMobileAI and a BasiAttaker. Thus the behaviour of a tank is ditated byinterhangeable AI �building bloks� that an be expanded as required.This example is of ourse dependent on the layout whih we have happenedto hoose for the AI API, and this might not be what another developer wants.Nonetheless the design shows a �exibility whih allows almost arbitrary ex-tensions. In onlusion, units have a partiular AI interfae whih is exposesattaking and movement funtionality, and the AI framework relies on delega-tion to various spei� implementations to provide this funtionality. Interfaesare used for polymorphism.9.4 Future AI workIt is no seret that the limited work whih has gone into the AI implementationsin JWarsTM are not going to revolutionize the real-time strategy genre. How-ever the unique tree-organization allows for muh more omplex and intelligentbehaviour whih an be implemented in the future. This setion will mentionsome of the more promising improvements whih an be done.
• Aggression modes. In some ases it is desirable that units �re at everynearby enemy. But otherwise this might not be a good idea. If a reon-naissane patrol opens �re on the enemy troops they are observing, theywill most likely be spotted and killed. If an infantry squad is waiting foran unsuspeting tank to ome lose enough to throw a grenade down theopen hath, then it is most unwise to open �re at a range of two hundredmetres. Thus, a good AI must know when to �re and when not to. Whenthe squad opens �re it is important that the remaining squads of the pla-toon, or the entire ompany, open �re as well. It therefore makes sense tomake e.g. a ompany AI responsible for starting suh an ambush, thoughit requires that the AI supports, for example, an ambush state.
• Battle�eld-awareness. A ommon problem in ontemporary real-time strat-egy games is that an airstrike is ordered on an enemy fatory somewhere.While under way the planes are attaked by unseen anti-airraft batteriesand shot down. In this ase it would be bene�ial to all o� the attakentirely. But if there is only one anti-airraft emplaement, and if theattak involves twenty planes, alling o� would be silly. Assigning an AIto the entire attak wing would easily provide a means of evaluating andhandling suh threats.
• Morale-dependent AI. While under �re, people an pani and retreat. Thiskind of AI ould refuse to perform o�ensive ats if pani sets in. blahblah50

Chapter 10CombatThis hapter deals with the ombat model provided with JWarsTM. The om-bat model enompasses di�erent modules pertaining to weapons and automati�ring routines, targetting (via the spotting routines of Setion ??), armour anddamage.10.1 Analysis of ombat dynamisMost real-time strategy games use remarkably similar ombat models. Unitswill �re automatially at enemy units when the enemy units ome into range,wait for their weapons to reload and ontinue �ring until they or the enemiesdie (or until they reeive new orders and disengage).Every time a unit �res, it may or may not hit its target (in many games theywill even always hit the target), and do damage to the target and possibly thesurrounding units based on the weapon used and the type of target.The anonial way of representing damage and the health of an entity is touse hit points. A unit has a ertain number of hit points, and every time itgets hit by a weapon, a number of hit points based on the weapon type, target,luk or other fators, gets subtrated. If a unit reahes 0 hit points it dies. Thehealth state of a unit is typially represented graphially by the harateristigreen health bar, whih beomes shorter and hanges olour to yellow and redas things go downhill.This is a very simple basis model whih is used in most games. We anmention Warraft I-III, Starraft, Dune II, all Command & Conquer games,and the list goes on.For JWarsTM, however, we have something more ambitious in mind. Realitydoes not deal in hit points. If a shell hits a tank, one of two things happen:either the shell bounes o� the armour doing no or very little atual damage,or else the shell penetrates the armour and will likely ause horrible damage.It does not take 7 hits or 5 hits like in the hit point model, but ould take anynumber of hits. If the tank is su�iently heavily armoured, no amount of hits51

from that annon will destroy it1.Suh realisti models have been used in the Steel Panthers series of turn-based strategy games. Our approah shall borrow some true and tested ideasfrom this highly realisti series of games.10.1.1 Combat rule setThe ombat rule set is the basis for the implementation. This does not meanevery implementation has to use this rule set � this is only the default.
• There are two primary types of entities: vehiles and infantry squads.
• Some vehiles are tanks, whih have a hull and a turret whih an tra-verse, whereas others are assault guns whih have a hull and an in�exiblesuperstruture with a annon. Hull and turret or superstruture eahpossess an armour table, whih lists the thikness of steel armour in mil-limetres and the angle of armour plating. This information is borrowedfrom Tashenbuh der Panzer 1945-54 [?℄ and sometimes Steel Panthers:World at War [?℄.
• Infantry squads have a strength, i.e. a number of men.
• Eah entity an have any number of weapons.
• A weapon has a maximum range, an auray, a �repower (determining itse�ieny against infantry), an armour penetration value (in millimetresof steel, numbers are borrowed from Steel Panthers: World at War [?℄), anammunition type and a reload time. A Weapon an �re at a loation butis not guaranteed to hit. Weapons an deal splash damage, i.e. ollateraldamage to units near the impat loation.
• Whenever an infantry squad is hit or nearly hit by a weapon, people maydie depending on luk, impat distane, weapon �repower and possiblyother fators.
• Whenever a vehile is hit diretly by a weapon, it might be destroyedbased on the weapon's armour penetration ability, the vehile's armourthikness and the angle of inidene.
• Enemy units will automatially �re at eah other if within range.We intend to expand the ruleset in the future, to support rewed weapons (e.g.infantry-operated anti-tank guns or FlaK), o�board artillery whih an ondutindiret bombardments of any part of the battle�eld and aeroplanes whih areo�board most of the time but an make bombing runs.1Anthony Beevor[?℄ notes a partiular oasion on whih German panzers �red sores ofshells at an immobilized Soviet KV-1 heavy tank. Finally the Soviet rewmen emerged tosurrender, badly shaken, but unhurt. 52

10.1.2 �Weapon vs. armour�, or �armour vs. weapon�?There is a triky matter of evaluating di�erent ammunition types versus di�erentarmour types whih warrants a disussion of the way suh heks are handled.This setion will disuss real-life weapons systems in order to determine themost sensible way of handling shell impats.Suppose a shell hits a tank. We will want to ompare the steel penetration ofthe weapon with the thikness of the armour. If the shell uses kineti energy asa means of penetrating the armour (e.g. ommon armour piering ammunition)then its ability to penetrate armour should be redued with impat speed andthus travelling range. If the shell uses only explosive power (suh as HEAT,high-explosive anti-tank whih is ommonly used in infantry anti-tank weaponssuh as the bazooka, Panzershrek and Panzerfaust), then its steel penetrationis ompletely independent of impat speed.The ommon way of handling suh a problem in objet oriented languagesis to equip eah weapon with a di�erent method for alulating damage to steelarmour. The problem is that several types of armour an also exist, whih meansthe weapon will have to distinguish manually between target types anyway. Seebelow: should the implementation be provided by weapon or armour?armour.alulateDamage(weapon)//Allows armour lass to selet implementationweapon.alulateDamage(armour)//Allows weapon lass to selet implementationWe have deided that the omplexity of armour is generally greater thanthat of weapons, and that the implementation should therefore be left to thearmour lass.For example, diverse defensive tehnologies range from no armour (infantry)to steel and spaed armour. The previously mentioned HEAT ammunition usesa uriously shaped warhead to ahieve a direted explosion, forming a jet ofmolten metal[?℄ whih an travel a ertain distane largely una�eted by thetype of armour it penetrates. This an be negated by mounting a thin layerof armour on vehiles some distane away from the armour, meaning that thejet will disperse before reahing the inner armour layer. This is alled spaedarmour. Figure 10.1 shows a Soviet T-34 tank equipped with a mesh to detonatesuh warheads prematurely. A more modern tehnology alled explosive reativearmour or ERA uses explosive harges as part of the tank armour to obstrutthe jet, nullifying its penetrative apabilities[?℄.Thus weapons an be haraterized by a selet few parameters, whereasarmour has the bene�t of possessing the method whih deides what happenson impat, given the weapon parametres. This allows armour systems arbitraryomplexity (they an provide any implementation) whereas weapons have toexpress their e�ieny in terms of a pre-determined set of parameters. In orderto distinguish di�erent types of weapons (whih is still neessary), a few standardtypes are hardoded: high-explosive, armour piering, HEAT and bullets. Bullettype weapons are onsidered speial: unlike the other types, they are onsidered53

Figure 10.1: Soviet T-34 tank with wire mesh for protetion against the Panzerfaustanti-tank weapon.[?℄to �re volleys onsisting of several shots (suh as from a mahine gun or a wholesquad �ring several ri�es). Also, if the �rst weapon delared on an infantry squadhas the bullet type, then it is onsidered issued to every member of the squad,meaning it will have its �repower multiplied aording to the number of men.The other ammunition types have no expliit meaning, but when alulatingdamage, the armour an distinguish these types on an if-else basis.10.1.3 Struture of the weapons APIThere are four onepts whih are introdued in order to properly separate theode.
• Weapon. A weapon has a ategory (see Setion ??) whih stores its a-pabilities, and a state, being either loaded or not. The weapon has a �reroutine whih ultimately might result in people getting killed (no humanswere harmed during the making of this routine).
• WeaponModel. The weapon model serves as an interfae between the set ofweapons belonging to a unit and the ode whih attempts to ontrol theunit's more aggressive antis. The weapon model an be used to emulatethe weapon set independently of the atual weapons, whih allows theweapon ode to be substituted without breaking e.g. the unit AI.
• ArmourModel. Responsible for handling the (nearby) impat due to the�ring of a weapon. Present implementations inlude two armour models,being infantry- and vehile-spei�, respetively.54

• Damageable. Responsible for handling any damage aused when the ar-mour model reports that it ould not withstand the punishment. Presentlythis only serves to alert a unit of when it is destroyed, but is supposed totake are of destroyed radios, �re ontrol, suspension, engine et. if someday those onepts are implemented.10.1.4 Firing routineThe �ring routine orresponding to a partiular weapon takes the soure loa-tion and the target loation in the main oordinate system as parameters, andvalidates by heking whether the weapon is loaded and within �ring range of thedestination. It is desirable, though not presently implemented, that diret-�reweapons (as opposed to indiret-�re weapons whih are used for bombardments)should also on�rm that they are within line of sight of the target.If �ring is possible, the atual hit loation is alulated. If the weapon typeis �bullet�, meaning that it �res a volley of projetiles (suh as in the ase ofmahine guns), then the hit loation is always exatly the targetted loation,sine this is where the bullets will hit on average. Bullets are then assumed tohit in the general area and not on exatly the entral point. Other types ofweapons have their impat loation determined based on luk and the �e�etiverange� of the weapon, but other fators may be inluded later.Finally, the set of all entities within the weapon's splash range of the im-pat loation is determined by using a utility method provided by the ollisiondetetor. All units in this set have10.1.5 Impat handling by armourThere are presently two types of armour model: infantry and vehile. As men-tioned previously, the armour model determines what happens to a unit whenhit. The infantry armour model alulates a number of asualties based on luk,the impat distane and the �repower of the weapon in question.The vehile armour model is somewhat more ompliated. Vehile armouris spei�ed by ategories (see Setion ??). The armour thikness is spei�ed inmillimetres, along with the armour plating angle, on the vehile front, side andrear. Tanks, having a turret, have another suh set of numbers, see Figure ??.10.2 Spotting and targetting
55

Chapter 11Control

56

Chapter 12GraphisWhile graphial beauty is not one of the primary objetives of JWars, the ren-dering system is designed with some are for performane and pratial usability.The system relies on Java2D and the Swing framework, as these shall prove rea-sonably e�ient for our purposes, not to mention the onveniene that they areinluded with the Sun Java Runtime Environment.There are numerous alternative graphis libraries whih ould likewise havebeen used, ranging from the low-level OpenGL wrapper, JOGL[?℄, to senegraphimplementations suh as Java3D[?℄, Xith3D[?℄ and the game library LWJGL[?℄.In the following we shall disuss a number of rendering strategies with the intentof applying them with AWT/Swing. However, importantly, these terms do notapply only to this framework; they are general priniples used in rendering inmany di�erent ontexts.12.1 Ative versus passive renderingAs mentioned in Setion ??, realtime strategy games normally onsist of a en-tered main display whih displays the battle�eld and the animated ation. Sur-rounding this display is typially an overview map and a number of status panelswhih are not animated, or ontain relatively little graphially heavy ontent.The main battle�eld display will require ontinuous redrawing due to thedynamial nature of its ontent, and the rendering operations are expeted to beomplex and demanding for the omputer. Widget toolkits suh as AWT/Swingare not designed for this kind of rendering, and it will be neessary to manage therendering manually: the main display will use ative rendering, i.e. it will drawdiretly to the sreen when requested, and requests will be issued ontinuously.Note that most real-time omputer games issue suh requests at the max-imum possible frequeny to ensure the best smoothness of animations. Thisan be done from a rendering loop whih issues repaint instrutions ontinu-ously. We have deided to use a less aggressive approah and render only oneevery time the logi is updated; this will our at a 50 Hz rate, whih proves57

su�iently smooth for a 2D game where most entities move reasonably slowly.However in fast-paed 3D games this is barely onsidered su�ient by skilledplayers1.On the other hand, sine the surrounding panels are not generally animated,these omponents are ideally represented by Swing widgets using the normalpassive rendering, where repaints are sheduled as required and taken are ofwhen the omputer �feels like it�. Sine the panels are going to display datawhih depends on the internal game state and ontain buttons whih might a�etthat state, and sine AWT/Swing appliations run largely from a partiularthread, namely the so-alled Event Dispath Thread, it will be neessary eitherto synhronize the interation between the user interfae and the model, or toexeute all relevant ode in the Event Dispath Thread.12.2 Double bu�eringDouble bu�ering refers to a tehnique whih an be used to improve the per-eived performane of an appliation. A naïve implementation of a renderingloop would simply lear the rendering surfae, then perform the drawing op-erations and terminate. This will most likely ause the sreen to �iker. Theexplanation is that the drawing operations take so long time that the user no-ties the sreen being temporarily empty. Double bu�ering uses two drawingsurfaes: a on-sreen bu�er whih is displayed, and an o�-sreen bu�er whihresides somewhere in the omputer (or hopefully the graphis adapter) memory.A graphial update ould onsist of learing the o�-sreen bu�er and performingall the rendering operations onto it. Then the o�-sreen bu�er is drawn (or blit-ted, a partiular tehnique used for rendering images) onto the on-sreen bu�er,making the hanges visible in one sweep. The blitting an even be synhronizedwith the refresh rate of the sreen, though we shall not go into detail with this.There are other tehniques assoiated with double bu�ering, for examplepage �ipping whih interhanges the o�-sreen and on-sreen bu�ers simply byswithing a pointer. There are approahes that use even more bu�ers, althoughthis is hardly of interest here.Swing appliations are automatially double bu�ered. Only the main dis-play, whih is atively rendered (and whih therefore does not use the Swingrepainting mehanisms) annot automatially be double bu�ered. Implement-ing proper double bu�ering would require the alloation of the aforementionedbu�ers, preferably in video memory. Fortunately this is not neessary in ourpartiular ase beause AWT happens to provide a Canvas lass whih an haveits own BufferStrategy2. Double bu�ering is hene of little pratial onern,though it remains important to any rendering system.1It is ommonly known that televisions use muh lower framerates. Smoothness is in thisase ahieved beause the frames are blurred and perhaps interlaed.2A Swing-ompetent reader might notie that the JFrame an likewise use suh aBufferStrategy. But doing so would a�et the passively rendered panels in the GUI aswell. Only the Canvas o�ers the desired ontrol over the rendering proess.58

12.3 Battle�eld rendering and layersAs it has previously been explained, the primary display shows some subset ofthe battle�eld, the ontent of the viewport, in high detail. There are severaltypes of graphis whih are to be displayed here, and it will prove advantageousto organize them in layers.1. First, there is the ground terrain. As desribed in Setion ??, the terrainis represented by a tile map of terrain tiles, alled the terrain map, andeah suh tile is apable of drawing itself to the sreen (provided an AWTgraphis ontext). Not all of the tiles need to be drawn � see Setion 12.4.2. The next step is to draw all the ground units, e.g. tanks and infantry. Sineit is umbersome to traverse all existing entities and determine whetherthey are inside the view, the ollision detetor omes in handy: onvertingthe viewport bounds to ollision grid oordinates allows the traversal ofonly those ollision tiles that overlap the viewport, and thus leanly pro-vides all the entities to be rendered. Eah entity, being a so-alled sprite,is responsible for painting itself given its sreen oordinates.3. Having painted the ground and the entities on the ground, the next levelis vegetation (whih is presumed to be taller than those entities). Eahterrain tile is apable of drawing its vegetation to the sreen, and this willoverlap any units present3.4. When annons are �ring, there should be explosion animations to desig-nate the loations of impat. These should be visible to the player (even ifphysially situated below trees) sine they provide valuable information.There might be rokets or aeroplanes �ying through the air. All thesethings (although neither rokets or planes exist in JWarsTM yet) an allbe rendered together. While airborne projetiles should theoretially berendered ordered by their altitude, this would be troublesome, and evenwhen aeroplanes are implemented in JWarsTM, there will hardly be suf-�iently many of them so lose together as to warrant suh an ordering.5. Finally it might be desirable to display information suh as text in themain display. When a unit is seleted, a green line indiates its diretionof travel, whereas a red line indiates its target. These e�ets whih arenot physial entities serve to enhane the ability of the player to ontrolthe fores. Their purpose is to onvey information to the player withoutotherwise obstruting the battle�eld view. We shall refer to this kind ofe�ets as the Head-up display or HUD. This type of display is ommonlyused in military aeroplanes and omputer games.3When an entity stops moving it will be drawn on top of the trees. This makes sure thatthe entity annot go �missing� in the woods, whih would be a serious moment of irritationfor the player. Interestingly, this feature was originally a glith in the rendering routine.59

Some of these layers will mostly have stationary ontent, suh as the ground andtrees, the display of whih should be updated only when viewport is reloated.Others will have dynami ontent, suh as explosions and moving entities. Thefollowing setion will provide a solution to rendering these layers e�ientlytaking into aount their di�erenes.12.4 Optimization of the rendering routineObviously, a battle�eld display in whih no movement ours needs not expendany resoures rendering. However if a ar is driving aross the sreen, the areaimmediately around the ar will need to be updated as it moves. The terraindirti�ation system is designed to take are of this, ensuring that minimal timeis used to needlessly render terrain.Whenever an entity moves, the ollision detetor is responsible for traversingthe area and heking whether the entity ollides with others. Suppose everyterrain tile in the terrain map an be in one of two states, either dirty or not.The ollision detetor an then traverse the terrain tiles overlapped by the spritebelonging to that entity, and set the state of these terrain tiles to dirty, signifyingthat the tiles need to be redrawn. This will allow the painting routine to �lterout those tiles that are dirty and paint them, ignoring the rest.There is one problem with this approah: while it will aommodate the �rstthree layers, the dynamial ontent suh as the HUD annot be rendered in thisway, beause the ollision detetor does not (and should not) know about this.This will result in the terrain not being repainted while the HUD hanges, thusleaving graphial artifats on the display.Our solution is to render the �rst three layers onto a seondary o�-sreenbu�er (whih needs only relatively little repainting work). The seondary o�-sreen bu�er is � every frame � then rendered onto the primary o�-sreen bu�erwhih we introdued in Setion 12.2. Finally the remaining layers, whih gener-ally need omplete repainting for every update, are rendered onto the primaryo�-sreen bu�er, the ontent of whih is �nally blitted to the sreen.While the introdution of this extra step takes some time, it yields muhbetter performane. Drawing an image (suh as the seondary o�-sreen bu�er)is a fast proess, whereas the remaining in-game graphis, involving rotationsand possibly transpareny, are muh more time onsuming.Finally, let us summarize the omplete rendering routine.1. Render any dirty terrain within the viewport to the seondary o�-sreenbu�er.2. Render any dirty entities within the viewport to the seondary o�-sreenbu�er.3. Render the vegetation of any dirty terrain within the viewport to theseondary o�-sreen bu�er.4. Render the seondary o�-sreen bu�er to the primary o�-sreen bu�er.60

5. Render any animated e�ets onto the primary o�-sreen bu�er.6. Render the HUD onto the primary o�-sreen bu�er.7. Render the o�-sreen bu�er onto the sreen.12.5 ConlusionIn this hapter we have derived a double bu�ered ative rendering routine fortwo-dimensional top-down view game graphis. The routine saves time by usinga third bu�er to keep trak of the areas on the sreen in whih no movementours.

61

Chapter 13Conlusion

62

Bibliography[1℄ Sean Riley, Game Programming with Python (Charles River Media, 2004.ISBN 1-58450-258-4)[2℄ T.H. Cormen et al., Introdution to Algorithms, 2nd Edition (MGraw-HillBook Company, 2001. ISBN 0-262-03293-7)

63

