
JWars - A Generi
 Strategy Game in JavaMidterm proje
t � Informati
s and Mathemati
al ModellingAuthors:Mi
hael Fran
ker Christensen, s031756Ask Hjorth Larsen, s021864Supervisor:Paul Fis
herAugust 1, 2006

DTU - Te
hni
al University of DenmarkLyngby

Front page: Soviet T-34 tanks supported by infantry advan
ing a
ross the Rus-sian steppes

Abstra
t

Contents
Abstra
t iPrefa
e 11 Introdu
tion 21.1 Introdu
tion to the genre . 21.1.1 Ba
kground . 21.1.2 RTS
ombat and
ontrol 41.2 Why JWarsTM? . 61.2.1 Flaws in
ontemporary real-time games 61.2.2 Military hierar
hy . 61.3 Report overview . 72 Features of JWarsTM 82.1 Game dynami
s . 82.2 Te
hni
al features . 83 Overview 103.1 Development plan . 103.2 Modular overview . 104 Ar
hite
ture 114.1 Conne
tion and initialization . 114.2 Flow of
ontrol . 124.3 Various deterministi
 a
tivities 134.4 Player input and network instru
tions 145 Networking 155.1 Choosing a network model . 155.2 Syn
hronization . 165.2.1 Intera
tivity: network instru
tions 165.2.2 Syn
hronization instru
tions 175.2.3 Con
lusion . 175.3 The networking API . 185.3.1 Implementation notes . 19ii

6 World of JWars 206.1 Coordinate spa
es . 206.1.1 Coordinate data representation 206.1.2 List of
oordinate systems 216.1.3 Using
oordinate systems 226.2 Game data management . 226.2.1 Inheritan
e versus data-based game obje
t
lassi�
ation . 226.2.2 Category model . 236.2.3 Content loading by
ategories 236.2.4 Current game
ontent . 246.3 Terrain . 246.3.1 Representation and
apabilities 256.3.2 Terrain generator . 256.3.3 Appearan
e . 256.4 Event handling . 256.4.1 Types of events . 266.4.2 Performan
e
onsiderations 266.4.3 Queueing system . 266.5 Vision . 276.5.1 Vision in games . 276.5.2 Performan
e dis
ussion 286.5.3 Final design . 287 Collision dete
tion 297.1 Basi
s of
ollision dete
tion . 297.1.1 Divide and
onquer approa
h 297.1.2 Tile registration strategy 307.1.3 Shapes and sizes of
olliding entities 317.2 Design of the
ollision dete
tor 317.2.1 The
he
king routine . 317.2.2 The
ollision grid . 327.2.3 Further features . 327.2.4 E�
ien
y and optimization 337.2.5 Using the
ollision dete
tor 347.3 Con
lusion . 347.4 Path�nding . 357.4.1 Implementation . 368 Unit organization 438.1 Real-world military organization 438.2 Military
ommand in
omputer games 448.3 Tree-based unit representation 45iii

9 Unit AI 479.1 Hierar
hi
al stru
ture . 479.2 Design
onsiderations . 499.3 AI layering stru
ture . 499.4 Future AI work . 5010 Combat 5110.1 Analysis of
ombat dynami
s . 5110.1.1 Combat rule set . 5210.1.2 �Weapon vs. armour�, or �armour vs. weapon�? 5310.1.3 Stru
ture of the weapons API 5410.1.4 Firing routine . 5510.1.5 Impa
t handling by armour 5510.2 Spotting and targetting . 5511 Control 5612 Graphi
s 5712.1 A
tive versus passive rendering 5712.2 Double bu�ering . 5812.3 Battle�eld rendering and layers 5912.4 Optimization of the rendering routine 6012.5 Con
lusion . 6113 Con
lusion 62Referen
es . 63

iv

Prefa
eDuring the development of JWarsTM many friends have taken the time andtrouble to test the
ode on many di�erent platforms and hardware. This help hasbeen of immense value to us, parti
ularly for testing the graphi
al performan
eusing di�erent drivers and graphi
s adaptors, not to mention the performan
eof the networking
ode under less-than-optimal (non-LAN)
onditions. In par-ti
ular we would like to thank Dennis Dupont Hansen, Kasper Re
k, PederSkafte-Pedersen and Kenneth Nielsen.Finally we are very grateful for the help of our supervisor Paul Fis
her withwhom we have had numerous te
hni
al dis
ussions about the various software
omponents.

1

Chapter 1Introdu
tion1.1 Introdu
tion to the genreBefore reading on in this do
ument a formal introdu
tion to the real-time-strategy (from now on referred to as RTS) genre
an be ne

esary. This se
tionshould be seen as history of the genre as well as a opportunity to understandthe generel game stru
ture as well as the more advan
ed
on
epts in the genre.First we will de�ne the genre and then a qui
k walkthrough around the history.In the end we will point out the importent features implemented in RTS gamesover the years. These features will be importent for our proje
t sin
e our goalis to develop a game whi
h engine live up to the time's standard.1.1.1 Ba
kgroundWhen
ategorizing Jwars it should be spe
i�ed as a Real-Time Ta
ti
al game.This genre however belongs under the broader type of games
alled Real-TimeStrategy whi
h is normally used. The RTS genre
ame about in the 80's onlybeing fully developed and formally seen as a single unique genre 10 years laterwith titles as Dune II and Blizzards War
raft and War
raft II. For the
asualgamer a RTS game
an be re
ognized by using some simple ground rules whi
hhas grown to distin
t the genre:1. Warplanning is essential � strategy2. The player has no 'Next turn' button � real-timeOther essential guidelines:1. Resour
e gathering2. Building/unit lo
ations are essential3. The manufa
toring of spe
i�
 units4. The player has dire
t
ontrol of his units/buildings2

The RTS genre was developed from the turn-based strategy games genre.One of the �rst RTS games, perhaps the most de�ning game for the genre,is dune II for whi
h the developers was inspired by Sid Meiers Sim City. Itshould be noted that while Sim City di�ers from the standard RTS game, it isalso re
ognized as a RTS game where the opponent is the game environmentitself and not an AI or another human player. As su
h many diversities hasrisen in the RTS genre as game developers be
ome more inventive. Today RTSgames are in general build on a player vs player environment with single player
ampaigns for the di�erent ra
es/fa
tions.Most strategy games requires the player to understand basi
 military
on-
epts and most often a paper-ro
k-s
issor approa
h on unit
ombat. A unit
andefeat some opponent units, while it in turn will be defeated by a suitable op-ponent unit. Often this is
ombined with a development in the players armoryfor the
ost of resour
es and time. Resour
es is mentioned as a basi

on
eptin RTS games sin
e e
onomy leads to more higher military power whi
h in turnleads to higher resour
e in
ome either by
onquering land or holding strategi
resour
e areas. This have been the basi
 approa
h to strategy games, gatherresour
es, build up military for
es, gather more resour
es or fo
using on
uttingof the opponent resour
e in
ome. In this
o
ktail of
hoi
es for the player
omesthe ta
ti
al maneuvres and stru
tural pla
ements if possible. Most games to-day try to in
orporate terrain as a fa
tor in the games and many aspe
ts of realwarfare has
ome in to play like high ground, bottlene
k maneuvres, entren
h-ment and so on. As the
omputer game industri grows so does the amount oftime and money spent on developing new features in strategy games. Many ofthe more su

esfull games has found a �rm middleground in supporting alot offeatures but not making the game dependent on these. This will allow moresimple users
apable of enjoying the game in a more relaxed playstyle whilethe hard
ore gamers
an dive in to mi
romanagement of troops, exploitation ofgame engines et
.The average RTS game normally uses the single player
ampaigns as a linearstory introdu
ing more and more di�erent units/
on
epts along the story. Of-ten a
ampaign starts with the player only
ontrolling few simple units with fewdegrees of freedom for the player as the mission is laid out. As the player
om-pletes more missions more units and buildings or
on
epts will be
ome available- in this way a new bought produ
t will introdu
e units slowly and let the playerexplore game features in turn, thus not making the game seem to
ompli
ated.In the JWars proje
t however we will not be in
luding single player missions asit would be beyond the proje
t s
ope setting up s
enarios.In the last
ouple of years RTS games has been improving greatly in onespe
i�
 area - graphi
s. Most of the popular older games relied on 2D graphi
swhile the 3D environments in �rst-person-shooters blossomed. Not until theBlizzards release of War
raft III: The Frozen Throne did the standard graphi
engines
hange to 3D. Graphi
hs in�uen
ed some games popularity though mostis based on gameplay and the univers in whi
h the game takes pla
e. Almost allnewer titles uses a 3D engine with
hangeable view angles and zoom fun
tion,in this proje
t however we rely on 2D graphi
s and fo
us on gameplay and the3

gameengine itself.1.1.2 RTS
ombat and
ontrolRTS games fo
uses on large s
ale
ombat. All a
tions made by a player isprimarily made with the thought of hightening his
ombat e�orts. With this inmind an example of unit balan
ing and a brief explanation of a GUI will opensome doors for the inexperien
ed players. We have
hosen these spe
i�
 areasdue the normal la
k of understanding in them. In RTS games the player shouldbe able to
hoose between a wide sele
tion of possibilities for
ombining hisfor
es. This is where unit balan
e and the strategy idealism
reates synergy and
reates the dynami
 atmosphere in whi
h the genre unfolds its true gameplay.The term unit balan
e is used to determine an ordering of how units
ompareagainst ea
h other in
ombat. Some players
reate a ratio between units inheads-up
ombat like 2:1 or 7:2 as this would represent unit data in its rawestform when
omparing. In this instan
e we generalize the
on
ept for betterunderstanding. If we
reate an example with 3 di�erent units being meassuredagainst ea
h other for example: a plane, a tank and a anti-air
raft gun (AAgun). Logi
 would
reate simple rules from this setup:- Plane beats tank- Tank beats AA gun- AA gun beats planeWe
ould atta
h a ratio on ea
h instan
e if we wanted to use a measurement.This looks like a standard ro
k-paper-s
issors setup and a player would neverbe able to sele
t a single strategy and be sure to win. By expanding this theoryinto
ontaining more di�erent units with strengths and weaknesses the ta
ti
algameplay is ensured in the game as the players will need to take steps
ounteringea
h other throughout the game. Unit balan
ing is one of the greatest fordevelopers and is often an ongoing pro
es after the game has been released.Games today whi
h base their playerbase on an online environment has theability to release updates when needed. More often than not the developers willrelease a game whi
h is unbalan
ed and only the testing done when selling thegame will �nd the issues whi
h need attention. Some developers has adoptedthe theory that there is no testing like releasing the game to a massive audien
e.Next we will introdu
e one of the most
lassi
 games in the genre as anexample of how a game GUI
ould be
reated. The example we have
hosen isBlizzards Star
raft in
luding the expansion pa
k - Star
raft: Brood War. Thisgame has been
hosen be
ause it is seen as the best strategy to date by mostfans of the genre and be
ause both writers of this paper is pro�
ient in thisgame.An easy way to spot a RTS game is often by the user interfa
e provided.Several designs with unique abilities and setups have
ome up but most
ontainsthe three most
ommon features - a minimap, an infopanel and a fo
uspanel,4

Figure 1.1: S
reenshot from Star
raft. The vora
ious Zerg swarm is overrunning aTerran settlement.
ommonly named status-panels as a group. These are all tools for the playerto enhan
e his
ontrol and the ability to gather information developed for easya

ess and usage.The GUI is split into di�erent subse
tions ea
h providing the player withinformation and options.As seen on this s
reenshot from Star
raft: Brood War the minimap is lo
atedon the bottomleft. The minimap is the primary sour
e for the player to swit
hhis fo
us on the battle�eld as well as obtaining a qui
k overview. The minimapusually shows the players own for
es in green and opponents for
es in red. Inthis way an enemy for
e massing for
es or approa
hing your territory will resultin red markers on the minimap. This is an e�e
tive way to aid the player insorting the information from on s
reen. The minimap will never be the playersmain sour
e for information as the information it provides is always sparse and
an even be misleading.Covering most of the s
reen is the fo
uspanel1. The fo
uspanel will normallybe where the players attention will be
entered. The panel is a zoom in fromthe minimap, but where the minimap only gives the most basi
 information thispanel gives the player a detailed overview of the area. He
an point out spe
i�
unit types, quantity et
. The panel is simply showing the area of the players
urrent fo
us but is often used for evaluating ta
ti
al situations. Often the sizeof the fo
uspanel is balan
ed out with the standard size of a battle in the givengame for easying the players
ontrol.The infopanel is a tool used by the player to gain optimal information aboutany given obje
t on the battle�eld. When a player has his do
us on a spe
i�
unit or obje
t all relevant information
on
erning the obje
t will be displayedhere. This is the most dire
t information the player
an get from the game as1This is the most
ommonly used display for information and
an also be
alled primarydisplay or main display 5

it will often display a single units statisti
s and
urrent status.The user interfa
e in star
raft is a standard example for the genre. Thesimpel three-step-information-interfa
e handles most situations very well andthis setup is used by most RTS games today. When the player
an sele
t where,whi
h and a degree of information he want, only poor handling of the system
an make it di�
ult to use. Most new players to a RTS game has a tenden
y touse the fo
uspanel as the only sour
e for information while multitasking betweenall three is a must for players who wish to win.1.2 Why JWarsTM?This se
tion introdu
es JWarsTM and why the authors believe this is worthy ofa proje
t. First we shall
onsider some �aws or features absent of
ontemporarygames, then we shall see how these might be remedied.1.2.1 Flaws in
ontemporary real-time gamesThere are some areas in whi
h the real-time strategy genre has not evolved mu
hover the years. Some of these are
• Individual units typi
ally behave unintelligently unless the player takes
are to
ontrol ea
h (or very small groups) of them personally. For exam-ple, if an enemy approa
hes a group of friendly units then half the groupmight atta
k and be lured into an ambush whereas the other half staysidle. Also it is frequently observed that anti-tank weaponry will be au-tomati
ally dire
ted at infantry even though enemy armour is nearby aswell.
• As the game progresses,
omplexity grows greatly as units are produ
ed,and the player
annot hope to
ontrol for
es with su
h attention to detail.This dire
tly bene�ts the player who is qui
kest with a mouse or keyboard,and not the player with superior strategi
 ability. Control, rather thanstrategy, thus be
omes the primary point of
on
ern during gameplay.
• While not ne
essarily a drawba
k, most games use hit points (see Se
tion??) to represent a unit's health. When damaged, some hit points arededu
ted until the hit point
ount rea
hes 0 at whi
h point the unit inquestion dies. Thus most games are deterministi
 in nature, or
ontainonly negligible random fa
tors in
ombat.1.2.2 Military hierar
hyMany of the drawba
ks pointed out above
an be eliminated by introdu
ing atree-based means of
ontrolling units. Su
h a system is in reality a requirementof any working military as we
an
learly see in the world today, and it is therfore6

urious that no attempt has yet been done to in
orporate su
h a system in real-time strategy games. Table ?? shows the organization of something somethingFIXME2.Aside from easing the
ontrol of large for
es for the player, it is possible toprovide better AI support using this system. By using a tree hierar
hy in thegame, a simple AI
an be assigned to every military formation �leader�, su
h thatthis AI is responsible for
ontrolling the immediate subordinate formations. The�at unit stru
ture in most real-time strategy games allows for little organizedintera
tion through unit AI, but by expli
itly embra
ing a military stru
ture,multiple platoons and
ompanies
an work together,
ontrolled by automated
ommanders.The AI-spe
i�
 possibilities implied by this system are almost endless, yetbearing in mind the time ne
essary to develop su
h a system we
an hardlyhope to a
hieve any impressive results in this �eld sin
e the entire game has tobe built from s
rat
h. What we
an do, however, is to provide API
omponentsthat demonstrate the appli
ability of this model, and therefore opens the wayfor future development of the AI.The in
reased
ontrollability obtained by using a tree-based hierar
hy al-lows players to
ontrol nearly arbitrarily large for
es. Consequently it
an beexpe
ted1.3 Report overview

2�xme:
onsult Antony Beevor's book and insert stu�7

Chapter 2Features of JWarsTM2.1 Game dynami
sgame design regarding hierar
hy2.2 Te
hni
al featuresThis se
tion lists brie�y the
• World representation. JWars uses a number of abstra
t 2D
oordinatespa
es and provides utilities for
onversions between these. Spe
i�
allymany tile-based maps are required by the di�erent
omponents of JWars.
• Collision dete
tion. An e�
ient tile-based
ollision dete
tor is
apable ofdete
ting
ollisions between
ir
ular obje
ts of arbitrary size.
• Path�nding. The path�nder implements an A* algorithm whi
h dynam-i
ally expands the sear
h area a

ording to requirements. This approa
ha

omodates obsta
les of arbitrary size and pla
ement.
• Spotting system. The spotting system uses a tile-based approa
h whi
h isparti
ularly e�
ient if the map is large
ompared to the visibility radius.
• Arti�
ial intelligen
e. A simple but highly extensible
• Event handling model. A queueing system provides e�
ient managementof timed exe
ution of game events avoiding unne
essary
ountdown timers.
• Data management. S
ript-like �les
an be used to store game data su
has unit and weapon statisti
s. These are loaded into
ategories whi
hrepresent the abstra
t
on
epts of those units or weapons. Finally entities
an - in turn - be instantiated from
ategories.8

• Server-
lient based networking model. The TCP/IP based networkingmodel supports a
ustomizable set of instru
tions and provides base serverand
lient
lasses for managing player
onne
tions. This model has verylow bandwidth requirements, but requires perfe
t syn
hronization of thegame states a
ross the network.
• Multiplayer syn
hronization utilities. Syn
hronization on multiple
lientsis done by means of a timer whi
h assures that
lients follow the servertemporally
losely.

9

Chapter 3OverviewFor reasons of extensibility, JWars
onsists of several modules whi
h
an be usedseparately or with a minimum of
ross-pa
kage dependen
ies. The following
hapters will des
ribe ea
h of these modules in turn, but in order to a
hieve aoverview of the stru
turing of these modules in an a
tual game, we shall herelist the main modules and then des
ribe their high-level intera
tion.3.1 Development plan3.2 Modular overviewDes
ribe basi

on
epts su
h as units

10

Chapter 4Ar
hite
tureIn this
hapter the ar
hite
tureFIXME1 of JWarsTM will be des
ribed, i.e.the way in whi
h the di�erent
omponents are made to intera
t. It should beoutlined that the des
riptions in this
hapter are kept brief. There are far moreoperations under the hood that noted here, but it would be too
umbersometo des
ribe the less important routines. This
hapter will only mention themost important steps. The subsequent
hapters will then go into greater depthdes
ribing how the individual
omponents are designed.4.1 Conne
tion and initializationAs the program is started, a small GUI is presented whi
h allows the user to
reate a server or join an existing one. If the user wants to join a game, this willspawn a JWarsTM session whi
h attempts to
onne
t to the spe
i�ed server.Creation of a server will always result in a
lient being spawned lo
ally whi
h
onne
ts to that server so as to allow the server's user to parti
ipate in the game.This
lient is no di�erent than any other
lient (
onne
ting from remote), eventhough it is physi
ally running in the same virtual ma
hine as the server. The
lient thus runs independently of the server, but the server uses some
ommonfun
tionality of the
lient, su
h as the timer and network instru
tion set. Thepra
ti
e of giving the server a

ess to the logi
 of the lo
al
lient also allows theserver to
he
k the validity of orders issued by the players before relaying thatinformation to the
lients. This redu
es the possibility of
heating.When a
lient session is spawned, the �rst thing done is to
onne
t to thespe
i�ed server whether it is lo
al or remote. This allows the
lient to re
eiveinitialization data from the server, su
h as a random seed and the size of themap to be played2.1�xme: is this a
tually the ar
hite
ture?2For reasons of debugging, the random seed is always 0 in the
urrent implementation, andonly one map will presently be generated, but the order of initialization allows for dynami
alspe
i�
ation of game data 11

After
onne
ting, the game world is generated. This involves a number ofsteps, namely
reating
oordinate systems and tile representations of terrain,along with the
reation of a
ollision dete
tor and an observation environment(whi
h is responsible for
he
king whether enemy units
an see ea
h other onthe map). Notably this sted also involves registering the root unit, whi
h is thean
estor in the tree hierar
hy of all units (see Se
tion ??) whi
h will later beadded to the world.The following step reads all unit, weapon and formation data from external�les (though
an easily be done through the network as well). This kind ofdata storage is obviously preferable to hard
oding; in fa
t it allows people to
hange the game
ontent
ompletely without looking at the sour
e
ode, byentering data in a simple s
ript-like fashion. This information will be representedin
ategory obje
ts, whi
h hold data pertaining to spe
i�
 types of unit. Forexample, the information of a Panzerkampfwagen IV is read on
e, and thens
ores of panzers
an be spawned using the
ategory as
ommon data.The �nal step is to build the main Swing GUI whi
h will be displayed duringthe game. Even though the game is not yet about to start (
lients are still joiningthe server) it is preferable to generate the GUI now, su
h that the GUI is readywhen the game is started.At this point the entire game setup has been loaded, but the game has notyet started. Rather the server will want to wait until a enough
lients havejoined (even though this game only has two armies, several players
an
ontrolthe same army to in
rease e�
ien
y), and meanwhile a list of the
urrently
onne
ted players is shown, displaying the player names and whi
h army they
ontrol. This lobby frame is also equipped with a
hat.The game starts when the server presses the laun
h button. This will resultin a laun
h instru
tion being sent to all
lients. When re
eived, it will disposeof the lobby frame and start the timer whi
h
ontrols the �ow of time (in thegame). It will also make the main GUI visible. At this point the game is fullyrunning, and will remain in this state forever or until the players quit.4.2 Flow of
ontrolMost real-time
omputer games run by means of a game loop, i.e. a loop in whi
hea
h iteration
onstitutes an update of the game state and display as qui
klyas possible. JWarsTM, too, runs by
ontinuously applying updates. However,in order to ensure that the
lients run equally fast, the update rate is instead�xed by the previously mentioned timer. The timer exe
utes those updates fromthe AWT/Swing event dispat
h thread, whi
h means no syn
hronization withthe Swing-managed display is ne
essary. However the timer also provides thepossibility of using its own thread, whi
h might be desirable in non-AWT/Swinggames.The timer attempts to adjust the game �ow to that of the server. If anupdate is
ompleted before it is time to perform the next one, the timer willsleep for the appropriate amount of time before invoking the next update. But if12

the game �ow lags behind that of the server, for example be
ause the
omputeris too slow to perform updates at the required rate, the timer will report its
on
erns by passing parameters to the update routine, whi
h will take note ofthis and attempt to regain lost time by skipping non-vital parts of an update.This brings us to the next point, namely the basi

omponents of su
h an update.One update
onsists two steps.1. The game logi
 is updated. This means that all units move (using the
ollision dete
tor), turn around, take aim, �re and so on. Spe
i�
ally,the update method of ea
h unit is invoked re
ursively down the unit tree.This will also perform various other tasks, su
h as polling for networkinput and input from the keyboard. Importantly, this will also poll thequeueing system designed to manage delayed tasks � this will be treatedin the next se
tion.2. The primary graphi
al display is updated3. This involves redrawing anyparts of the terrain on whi
h there are moving entities (if no moving enti-ties are nearby the terrain is not redrawn sin
e no
hanges have happened),then drawing all the visible entities.In
ase the timer is lagging behind s
hedule, the latter step will automati
allybe performed only a few times per se
ond (su
h that the display still appearsresponsive to the user) while logi
al updates will be performed at the maximumrate possible for the CPU. This means a
omputer will have to be very slowin order not to be able to play the game. It also means that if one
omputeris slow, it will not delay the server and the other
lients (a problem whi
h isnoti
ed immediately in
ertain games su
h as Command & Conquer: Generals),but it will be responsible for regaining the lost time itself by sa
ri�
ing graphi
alsmoothness in the meantime.In order to ensure that
lients do not exe
ute updates too qui
kly su
hthat instru
tions from the server arrive too late (and thus bring the game outof syn
h), the
lient
ontinually re
eives syn
hronization instru
tions from theserver whi
h spe
ify the amount of updates the
lient is allowed to perform. Inthe event that the
lient
annot pro
eed exe
uting updates be
ause it re
eivesno syn
hronization instru
tions from the server, it pauses the timer and waitsfor new instru
tions. As soon as the new instru
tion is re
eived, game updateswill be exe
uted at the maximum possible rate until the game time is
onsistentwith the real time elapsed. This means the game will stay in syn
h during lagspikes (small periodes of ex
eptionally high response times) or even if the playera

identally rips out the
able for a moment.4.3 Various deterministi
 a
tivitiesFor the moment we shall ignore the a
tivity of players and
on
entrate on thetasks performed deterministi
ally as time progresses. There are some operations3There is a number of other graphi
al side displays whi
h are not updated
ontinuouslyhere, but instead by regular AWT/Swing repaints.13

whi
h are not desirable to do from the main update routine, i.e. those thingsthat do not happen all the time. For this reason there exists a frameworkfor queueing tasks and exe
ute then after a
ertain delay (su
h a frameworkis not stri
tly ne
essary sin
e anyone
ould use if-senten
es and
ountdownsfrom the main update method, but su
h approa
hes would be
umbersome andine�
ient). Reloading of weapons is managed in this way: when a weapon �res,it s
hedules a reload event whi
h will in turn be exe
uted at the proper time.Another problem is determining whi
h units
an see enemy units. This isrelatively demanding, be
ause large amounts of terrain may have to be traversedto perform su
h
he
ks. An observation environment takes
are of traversingthe relevant terrain e�
iently. For ea
h observer registered in the observationenvironment, su
h a
he
k is performed regularly, and the frequen
y of these
he
ks is
ontrolled � on
e again � by using the event s
heduling framework.The spotting or hiding of units is used by the AI to determine targets.Finally there are some updates to the GUI whi
h are performed at regularintervals (also using the event s
heduling framework). For example the s
oreboard updates
asualty and for
e strength tallies, and the minimap is updatedregularly.4.4 Player input and network instru
tionsSuppose the player presses a key or uses the mouse. Either this a
tion regardsthe lo
al
lient only � for example, if the a
tion is just s
rolling the viewporta
ross the battle�eld, it
an be resolved lo
ally. If, however, the a
tion issuesan order to one of the player's units, it is ne
essary to send that instru
tiona
ross the network. The appropriate instru
tion will therefore immediately besent to the server, whi
h will relay that information (along with a time stamp,information about when exa
tly that order should be exe
uted) ba
k to all the
lients. When the
lients re
eive this instru
tion it will be queued (using theevent s
heduling framework) until its exe
ution time. Finally, when the time isup, the instru
tion is interpreted and
arried out (te
hni
ally by invoking oneof its methods: the instru
tion is responsible for exe
uting itself).

14

Chapter 5NetworkingWhile real-time strategy games traditionally in
lude single-player
ampaigns,experie
e shows that the su

ess of a game is largely determined by its playabilityin multiplayer. The online playability of a real-time strategy game is thereforevery important, and the networking implementation
an have profound impa
ton this1. This
hapter will explore the options available to JWars and in turnde
ide on a feasible design.5.1 Choosing a network modelThere are several di�erent ar
hite
tures and proto
ols used in multiplayer games,and di�erent genres have di�erent requirements regarding e�
ien
y and re-sponse times. Fundamentally we shall dis
uss two variables in this entire prob-lem. First there is the amount of game data whi
h has to be syn
hronized a
rossthe network, along with the and the response time, i.e. the ping or laten
y.We
an roughly
ategorize real-time
omputer games by their networkingrequirements:1. Small, fast-pa
ed games su
h as �rst-person shooters. These games requirelow ping but have small amounts of data to syn
hronize (e.g. the positionsand speeds of a few dozen game obje
ts). For example the game Counter-Strike is usually played by around 10-20 people who ea
h
ontrols oneperson, and network laten
y
an qui
kly
ause deaths in the fast-pa
ed�re�ghts.2. Large, slow-pa
ed games su
h as real-time strategy games. There arevery large amounts of data (hundreds or thousands of game obje
ts), butthere are only lax requirements to response times sin
e the player is not
on
erned with su
h low-level
ontrol as above.1Command & Conquer: Generals is regarded by the authors of this text as one of the�nest real-time strategy games ever
on
eived, and yet this game remains largely unplayedonline. Even on a high-speed LAN the game speed will almost grind to a halt with just fourplayers. Our
on
lusion: they
hose the wrong network implementation.15

3. Large, fast-pa
ed games su
h as massively multiplayer online role-playinggames. These require both fast response and involve very large amountsof data, and therefore demand very advan
ed networking
ode. It is wellknown that this takes its toll even on modern games of the genre, butlu
kily this is none of our
on
ern.We are obviously
on
erned only with the se
ond
ategory. We note two waysto keep the game state identi
al a
ross a network: either we
an beam theentire game state
onsisting of every logi
ally signi�
ant game obje
t a
rossthe network with regular intervals. This approa
h obviously only a

omodatesgames of the �rst
ategory be
ause of sheer bandwidth requirements. Another� and to us better � way is to let every
omputer simulate the entire game logi
deterministi
ally in parallel, and only send a
ross the network those instru
tionsthat are issued by the players.This approa
h is promising sin
e it requires next to no bandwidth eventhough thousands of units are on the battle�eld. However it is stri
tly requiredthat all
omptuers on the network are able to perform exa
tly the same simula-tion given the player inputs re
eived from the network, otherwise the game willgo `out of syn
h' and never re
over. The next se
tion will des
ribe this approa
hin detail.5.2 Syn
hronizationWe shall now propose a
omplete solution to managing the �ow of time (in thegame, that is). Suppose until further noti
e that the players have no
ontrolof the game. We de�ne that the game starts at frame 0, or t = 0, in someinitial state whi
h is identi
al on all those
omputers that partake in the game.Now, all the partaking
omputers will perform a logi
al update (whi
h will allowentities to move or �re at ea
h other automati
ally and deterministi
ally, i.e.without the player issuing instru
tions) at regular (and equal a
ross the network)intervals, and when su
h a logi
 update on some
omputer is
ompleted we saythat the frame
ount t is in
reased by one on that
omputer. Thus, as timeprogresses every
omputer will exe
ute further logi
 updates for t = 1, 2, 3 . . .until the game is over, and if the logi
 update routine is
onsistent then the
omputers will all be in the same state at all time.There is no network a
tivity yet sin
e the logi
 update routine is determin-isti
 and therefore requires only lo
al information. Note that the
omputers donot need to exe
ute the same logi
 update at exa
tly the same physi
al time, theonly important thing is the relationship between frame
ount and game state.5.2.1 Intera
tivity: network instru
tionsSuppose now that we will allow a player to a�e
t the game state, whi
h is hardlya deterministi
 endeavour (ex
ept in Chartres' philosophy; however we shallhere de�ne deterministi
 as something whi
h a
omputer
an predi
t, seeingas the deeper philosophi
al
onsiderations go beyond the s
ope of this text).16

We will need to send the parti
ular instru
tion that this player has issued toall
omputers in the game su
h that they
an exe
ute it. Furthermore it isobviously vital that all
omputers exe
ute this instru
tion while in the sameframe, otherwise they will go out of syn
h forever.Let us say that some
omputer a
ts as a server whi
h keeps tra
k of the frame
ount, while all players are
lients
onne
ted to the server2. The player whowishes to exe
ute an instru
tion then sends that instru
tion to the server. Theserver re
eives this instru
tion while in frame number t0. Now, every
omputeron the network must re
eive this instru
tion and exe
ute it at the same time,so the server e
hoes the instru
tion to all
lients along with the requirementthat the instru
tion be exe
uted at frame number t0 + L, assuming that theinstru
tion will arrive to the other
omputers before they have furhter exe
uted
L updates (we shall refer to L as the laten
y, even though adding the physi
alnetwork response time results in a slightly larger a
tual laten
y). Now, ea
h
lient will re
eive the instru
tion and
an enqueue it for exe
ution in the (t0 +
L)'th logi
 update.5.2.2 Syn
hronization instru
tionsWhat happens if the instru
tions arrives late to one player, at time t0 + L + δ?Then that
omputer will no longer be able to exe
ute the instru
tion in time, andthe game is ruined forever. This must not happen, and we shall therefore requirethat the server provides as a guarantee to ea
h
lient that they are allowed toexe
ute updates until some frame
ount. If the server
ontinously sends outsyn
h instru
tions to all
lients stating that they may pro
eed the updatingpro
edure until frame t where t 6 t0 + L, then a
lient
an halt the game �owif it rea
hes time t and not
ontinue until re
eiving a new su
h instru
tion fromthe server. In the meantime any instru
tions that arrive will be enqueued forexe
ution at times later than t, ensuring their eventual exe
ution at the
orre
ttime.A game implementing the ideas presented here will not rely on a
lassi
algame loop whi
h performs updates at the highest possible speed, but insteaduse a timer whi
h updates only at regular intervals. It is still possible to renderat higher frequen
y than the logi
al update rate, using interpolation, see se
tion??.5.2.3 Con
lusionWe now have a
ompletely syn
hronized model whi
h supports any numberintera
ting players and requires a server. The network a
tivity will be very low,perhaps few instru
tions per se
ond for syn
hronization and a term proportionalto the player a
tivity. Sin
e the server will have to send ea
h instru
tion to nplayers, and n players will send O(n) instru
tions, the bandwidth use will be2Servers and
lients are not
ompletely indispensable. Some games employ peer-to-peernetworking where no server is appointed. The
lient-server model provides a
entralizedmanner of handling instru
tions, whi
h is why we
hoose this model.17

O(n2) unless spe
ial
ountermeasures are taken, but real-time strategy gamesare traditionally played by no more than around 12 players, and with the lowper-player bandwidth requirement this remains a

eptable.5.3 The networking APIThe obje
tive of this se
tion is to design a networking pa
kage adhering to therequirements spe
i�ed in the previous se
tion. This will be done in an event-driven manner whi
h exposes a
ontinually updated non-blo
king instru
tionqueue to the programmer who
an therefore easily integrate it in any timerbased or game-loop based implementation.The instru
tions
onsidered in the previous se
tions, both syn
h instru
tionsand
lient instru
tions, obviously require guaranteed delivery in
onsistent order.Both of these properties are ensured by the TCP/IP proto
ol, and along withthe lax laten
y requirements this shows beyond doubt that TCP/IP is a better
hoi
e than UDP (whi
h is generally used for more fast-pa
ed games be
ause ita
hieves faster response times by sa
ri�
ing among other things the guaranteeof delivery) for our purposes.The previous se
tion established a
lient-server model, along with the
on-
ept of instru
tions. We shall further introdu
e the proto
ol whi
h is simply a
olle
tion of instru
tions to be used by server as well as
lients. The proto
ol
onsists of all the instru
tions that
an be issued while the game is running,whi
h would in our
ase in
lude e.g. ordering the movement of a parti
ular unittowards a parti
ular lo
ation, ordering a unit to �re at a parti
ular lo
ation, orthe previously mentioned syn
h instru
tions.Now we are in a position to propose the �nal layout of the networking pa
k-age.
• IOHandler. Responsible for sending and re
eiving a parti
ular type ofinstru
tion (for example movement instru
tions). An IOHandler has awrite routine, whi
h writes the instru
tion-spe
i�
 data (this
ould be anew movement destination for a unit along with that unit's identity) tothe server. It has an e
ho routine whi
h is invoked on the server when thatserver re
eives the information, su
h that the server may
he
k whetherthe instru
tion is valid, thus preventing
ertain
heats. The server willthen most likely just pass the instru
tion on to the other
lients afteratta
hing an exe
ution time stamp. Finally the IOHandler has a readroutine whi
h will be invoked when the
lient re
eives the informatione
hoed by the server.
• Proto
ol. This is an unmodi�able
olle
tion of IOHandlers whi
h isidenti
al a
ross all
omputers,
lients as well as server. In order to usean IOHandler it must be registered with a Proto
ol before
onne
tionis established. The proto
ol internally asso
iates ea
h IOHandler with aunique identi�er whi
h the
lient and server employ to distinguish typesof instru
tions on the network. 18

• Client. The
lient
an
onne
t to a server at a spe
i�ed IP address andport. The
lient will keep a thread running whi
h listens for networkinput. Whenever input is re
eived, the
lient will
onsult its proto
ol toalert the appropriate IOHandler to handle the instru
tion. Output to theserver is written through the registered IOHandlers.
• Server. The server a

epts
onne
tions from
lients by listening on aparti
ular port. Every
lient whi
h
onne
ts will be registered, and theserver will spawn a thread to listen for input from that
lient whi
h ter-minates when the
lient leaves. Whenever input is re
eived, the proto
olis
onsulted and the appropriate IOHandler is made to handle the input.The IOHandler
an then write any information it likes to all
lients (itwill most likely just pass on the instru
tion).Finally there are server- and
lient event handlers whi
h
an be atta
hed tothe server and
lient respe
tively, whi
h
an exe
ute
ode on
onne
tion, dis-
onne
tion and player events (these are �red in the
ase a player
hanges nameor team).5.3.1 Implementation notesThe binary format used to send instru
tions
onsists of two parts, namely aheader and a body. The body
onsists of the information whi
h an IOHandlerwrites expli
itly. There are two di�erent headers, depending on whether theinformation is travelling from a
lient to the server or opposite. In both
asesit is ne
essary to send the identi�er of the IOHandler whi
h is responsible forthe instru
tion, su
h that the
orre
t IOHandler
an be fet
hed to handle theinstru
tion at the destination. This information is
urrently written as a byte,though it has be
ome
lear that bandwidth is of su
h little signi�
an
e that a32-bit integer might as well be used.When the instru
tion travels from the server to the
lient, an exe
ution-timestamp must be supplied as well su
h that the
lients know how long to enqueuethe instru
tion in order to exe
ute it at the same time as the other
lients.The server will determine this timestamp based on a timer. Spe
i�
ally thetime stamp is equal to the
urrent time, whi
h the server reads from a timer,plus the server laten
y (mentioned in Se
tion 5.2.1) whi
h
an be set when theserver is
reated and adjusted at any later time. The time stamp is written as a32-bit integer. Thus the instru
tion overhead is a few bytes, plus the overheadindu
ed by the underlying TCP/IP proto
ol. The relatively small amount oftra�
 ne
essary to run the game renders this overhead unimportant.

19

Chapter 6World of JWars6.1 Coordinate spa
esIt is normal for a
omputer game to utilize numerous di�erent
oordinate sys-tems to represent information to the player (e.g. the s
reen
oordinate system),or to represent the game state internally. It is therefore desirable to provide astandardized notion of
oordinate systems to be used in the game. This allowsfor
ode reuse and redu
es the possibility of bugs during the numerous
oordi-nate transformations whi
h would, la
king a
entralized
on
ept of
oordinatesystems, have to be
oded manually throughout the game.The basi
 requirements of su
h a system for our purposes
an loosely beformulated already: lo
ations should be represented by pairs of numbers (i.e.only two-dimensional systems are
onsidered), and there should be a way to
onvert
oordinates from any
oordinate system to any other that representsthe same spa
e.6.1.1 Coordinate data representationWhile it would be ni
e to represent the world in
ontinuous
oordinates, thisis obviously not possible using a
omputer. We shall have to sele
t a way todis
retize the world into some �nite number of
hunks.Coordinate systems in games
ould
onveivably be implemented in one oftwo distin
t ways, representing positions either by �oating point numbers orintegers. Using �oating point
oordinates generally ensures a higher pre
isionwhen
al
ulating movement of units, while on the negative side it
an be di�-
ult to determine how numeri
ally large
oordinates may be before the �oatingpoint system loses pre
ision. This
an be
ome a problem on very large maps.More importantly, �oating point
oordinates
an be awkward in implementa-tions where tiles are used, sin
e tiles are naturally indexed by integers.Sin
e � as it shall be
ome
lear later � we shall use systems of tiles for severalpurposes, whi
h
an only be indexed logi
ally by integers, it is reasonable to
onsider integers as the basi
 datatype of world
oordinates.20

A
oordinate system must be assigned a width and a height, whi
h denotethe number of units a
ross horizontally and verti
ally, respe
tively. We shallrefer to the number width×height as the resolution of the system. Assumingthat ea
h
oordinate represents a small square (and not a re
tangle) of realspa
e, two
oordinate systems must have the same width:height ratio in orderto represent the same spa
e, see Figure ??.The drawba
k of this method is that movement must o

ur in
hunks. If,for example, a game runs with 50 updates per se
ond (whi
h happens to be the
urrent framerate in JWarsTM), there is no intermediate step between a speedof 0 and a speed of 1 unit per frame, resulting in a quantization of speeds whi
h
an produ
e odd e�e
ts in the simulation. It would surely be awkward to havea speed of 50 pixels per se
ond as a minimum.Eliminating this problem requires a very large resolution of the primary
oordinate system, su
h that the range of possible movement speeds seems
on-tinuous. For example, suppose the main
oordinate system has a resolution of
221 × 221, whi
h means the map measures around two million dis
rete pointsa
ross. If there are 29 = 512 of these units for ea
h pixel on the main display,and the game runs with a 50 Hz framerate, then the minimum possible non-zerospeed is 1

10
pixel per se
ond, whi
h is slow enough to depi
t a realisti
-lookingphysi
al simulation.6.1.2 List of
oordinate systemsblahblah1. Main
oordinate system. This
oordinate system
ontains the logi
al
o-ordinates of every entity and must have very high resolution.2. Pixel
oordinates. This is used for the representation of entities on thes
reen. For example an entity might be 20 pixels large,
orresponding toseveral hundred units in the main
oordinate system.3. Terrain map. This tiled map
ontains large square
hunks of terrain graph-i
s used in rendering. Typi
ally ea
h su
h tile would have a side length ofaround 40 pixels.4. Minimap. Most realtime strategy games use a minimap to represent ageneral overview of the situation, see Se
tion ??.5. Collision dete
tion map. This tiled map serves to lo
alize
olliding entitiesto di�erent subdomains of the world, see se
tion ??.6. Vision management map. This is equivalent to the
ollision dete
tion map,but used for determining whether enemy units are visible, see Se
tion ??.7. There
ould be several other su
h maps, for example a
oarse strategi
map whi
h evaluates the for
e strengths in regions for use by the AI ors
oring system. 21

6.1.3 Using
oordinate systems6.2 Game data managementThis se
tion des
ribes the data management strategy used in JWarsTM. [?℄de�nes a data-driven system as �...an ar
hite
tural design
hara
terized by aseparation of data and
ode�. Su
h an approa
h is useful for numerous reasons.First of all, trivial matters su
h as
hanging the range of a
annon hardly warrantre
ompilation of the sour
e
ode. It is preferable that the game
ontent
an be
hanged without even knowing the
ode, su
h that di�erent people
an take
are of programming and game
ontent.This will also make it possible for players to modify the game to providetheir own units and weapons. For example, War
raft III is highly re
on�gurableand there exist large sub-
ommunities of War
raft III players that play
ustommodi�
ations of the game1.JWarsTM in
ludes a loading routine whi
h reads game data from external�les, then
onverts the data into
ategories whi
h are fa
tories for
reatingvarious game obje
ts.6.2.1 Inheritan
e versus data-based game obje
t
lassi�-
ationJWarsTM
ontains several di�erent types of units, su
h as tanks and infantrysquads. Further there are di�erent types of tanks, su
h as PzKpfw IV and T-34.We note two basi
 ways of dealing with su
h variations, inheritan
e and purelydata-based
lassi�
ation.Common lessons in obje
t oriented programming des
ribe how the abstra
t
lass Animal
ould have an abstra
t sub
lass Fishwhi
h
ould have non-abstra
tsub
lasses su
h as An
hovy or Lamprey. It would be possible to use a purelyinheritan
e-based hierar
hy, meaning that there should be a
lass
alled PzKpfwIV.But even so there were made variations of this tank. Does this warrant yet an-other level in the inheritan
e hierar
hy?On the other hand one
ould use only one kind of unit, then provide alarge amount of data to
ategorize the unit. For example type=infantry. Theproblem is that if �ying units are introdu
ed, then every ground unit mustsomehow state that it
annot �y. This
an be
ome very
umbersome.The natural solution is to use inheritan
e2 only in those
ases where fun
-tionality di�ers greatly. For example, sin
e infantry squads do not have a turretwhi
h
an turn around, it makes sense to use a Tank
lass whi
h has one, whereasthe other
lasses need not. Every type of tank will be distinguished only by data.1Notably there are
ountless variations of �Tower Defense� maps where the players build de-fensive towers to defeat on
oming
omputer-
ontrolled hordes, and the widely played �Defenseof the An
ients� modi�
ation[?℄.2Languages whi
h do not support inheritan
e
an use delegation instead22

6.2.2 Category modelModelling a tank requires a
ertain amount of data. For example it has amovement speed, turning speed, a
annon, any number (usually two or three)of ma
hine guns, front armour thi
kness, side armour thi
kness and the list goeson. It would be in
onvenient for the programmer to supply all this data everytime a tank needs to be
reated, espe
ially if hundreds of tanks are
reated, andparti
ularly be
ause most of these tanks are identi
al anyway.One solution is to use the fa
tory pattern, i.e. a software
omponent whi
h
an
reate any number of units of some type. Suppose every unique type of unithas its own fa
tory,
alled a
ategory. The
ategory has to
ontain all the dataon whi
h the units of that type rely, but the
ategory does not have to provideany other fun
tionality than that of
reating units. By letting units have dire
ta

ess to their
ategory and its data, they need not store the data expli
itlythemselves. The
ategories thus serve as both fa
tories and data repositoriesfor the unit type they represent.To re
apitulate, every unit, that is, every
on�guration of infantry squadand every
lass of vehi
le is represented by a
ategory: there is a T-34
ategoryfor the T-34 tank, a Ri�e squad
ategory for the Ri�e squad and so on.Note that when inheritan
e or delegation is used to distinguish types of unitssu
h as infantry and tanks, their respe
tive
ategories must be able to make thisdistin
tion too; it follows that
ategories should be organized in a similar andparallel inheritan
e hierar
hy, see Figure ??.It is not just physi
al entities (su
h as tanks) whi
h bene�t from using
ate-gories. Categories are used to
lassify all
omplex in-game
omponents, in
lud-ing tank hulls, tank turrets (it was not un
ommon for di�erent turrets to bemounted on the same hull type) and weapons. A tank
ategory, for instan
e,holds referen
es to its hull, turret and weapon
ategories. Aside from enablinglogi
al stru
turing of data, this allows an SU-85 tank destroyer (whi
h histori-
ally used the T-34 tank's
hassis) to use the hull armour data of a T-34 tank,and many of the infantry weapons in the game use the same weapons.6.2.3 Content loading by
ategoriesCategory
reation, of
ourse, still requires a lot of data. But only one
ategory is
reated for every type of unit in the game, and only on
e, namely when the unittype is �rst initialized. It therefore makes sense to manage the set of
ategoriesin a
entral data manager and repository whi
h the game
an use while running.The JWarsTM data repository stores a di
tionary whi
h asso
iates namesof unit
ategories (su
h as �T-34�) with
ategories (su
h as the T-34
ategory).Categories for all units
an be a

essed through this di
tionary, whether theyare tanks, infantry units, or even formations su
h as platoons.Another di
tionary stores the names of weapons and their
orresponding
ategories, and separate di
tionaries are used to store tank hull and turret
at-egories3.3At �rst sight the use of several di
tionaries
an be in�exible, sin
e adding new su
h23

Type & identi�er weapon 75mmkwkFull name "75mm Kwk40 L48"Firing range 1.2 kmE�e
tive range 500 mReload time 8.1 sFirepower data ap 120 16Explosion type mediumexplosionSplash radius 5 mTable 6.1: The data�le entry de�ning the weapon
ategory
orresponding to a German75mm Kampfwagenkanone (tank gun). The right
olumn
ontains the a
tual lines inthe data�le, while the left
olumn is only for des
ription. The �repower data
omprisesammo type (armour pier
ing), armour penetration (in millimetres) and �kill index�(e�e
tiveness against infantry).As promised earlier all this game
ontent is read from external �les. The
entral data manager
an
onveniently be used to parse data�les
ontainingunit data, and
ategories
an be
reated dynami
ally from data obtained in thisway. The data�les are stored in a
ustom, human-readable format, see Tables6.1 and 6.2 whi
h show examples of data�le entries. Noti
e that many variablesare written in terms of metres and se
onds. The data manager automati
ally
onverts human-readable quantities into the arbitrary system used internally.When the data manager loads a �le, it parses the words (separated by whites-pa
e) in sequen
e. First it reads the
ategory type identi�er (�weapon� or �tank�in the above examples) and uses it fet
hes the
orre
t
ategory
lass. Then itinvokes the
orresponding
ategory
onstru
tor whi
h is responsible for parsingthe remaining text from a parti
ular data�le entry.The military hierar
hy is similarly
reated by means of formation
ategories.Formation
ategories hold referen
es to sub-unit
ategories (so a
ompany
at-egory
ould hold a list of platoon
ategories, whi
h
ould hold a list of infantrysquad
ategories).6.2.4 Current game
ontent6.3 Terrainterrain: possible e�e
t on movement, hiding, shooting et

ategories would require
hanging the
ode of the data manager. Sean Riley[?℄ warns expli
itlyagainst this. However in this
ase, sin
e weapons and units are vastly di�erent
on
epts itis logi
al to separate them in di�erent di
tionaries. In JWarsTM all units, whether tanks,infantry or abstra
t formations su
h as platoons and
ompanies are stored in the same (unit)di
tionary, thus honouring a generi
 treatment of game obje
ts.24

Type & identi�er tank pzivFull name "PzKpfw-IV"Radius 3.8 mSpeed 24 km/hTurn rate 1.4 /sBegin weapon list beginMain gun 75mmkwkMa
hine gun mg34Ma
hine gun mg34End weapon list endHull type pzivhullTurret type pzivturretTable 6.2: Data�le entry de�ning the German Panzer IV tank. The entries in theweapon list are identi�ers of weapons. Noti
e the identi�er of the tank gun from Table6.1. The other guns and the hull and turret types are also identi�ers of
ategories.6.3.1 Representation and
apabilities2D square grid system. Vegetation, possibly details regarding hiding, shootingand movement. Whether or not terrain
an be passable (world bounds?).6.3.2 Terrain generatorDiamond-square algorithm. Bu�ers, smoothi�
ation, et
. Alternative uses ofthe terrain generator.6.3.3 Appearan
eRandomly generated grass, trees. Rendering by means of images. Several typesof ea
h (to make the grid look non-grid-like).6.4 Event handlingMany if not most real-time games in
lude a game loop, whi
h is a loop in whi
hthe entire model and graphi
al display of the game are updated repeatedly.This normally involves traversing all the dynami
al entities and updating theirpositions, velo
ities and other variables. These updates might in
lude opera-tions su
h as the
reation or removal of entities from the game, whi
h
an bein
onvenient while the list of entities is being traversed. It is therefore desirableto handle updates in one loop, then store the more
ompli
ated operations asevents to be resolved later, just after the game state has been updated. Thisapproa
h
an prevent bugs and ensure that things are done in a
onsistent order.Fundamentally we shall here refer to an event as something whi
h
an be putin a queue and then exe
uted at some later time. Note that in this model, the25

event serves simply as enqueueable exe
utable
ode, whi
h is in
ontrast withthe AWT/Swing event term, where events are short-lived obje
ts that
onveyspe
i�
 information to event listeners.6.4.1 Types of eventsThere are three distin
t event
on
epts whi
h will prove useful.
• Peripheral input. The user
an typi
ally
ontrol the game by mouse,keyboard or typing
ommands into a
onsole. It
an prove troublesome toinvoke the
ode asso
iated with these a
tions immediately: if the playere.g.
hanges the view of the battle�eld while the battle�eld is being drawn,this will result in graphi
al tearing. This should not happen, and this kindof event should therefore be stored and the
orresponding
ode exe
utedonly when graphi
al and logi
al update operations have been �nished.
• Network events. As we shall see in Chapter ??, instru
tions re
eived fromthe network are s
heduled to be performed at spe
i�
 times. Thereforethese instru
tions should be enqueued until that time.
• Delayed events. If weapons are �ring, then their reload progress must betra
ked somehow. This
ould be done by polling ea
h and every singleweapon (of whi
h there are probably hundreds) on
e per update, but ifthey reload equally qui
kly then it is simpler and more e�
ient to insertreload events into a queue su
h that it is su�
ient to poll that queue ofevents on
e per update.6.4.2 Performan
e
onsiderationsWhile the storing of multiple events in the same queue (like in the reloadingexample above)
an eliminate most of the
he
ks otherwise ne
essary, there willstill be an abundan
e of events to be allo
ated in memory and released. It istherefore desirable to save some of the frequently used events su
h that they
anbe used multiple times. Following the earlier example with weapons reloading,it would be expensive to
reate a new reload event every time a weapon �res.It would be more sensible to save the old reload event and enqueue it again thenext time that weapon �res, be
ause the weapon obviously
annot �re beforeits reload event is released from its queue.6.4.3 Queueing systemThe pre
eding dis
ussion leaves us with two primary
on
erns, namely an eventand a queue whi
h
an store events. The event should have an exe
ute routineand it should know the time at whi
h it is supposed to be exe
uted.The queue should have an update routine whi
h polls the next event in thequeue for whether it should be exe
uted, then exe
utes it (and possibly anyfollowing events) if the time is right. 26

This is enough to handle the delayed and network-type events as noted before.In the example regarding reload of weapons, it will be ne
essary to use one queuefor ea
h di�erent reload interval. For example, if ri�es
an shoot on
e every 100frames then all ri�e reload events
an be stored in a ri�e reload queue, andall grenade laun
her reload events
an be stored in another queue representinganother reload time.Finally, peripheral input events should generally be handled immediately (i.e.within the same update as it is generated), but this kind of input
ould originatefrom another thread than that in whi
h the game updates are performed. It istherefore ne
essary
ommendable to use a thread-safe approa
h (in java this isdone simply by de
laring the relevant methods syn
hronized).In
on
lusion we now have two spe
ial queues, namely the peripheral input(syn
hronized) queue whi
h exe
utes the events stored in them immediatelywhen polled, networking queue whi
h stores instru
tions re
eived from the net-work until su
h time as they should be exe
uted, and any number of delayed-exe
ution queues that handle weapon reloads and other things whi
h we shallsee in other
hapters, su
h as vision
he
ks and targetting.6.5 Vision6.5.1 Vision in gamesThe
on
ept of not being able to see all enemy units is
alled fog of war inreferen
e to the smoke
aused by e.g. artillery bombardments. In some oldgames su
h as Dune 2 and Command & Conquer, the entire map is bla
k bythe beginning of the battle, and the player has to explore the map in order tolo
ate the enemy. In the two mentioned games, terrain that has been exploredon
e will forever stay visible along with any enemy units in those areas. Newergames generally allow the player only to see the immediate areas surroundingfriendly units, i.e. as soon as the units move away, the enemy units in thatarea are on
e again obs
ured. In most
ases (War
raft III, Star
raft, TotalAnnihilation et
.) there is a maximum vision range, whi
h lets a unit observe a
ir
ular neighbourhood of their lo
ation, ex
ept for obstru
tions of the terrainsu
h as hills or buildings whi
h
an blo
k the view. The maximum vision rangeis usually less than the size of the main battle�eld display, for example around50 metres.Bearing in mind the realisti
 approa
h of JWarsTM we wish a model ofvision whi
h
an support mu
h larger ranges, namely hundreds or thousandsof metres. This is still shorter than realisti
 spotting ranges, yet
onsiderablylonger than
ontemporary games. Furthermore it should be possible for terrainobje
ts to blo
k line of sight. Finally, we propose that units should be able tohide even though they are well within dire
t line of sight. It is in reality easyfor infantrymen to hide in bushes or high grass (whi
h are not expli
it gameobje
ts but rather types of
ontinuous terrain), and this possibility should be27

in
luded in any realisti
 wargame4.6.5.2 Performan
e dis
ussion6.5.3 Final design

4The la
k of vision from World War II-era tanks is of parti
ular importan
e here: infantryunits
ould hide only a few metres away and atta
k advan
ing tanks using molotov
o
ktails,hoping that the volatile �uid would pour into the tank engines.28

Chapter 7Collision dete
tionThis
hapter will after an introdu
tion to
ollision dete
tion des
ribe the designand
apabilities of the JWarsTM
ollision dete
tor.7.1 Basi
s of
ollision dete
tionThe most important obje
tive of this se
tion is to de
ide on an overall approa
hto an e�
ient and reasonably simple
ollision dete
tor bearing in mind the re-quirents of real-time strategy games. There is by no means an optimal su
h
ollision dete
tor sin
e requirements invariably will di�er greatly with appli
a-tions. Further shall restri
t the dis
ussion to two-dimensional
ollision dete
tionseeing as JWarsTM does not need three dimensions.In a real-time strategy game there is generally a large amount of units,possibly more than a thousand. It is therefore of the utmost importan
e thatthe
ollision dete
tor s
ales well with the number of units in the game.7.1.1 Divide and
onquer approa
hLet n be the number of units present in some environment. In order to
he
kwhether some of these overlap it is possible to
he
k for ea
h unit whether thisunit overlaps any of the other units, and we will assume the existen
e of somearbitrary
he
king routine whi
h
an perform su
h a unit-to-unit
omparisonto see whether they
ollide. While the amount of su
h
he
ks
an easily beredu
ed, for example noting that the
he
k of unit i against unit j will produ
ethe same result as the
he
k of unit j against unit i, this method invariablyresults in O(n2)
he
ks being performed. This approa
h is �ne if there are veryfew units, but this is obviouslyThe amount of
he
ks
an, however, be redu
ed by registering units in lim-ited subdomains of the world and only
he
king units in the same subdomainaganst ea
h other (for now assuming that units in di�erent subdomains
an-not interse
t). Suppose, for example, that the world is split into q parts ea
h29

ontaining n

q
units. Then the total amount of
he
ks, being before n2, will beonly number of
he
ks ≈ q

(

n

q

)2

= n2/q.It is evident that within ea
h subdomain the
omplexity is still O(n2), butde
reasing the size of the subdomains
an easily eliminate by far the most
he
ks, parti
ularly if the division is made so small that only few units
anphysi
ally �t into the domains. The applied approa
h thus employs prin
iples ofa divide-and-
onquer method[2, pp. 28-33℄, though it is not expli
itly re
ursive.7.1.2 Tile registration strategyThis approa
h still needs some modi�
ations in order to work. Spe
i�
ally,units may
on
eivably overlap multiple subdomains, ne
essitating
he
ks of unitsagainst other units in nearby subdomains. Assuming square subdomains willprove both easy and e�
ient, and we shall therefore do so. Consider a grid
onsisting of w × h elements, or tiles, de�ning these subdomains�see �gure ??.We shall des
ribe two ways to pro
eed.1. Single-tile registration. Register ea
h unit in the tile T whi
h
ontainsits somehow-de�ned geometri
al
enter. In order to
he
k one unit it isne
essary to perform
he
ks against every unit registered in either T orone of the adja
ent tiles. Thus every unit must be
he
ked against the
ontents of nine tiles. This approa
h is simple be
ause a unit only has tobe registered in one tile, yet mu
h less e�
ient than the optimisti

aseabove and requires that the units span no more than one tile size (in whi
h
ase they
ould overlap units in tiles even farther away).2. Multiple-tile registration. Register the unit in every tile whi
h it tou
hes(in pra
ti
e, every tile whi
h its bounding box overlaps). Che
king a unitnow involves
he
king it against every other unit registered in any one ofthose tiles it tou
hes. This means that a unit whose bounding box is nolarger than a tile
an interse
t a maximum of four tiles. Units of arbitrarysize
an
over any amount of tiles and therefore degrade performan
e, butthe
ollision dete
tion will obviously not fail�also in most real-time gamesthe units are of approximately equal size and for the vast majority thisapproa
h will be .For the JWarsTM
ollision dete
tor we have
hosen the se
ond approa
h, pri-marily be
ause it does not restri
t unit size to any parti
ular s
ale. This ap-proa
h will also likely be more e�
ient sin
e it in most
ases will require lessthan half the number of tiles to be visited (as noted, 4 is a bad
ase in thismodel whereas the former model
onsistently requires 9). However there is onepossible problem whi
h is illustrated in �gure ??, namely that two units whi
h30

o

upy two of the same tiles will (unless
arefully optimized out) be
he
kedagainst ea
h other in ea
h of those tiles1.7.1.3 Shapes and sizes of
olliding entitiesThe best-
ase time of su
h a tiled
ollision dete
tor is O(n)
orresponding tothe
ase where all units are in separate tiles. The tiles should be sized su
hthat only a few units (of a size
ommonly found in the game)
an �t into ea
h,but they should not be so small that every unit will invariably be registered inmultiple tiles. Every time a unit moves the tiles in whi
h it is registered willhave to be updated, whi
h be
omes time
onsuming eventually.As an example, this model should easily a

ommodate a battle�eld withmany tanks (around 6m in size) and at the same time provide support for a fewwarships (around 100 − 300 metres). If ne
essary, it is possible to improve themodel by allowing variably-sized tiles, su
h that the tiles are made larger at seathan at land, for example. This approa
h will, however, not be implementedsin
e su
h extreme di�eren
es in s
ales are very un
ommon in the genre.Having
overed the methods ne
essary to minimize the number of
he
ks, itis time to brie�y mention the
he
king routine itself. It is obvious that a large-s
ale game
an not realisti
ally provide
ollision dete
tion between arbitrarily
omplex shapes. In the realtime strategy genre units are
ommonly modelled as
ir
ular or square, sin
e a larger degree of detail would hardly be noti
able on therelevant s
ale. We have therefore de
ided to provide only
ollision dete
tion for
ir
ular units. However the
ollision dete
tor does provide an es
ape me
hanismensuring that units
an implement a
ertain method to provide any
ustom-shape
ollision dete
tion. Using
ir
ular shapes provides the bene�t of simpli
ity ande�
ien
y, and no
ustom shape handling will be dis
ussed in this text.7.2 Design of the
ollision dete
torThe
ollision dete
tor manages a basi
 kind of entity whi
h we shall refer to asa
ollider. The most basi
 properties of a
ollider are its lo
ation (x, y) and theradius r of its bounding
ir
le (it has a few more properties whi
h are irrelevantto this se
tion but will be mentioned later). Whether or not a
ollision has beendete
ted is determined solely by these properties.7.2.1 The
he
king routineThe entire
he
king routine for a single
ollider whi
h wishes to move to a
ertainlo
ation now reads:1. Determine whi
h tiles the
ollider will overlap in its new position1The present implementation does not optimize this, sin
e this
an hardly degrade e�
ien
y
onsiderably. 31

2. Traverse these tiles, and for ea
h other
ollider found here, perform thefollowing steps.(a) Che
k whether the bounding
ir
le of the moving
ollider interse
tsthe bounding
ir
le of the other
ollider.(b) If the
ir
les interse
t, invoke user-de�ned
he
king routine.(
) If the shapes interse
t, invoke user-de�ned
ollision handling routineon the moving unit. The moving
ollider will not be moved to itsdesired position, and the
he
king routine is terminated.3. If at no point above the
he
king routine has been terminated, the moving
ollider will have its position updated to its desired lo
ation. The
ollisiontiles overlapped by the
ollider in question will be updated a

ordingly.This routine works well in the realtime strategy genre when the primary fun
-tion of
ollision dete
tion is to prevent entities from overlapping. There is noparti
ular way of handling a
ollision other than
an
elling the movement re-quest (unless the user spe
i�es this manually in the handling routine), and thisapproa
h would therefore be bad if realisti
 physi
s (
onservation of momentumor elasti

ollisions, for example) were desired. These things are not parti
ularlyrelevant in the realtime strategy genre where the behaviour of a single unit isnot
losely monitored.7.2.2 The
ollision gridIn order to represent the
ollision grid, the
ollision dete
tor uses the map utilitypa
kage whi
h is des
ribed in se
tion ??. It fundamentally requires two
oordi-nate systems: a main
oordinate system (the x,y and r properties of
ollidersare presumed given in this system) and a more
oarse
ollision grid. The lat-ter is a tile map
onsisting of
ollision tiles, where a
ollision tile is
apable ofstoring a list of
olliders.Registration of a unit in the
ollision grid uses the
oordinates and radiusof the
ollider to derive a bounding box, whi
h is easily
ompared � throughthe
oordinate transform provided by the map pa
kage � to the grid elementsof the
ollision map. The
he
king routine des
ribed in the previous se
tion iseasily implemented by traversing the tiles thus overlapped by the
ollider, thenand for ea
h tile
omparing the radii of present
olliders.The a
tual
he
king routine,
he
k, takes a
ollider and a desired lo
ation
(x, y) as parameters and returns whether the spe
i�ed lo
ation is legal (i.e. doesnot overlap with any other
ollider registered in the
ollision grid).The
ollision dete
tor further has a move method whi
h takes similar argu-ments, and whi
h will also move the spe
i�ed entity instead of only performinga
he
k.7.2.3 Further featuresFinally a few utilities of the
ollision dete
tor should be mentioned.32

First, some entities may naturally be able to move past another while othersare not. For example, infantry units
onsisting of multiple men would be able toenter a building whi
h would be impassable by larger obje
ts su
h as vehi
les.Also infantry squads would be able to walk through ea
h other, whereas aninfantry unit would not be able to move past a tank (whi
h is massive), andtwo tanks would not be able to drive through ea
h other. Therefore the
ollidershould also spe
ify a boolean whi
h determines whether the obje
t is massive.If either of two
olliding
olliders is massive, then the
ollision dete
tors
he
kwill return false. Thus infantry squads
an easily be made to pass through ea
hother or buildings (all non-massive entities).Finally it is sometimes desirable to �
heat�, i.e. not perform stri
t
ollisiondete
tion in order to make the gameplay smoother. For example if it is desiredthat a new unit should enter the map, but there is no spa
e at the desiredlo
ation, it might be best to disable the
ollision dete
tor and allow that unitto overlap others until su
h time as the unit no longer overlaps them (whenthey or the unit have moved). Colliders may therefore be de
lared as ghosts, inwhi
h
ase the
ollision dete
tor
ompletely ignores them until they are de
larednon-ghosts.Regarding implementation, these two properties, whether
olliders are mas-sive or ghosts, are
onveniently en
apsulated in a set of
ollision propertieswhi
h every
ollider must have. The
ollision properties may be retro�tted inlater versions to support an abstra
t notion of height (
f. the �2.5 D� geometry,se
tion ??) or other
on
epts that
an desirably be modi�ed.The
on
ept of
olliders is
ontained programmati
ally in the interfa
e Collider,su
h that any
lass
an implement it.There is one more fun
tion that
an advantageously be in
luded with the
ollision dete
tor, even though it does not relate dire
tly to
ollision dete
tion:Se
tion ?? des
ribes how entities are rendered to the main JWarsTM display.In order to lo
alize the entities that are a
tually present on the display, it isdesirable to traverse the tiles used by the
ollision dete
tor. The
ollision de-te
tor should therefore also have a

ess to the terrain map. When an entityis moved, the
ollision dete
tor is in this
ontext responsible for dirtifying thea�e
ted terrain tiles, meaning that those tiles should be redrawn during nextgraphi
al update. This pro
ess, traversing the overlapped terrain tiles, is
om-pletely equivalent to that of traversing
ollision tiles. With this in mind, ea
h
ollider must also possess a sprite, the
on
ept of whi
h is des
ribed in Se
tion??. The
ollision dete
tor thus tra
ks the movement of sprites on the s
reen,su
h that redrawing
an be skipped in regions where no movement takes pla
e.7.2.4 E�
ien
y and optimizationAt an update speed of 50 Hz, the present implementation of the JWarsTM game
an on the authors' test systems support approximately 1000 simultaneouslymoving units before lagging behind in logi
al framerate. It is, however, possibleto run a logi
al framerate of e.g. 10 Hz and perform interpolation to ensure33

graphi
al smoothness between logi
 updates2 (thus using a higher graphi
althan logi
al update rate). Using su
h an approa
h the performan
e
ould beenhan
ed 10-fold. This is not quite ne
essary in the JWarsTM appli
ation.The
ollision dete
tor therefore supports around 10, 000 moving entities, butthis �gure
an be redu
ed if
ustom geometries are used or if other parts of thelogi
 are
omputationally heavy.7.2.5 Using the
ollision dete
torThe programmati
al interfa
e of the
ollision dete
tor is very simple and
an be
on
isely des
ribed in only few terms:
• The
ollision dete
tor is instantiated by supplying three
oordinate sys-tems, namely the high-resolution main
oordinate system of Se
tion ??,a tile map of
ollision tiles and a terrain map (Se
tion ??).
• An entity, te
hni
ally anything whi
h implements the Collider interfa
e,
an be added by
alling the register method, passing a referen
e to the
ollider in question as parameter.
• If an entity is to be moved, the move method should be
alled, spe
ifyingthe relevant entity and its proposed new lo
ation. This method will, asdes
ribed above,
he
k the validity of the new lo
ation for the entity andmove the entity a

ordingly. If a
ollision is dete
ted,
ollision handlingmethods on the
olliders in question will be invoked as required. Finallythis method returns whether the move was su

essful.
• An entity
an be removed from the
ollision dete
tor by
alling the removemethod.If for some reason the lo
ations of entities are
hanged without notifying the
ollision dete
tor, this may result in that entity being registered in in
orre
t tiles.Thus that unit might overlap other units without a
ollision being reported. Thisissue
an be remedied by
overtly en
apsulating the positions of entities withinthe
ollision property su
h that it is impossible to tinker with it from outside;at present we have not deemed this pre
aution ne
essary.7.3 Con
lusionThis
hapter has introdu
ed the JWarsTM
ollision dete
tor, and sele
ted atile-based approa
h to ensure that the dete
tor a

omodates large amounts ofentities e�
iently.2Note that if the update rate is further redu
ed it will most likely be
ome visible to thehuman player even if graphi
al interpolation is performed as des
ribed in Se
tion ??, sin
ethe logi
al framerate governs �ring and other things that are dire
tly visible to the player.34

It works by registering entities in appropriate tiles using axially alignedbounding boxes. Collision
he
ks are done using the radii of the entities, mean-ing that all units are
onsidered
ir
ular. However an es
ape method is providedthat allows arbitrary geomtry.Performan
e-wise the
ollision dete
tor is optimized for large amounts ofunits ea
h with simple geometry, but even if
omplex geometries are used the
ombined use of bounding boxes and bounding
ir
les is likely to eliminate mostof the expensive
he
ks.7.4 Path�ndingFor moving units in RTS games the need for a path�nding algorithm arises.Path�nders were implemented in the earliest RTS games and have improvedthrough the years. Most path�nders today extends the normal 'single-sour
eshortest path problem' solution to in
orporate unit-to-unit relations whi
h makeunits
apable of intera
tion for �nding the optimal paths. For this proje
t weneed a path�nder to work on the world of JWarsTM while still be a viablesolution in similar worlds. With this in mind we will form an algorithm that
an be used in other systems as well but using the JWarsTM world as anexample.When moving units in the world of JWarsTM a navigational problem ariseswhen �nding the shortest paths between to points. There exists a range ofsolutions when �nding the shortest path between to points. These solutionshowever have di�erent requirements for the map in whi
h to navigate and somemight be in
onsistent in speed.Many of todays RTS games solve this problem by using a tilesystem for themap used for path�nding and designating tiles with either 'used' or 'free' asmarkers when s
anning through the map with an algoritm3. This approa
h hasseveral advantages, like high and
onsistent speed, while it requires a prede�nedmap-stru
ture to sear
h in. A good example is the A* algorithm whi
h is ashortest path graph algorithm. For �nding a shortesth path using graphs fordata representation history has shown that the A* algorithm is viable
hoi
e.In any situation we will need a way to represent possible positions of a movingobje
t as �x points so a moveorder
an be broken down to to multiple move-orders. The most
ommonly used approa
h is the graph representation whensolving path�nding problems. Given a graph represented as follows:
G = (V, E).

V is a list or other representation of all the verti
es in the graph E is arepresentation of the edges in the graph. An edge is best seen as a link between3Although these are not open sour
e games, meaning that we
annot know for sure, severalobservations support this assertion. For example, buildings
an typi
ally be pla
ed only indis
rete lo
ations, and in some games units in
lose
lusters (notably zerglings in Star
raft)are
learly pla
ed a

ording to a grid. 35

two verti
es - meaning that you
an go from vertex v1 to vertex v2 using theedge e(v1, v2). The weight of an edge,
orresponding to the amount of time/
ostit takes to traverse it, is given by a weight fun
tion w : E 7→ [0, infinity] sin
ea distan
e already travelled
an not be negative.Given a graph with a
hosen data stru
ture there are several possibilitesto solve the single-sour
e shortest path problem from vertex A to B. Most ofthese algorithms are based on sele
tive expansion of the sear
h area sin
e thistype has the best running times with the fewest verti
es visited - like the A*algorithm.The path�nding in JWarsTM has some requirements to the algorithm whi
hwe must take into a

ount before
hoosing a �nal solution. The most pressingissue is to
onvert the dynami
 and rather limitless implementation of unitsand other obje
ts in the world of JWarsTM see se
tion ??. We have
hosena very open approa
h in the area of unit and building lo
ation, size and form,whi
h
ompli
ates the �nal form of a path�nding solution. Any building or unit
an be pla
ed anywhere on the map and will not �ll out a prede�ned amountof tiles in the world. The option of letting obje
ts take spa
e on the map,like a
hesspie
e on a
hessboard o

upying the �eld [A,2℄
an not be used inJWarsTM, sin
e the data stru
tures allows obje
ts of any size in JWarsTM.With the prede�ned restri
tion in mind we
an not use the map alone for writingan e�e
tive path�nder as the amount of information would be la
king. Thereforethe most obvious data to use for path�nding are the a
tual obje
ts.If we are to use the obje
t data some rules has to be de�ned or the amountof di�erent s
enarios would be
ome infeasible to
omprehend. If the obje
tdata is to be used, the most e�e
tive way to use them is to treat all obje
tsas
onvexhulls. Convexhulls has many properties whi
h makes the basi
s ofhandling and
al
ulating a lot easier in this proje
t.In this proje
t it is the data representation and requirements for the worldmodelling whi
h for
es us away from the normal path�nding implementations.For this game we will have to
ome up with a rather unique path�nding solution.As stated above the best data for these
al
ulations are the terrain obje
ts sin
ethey alone
ontain the relevant data. A solution to a path�nder using onlythe terrain obje
ts
an be as simple as walk towards the goal, if you en
ounteran obsta
le walk around it and
ontinue towards the original goal. On thisbasis we have developed a path�nder whi
h is based on the A* algorithm whi
hemploys a heuristi
 estimation of the distan
e from any node to the goal. TheJWarsTM-path�nder is meant for 2D purposes only and in this
ase a straightline towards the goal will result in the most optimisti
 evaluation a node
anget.7.4.1 ImplementationThough a tile-based system is in
apable of handling the path�nding in JWarsTM- the aspe
t of path�nding on graphs is still viable and the most e�
ient method.The implementation we have
hosen for the path�nding is to transform the dy-nami
/open implementation of the JWarsTM-world to a graph-system on whi
h36

we
an perform a sear
h algorithm. For a

omplishing this we have implementeda dynami
 graph with the following rules and de�nitions.For every path needing to be found we start with the given graph for the
urrent map G = (V, E). V
onsist of all
orners on stati
 obje
ts -
onvex hulls- on the map. This data is stored in the
ollion map. E Is an empty list. 4The start and goal lo
ation are
onsidered verti
es5 whi
h is spe
i�ed forea
h running of the algoritm. In general path�nding A* is
onsidered the moste�e
tive sear
h algorithm on the single sour
e shortest path problem. Thereexist a number of algorithms to solve the problem but the A* algorithm has theshortest running time and �ts or problem pro�le well in the expansion of thesear
h tree.In theory no edges are be represented in E. When a node is expanded weget a set of edges based on the
urrent path�nding problem. This means thateverytime we use the path�nder we have a new setup and all nodes
ould produ
ea new set of edges. We do not store the individual edges but merely a
tivatethose dis
overed by the algorithm upon expanding a node. Using this approa
hwe expand the graph a

ording to the A* and updates the nodes found by theexpand fun
tion. 6 The operation that makes this algorithm stand out is theexpand fun
tion whi
h a
tivates verti
es/edges while sear
hing for the path.An important aspe
t of the
hosen solution is that it is not a�e
ted by anyother part of the game implementation than the
ollision dete
tor. If a developerwants to use this path�nder it is fairly easy to
onvert to a di�erent setup - a
onversion need a fun
tion whi
h
an dete
t a
ollision between an game obje
tand a straight line from point A to B.When running the algorithm we have some settings whi
h is restored afterea
h usage.pre-settings:all verti
es/pathfindingnodes have been initialized with h = g = infinityC the list of verti
es to expand - the openlist - is initialized empty.The algorithm is started by
alling the �ndPath with a end
oordinate andthe spe
i�ed unit. As explained later the path�nder returns unique solutionsto spe
i�
 spe
i�
ations. Calling the method with two di�erent sized units
anyield two di�erent results. This will be des
ribed to depth later in this
hapter.Given the start
oordinates as the units
urrent lo
ation and the end asargument to the method the standard loop for an A* is implemented. Theloop sele
ts a node to expand based on a heuristi
 evaluation whi
h
orrespondsto a priority queue. The term priority queue will be used throughtout this4If it were to be a pre-de�ned list for E it should
onsist of all possible routes betweenany verti
es on the map. This amount of data would be hard to handle and if the amount ofstati
 obje
ts were large enough it would require alot of memory spa
e.5The path�nder
ontains a spe
i�

lass for this purpose
alled 'Target'. This
lass extendsthe the path�ndingnode
lass and
an also be registrered in the
ollision dete
tor - this makesus
apable of shooting towards and
ollide with it.6A more formal word for the update method is to relax the edges adja
ent to the node -in this
ase we update the nodes found by the expand fun
tion37

hapter. In a standard implementation it will be referred to as the openList.The heuristi
 evaluation is based on an evaluation in a 2D environment forpath�nding. Taking into a

ount that all distan
es travelled are straight lines,we
an always be sure that we have the shortest possible path to any givennode if we use the method normally
alled 'Relax' as in ?? when des
ribingDijkstra's algorithm. The g-s
ore for a node is simply
al
ulated as the distan
efrom the
urrent node to the goal lo
ation. The g-potential will ensure that anode having travelled less than others and having the possibility to result ingetting dire
tly to the node will be the next expanded. This approa
h meanwe
an safely terminate the algorithm upon rea
hing the goal lo
ation and havethe shortest path possible without further expansion of the algorithm.Having the loop sele
ting a new node to expand by ea
h iteration we willnow explain the expand fun
tion and how this works in the world of JWarsTM.Upon expanding a node we only a
tivate nodes whi
h
an be rea
hed in astraight line from the
urrent node. This ensures that all values
al
ulated willdistan
es either already travelled - h value - or the minimum distan
e - g value- to the goal given that no obje
ts is blo
king the line. When expanding a nodewe expand it towards another node. In JWarsTM the
lass PathFindingNodehas been implemented solely for the purpose of path�nding and has all theneeded attributes for being handled as a verti
e. A path�ndingnodes settingsis
al
ulated from the blueprint whi
h determines the obje
ts size, shape andpositioning. A very important feature of a path�ndingnode is the ability havea stati

oordinate and a dynami

oordinate. This ability is ne

essary forthe path�nder to �nd a path based on the moveables radius. When
reating apath�ndingnode a ve
tor is
al
ulated based on the two adja
ent
orners in theobje
t
reating an indent dire
tion. When multyplying this indent dire
tion withthe unit radius we get a indented lo
ation. This lo
ation is the dynami

oordi-nate whi
h will be
al
ualted in ea
h run through the path�nder for all relevantnodes. When expanding a node it will always be expanded towards an othernode. The path�nder has a spe
ial tileMap
alled a LineDrawCapableMap.This map is derived from the standard tilemap as explained in ?? and takes the
ollision map as argument. The LineDrawCapableMap
omes with a methodwhi
h utilises Bresenhaum's line drawing algorithm to �nd a list of tiles basedbetween two points on the map. This list will
onsist of CollisionTile's fromthe
ollision map and
an be expanded to draw a line of
ertain thi
kness basedon the unit radius. The thi
kness is
al
ulated as CollisionTile.size / move-able.radius . Using this formula the tiles returned by the fun
tion would be thetiles the moveable has a theoriti
al
han
e to tou
h. From the list of
ollisiontiles we a
quire a list of terrain obje
ts whi
h should be
he
ked for
ollision.When
he
king a building for
ollision we take several steps before
on
ludingthat a
ollision will o

ur. The free positioning and shape of obje
ts makes asimpel point-to-line distan
e worth
al
ulating. This will ensure that buildingswith no
han
e of interfering with the sear
hed path will take more resour
es.The se
ond step is to
al
ulate all angles to the the path�ndingnodes indentedlo
ations in the
urrent obje
t. Cal
ulating the largest and smallest angle we
an perform a
he
k wether the line is between these to angles. If we dete
t a38

ollision with the obje
t, the rule about all obje
ts being
onvexhulls gives usthe two path�ndingnodes for �nding a path around the obje
t. The pseudo
odefor the expand fun
tion show this prin
ip rather well.Expand(from, to, unit)min = max = null;List = getTileList(from, to);TOList = getTOList(List);for ea
h obje
t in TOList{ if(pointLineDist < unit.radius + building.radius){ set min, max anglesif(min != null max != null){expand(from, min, unit);expand(from, max, unit);}}} If we hit the wanted path�ndingnode while �nding min and max values thenode will be added to the priority queue and is the a
tivated for future expansiona

ording to the heruristi
 evaluation. The re
ursive
all to the expand fun
tionenables the fun
tion to a
tivate several edges leaving one node thus a
tivatingall relevant edges for leaving the
urrent node. A single node expanded
ouldfollow this series.Everytime a position (path�ndingnode) is grey it has been added to thepriority queue by the expand fun
tion. When the expand fun
tion su

esfullymakes
onta
t with the targetted node we update the target node with therelevant data for the A* algorithm to run as intended. The update method willreevaluate three values needed for sorting and evaluating nodes in the list so we
an expand further a

ording to the heuristi
 evaluation. Finally it will set thean
estor of the given node to the node from whi
h we
ame. We use values f,gand h. 'f' for the travelled distan
e to this node, 'g' for the heuristi
 evaluationto the goal and 'h' as the
ombined values.The expand fun
tion su�ers one fatal error. It
an fail in �nding all thene

essary edges leaving it. En example of this situation follow here.It is
learly that a
quiring the nodes on the smaller building would be thefastest route to the target X . The path taking the moveable
loser to the obje
t�ts a standard ta
ti
al manouvre, where
overs means safety. In the real worldobje
ts on the battle�eld would be used by units to hide their positions or makeup defenable position. One other error whi
h
an be for
ed by a programmeris
reate a single stru
ture from multiple
onvexhulls. We have already statedthat in order to have non-�awed data obje
ts must be
onvexhulls. If a pro-grammer
hose to make
reate a 'U' formed building
onsisting of 3 re
tangles,39

(a) test1 (b) test2

(
) test3 (d) test4Figure 7.1: test
40

Figure 7.2: blahblahthe path�nder would not return a path to the target, merely a path inside the'U' where it would remain stationary.The �aw in the expand fun
tion
ould be �xed by adding in a do/while-loopin the update fun
tion or a similar �tting pla
e.
urrent = this;do(if(expand(this,
urrent.an
estor)){ this.update(
urrent.an
estor, goal);}else{
urrent =
urrent.an
estor; })while{
urrent != start }Pla
ing this pseudo
ode in the implementation would make the path�nder
he
k all nodes leading to node whi
h we just found. It would
ut some
ornersand make the implementation �nal but have not been in
luded in this �nalrelease.Some path�nders have been expanded to foresee other units walk patternsand to take these into their own
al
ulations when �nding a route. This possibil-ity do not arise in a world whi
h is not grid-based sin
e the possibilty to 'rent'map spa
e is not available. Unfortunately this option will never be availableto a path�nder not based on the map stru
turing. In the real world it makessense not to let all allies know where you are all the time. This general rule41

should apply to all RTS games aiming for realism. For solving the issue withunits sharing knowledge and optimising paths another type of data would beneeded. Implementing a system for units to
ommuni
ate and plan their move-ments optimally
an be implemented. Currently the walkAround method in theMoveableAI
lass makes up for
ollisions. This method should be extended totake unit-to-unit
ommuni
ation into a

ount for smarter move patterns on thesmall s
ale.

42

Chapter 8Unit organizationThe
on
ept of units in JWarsTM di�ers fundamentally from the
orresponding
on
epts in other realtime strategy games. This
hapter will provide reasons forand des
ription of the JWarsTM unit organization and its advantages. Theideas presented below
onstitute the most important single reason for the ex-isten
e of JWarsTM, and this is the most likely feature to make JWarsTM�famous� if su
h a thing should happen.8.1 Real-world military organizationAll modern militaries are remarkably similar in their organizational stru
ture.More or less
onsistently, the armed for
es are divided into several armies whi
hare su

essively divided into
orps, divisions, brigades, battalions,
ompanies,platoons and individual vehi
les or squads of infantry. Commanding o�
ers areassigned on ea
h of these levels, and the organizational stru
ture allows largeamounts of for
es to be
ontrolled as a single entities. The high-level entities aregenerally referred to as formations whereas the lower-level ones (whi
h
omprisee.g. purely infantry) are
alled units [?℄.In most
ases, ea
h unit
omprises three or four units of the next smallertype. For example a battalion might
ontain four infantry
ompanies plus sup-porting anti-tank or mortar units. Infantry
ompanies usually
onsist of threeinfantry platoons and possible further support. A platoon
an
onsist of three10-man infantry squads, ea
h man being armed with ri�es ex
ept for a lightma
hine gunner and an anti-tank team.Generally it is pra
ti
al for the
ommanding o�
er at a parti
ular level oforganization to dire
tly
ontrol units up to two levels down in the hierar
hy.Thus a divisional
ommander exerts dire
t
ontrol of a number of brigades, andto a limited degree the battalions. The individual formations and battalionsare assumed
apable of
ontrolling their own
omponents. It is obviously notpra
ti
al for a
ommander at a very high level to
ontrol vast amounts of singletanks. 43

8.2 Military
ommand in
omputer gamesThe
ategory of
omputer games in whi
h the player
ontrols a large militaryfor
e with the obje
tive of defeating a similar for
e in battle
an be divided intotwo primary groups: real-time and turn-based strategy (or ta
ti
al) games. Inany
ase the player usually has a for
e whi
h
onsists of units.Some turn-based games, su
h as the Steel Panthers series, attempt to a
hievevery high degrees of realism, in
luding realisti
 weapon spe
i�
ations, provide astru
turing of units into a true military hierar
hy, and sometimes these gamesin
lude s
enarios that a

urately depi
t the orders of battle (the unit stru
tureand equipment) of the histori
ally involved formations. In Steel Panthers, forexample, the player has unlimited time to
ontrol every single entity no matterthe size of the entire army. For very large battles, the player who spends themost time is likely to win. While the units may be organized into platoonsand
ompanies, the player still has to
ontrol the for
es at the single-vehi
leor single-squad level, and platoons are thought of as abstra
t entities and nota
tually units.In real-time games the situation is di�erent. First and foremost, the degree ofrealism is rarely very high, with tanks being able to shoot less than 100 metresand nu
lear weapons frequently being a native part of the battle�eld. Asidefrom the ahistori
al anti
s, the
ontrollability of for
es be
omes very importantbe
ause the player
annot take arbitrarily long time to issue orders. Generallythe units are not organized at all, meaning that the player is in dire
t
ontrolof every unit. This means that as the game grows in
omplexity,
ontrollingthe units be
omes ever more demanding, and the player who is fastest withthe mouse frequently wins out due to the better ability to pull wounded unitsout of harm's way, bring reinfor
ements forward qui
kly, and possibly manageresour
es at the same time.To fa
ilitate somewhat e�
ient
ontrol, these games allow the player to draga sele
tion box on the battle�eld to obtain momentary
ontrol of whi
hever unitsare inside the box, and every order issued will apply to this sele
tion. Anotherfeature is to organize units into
ontrol groups, su
h that the player
an use hotkeys to sele
t i.e. a group of aeroplanes even though they are not near ea
hother (and therefore di�
ult to drag a box around).Many proponents of turn-based games s
o� at the stress and dependen
e onqui
k mouse a
tion in real-time games, using ni
knames su
h as real-time
li
kfests, while many real-time players �nd turn-based games boring.JWarsTM proposes the use of an expli
it military hierar
hy to help
on-trol for
es of arbitrary size in real time qui
kly and e�
iently, redu
ing thedependen
e on qui
k mouse a
tions. Sin
e the for
es
an be almost arbitrarilylarge, the game world might as well be expanded past that of most games. Thiswill further mitigate the dependen
e on fast mouse a
tion, sin
e the time s
alesinvolved in most operations will in
rease. On the other hand, the redu
ed de-penden
e on mouse a
tion in
reases the relative importan
e of ta
ti
al thinking,whi
h will hopefully appeal to both turn-based and real-time players alike.There is one possible drawba
k of this model, namely that the stru
turing of44

Figure 8.1: Example of a unit tree. Only the nodes with downward pointing arrowheadsare expanded. This is part of a s
reenshot from JWarsTM.units may not be as the player wants, and that the expli
it tree stru
ture la
ksthe �exibility to use units individually. Nonetheless the stru
ture is identi
alto that of real military units, whi
h makes it a marketable feature regardless of
ontrollability.Figure 8.1 shows an example of a military hierar
hy in the
urrent versionof JWarsTM. This battalion
onsists of 116 individual entities (vehi
les orseparate infantry squads),
omprising 344 infantrymen and 36 tanks or assaultguns.8.3 Tree-based unit representation

45

Unit

Formation Moveable

InfantrySquad Vehicle

Tank AssaultGun

Battallion

Infantry company

Infantry platoon

Tank company

Tank platoon

etc

Sturmgeschuetz

SU−85
PzKpfw−IV

T−34

Tiger

KV−1

Rifle squad

SMG squad

PzFaust team

Figure 8.2: Types of units. The boxes with rounded
orners indi
ate
on
rete examplesof the parti
ular unit type.

46

Chapter 9Unit AI(mention that AI more or less translates to `behaviour' in this
ase)9.1 Hierar
hi
al stru
tureMost realtime strategy games in
lude two kinds of AI: �rst there is a simpleAI whi
h
ontrols the low-level behaviour of the individual units. This AI isresponsible for automati
ally doing tasks whi
h are trivial, su
h as �ring atenemies within range or, if the unit is a resour
e gatherer, gather resour
esfrom the next adja
ent pat
h if the
urrent pat
h is depleted su
h that theplayer needs not bother keeping tra
k of this. The other kind of AI is theseparate AI player whi
h
ontrols an entire army, and whi
h is in
ompatiblewith the interferen
e of a human player. This AI is responsible for larger ta
ti
aloperations su
h as massing an army or responding to an atta
k.In JWars, as we shall see, there is no su
h
lear distin
tion between di�erentkinds of AI. Be
ause of the hierar
hi
al organization it is possible to assign anAI to ea
h node in the unit tree, meaning that while every single unit does havean AI of limited
omplexity to
ontrol its trivial a
tions, like in the above
ase,the platoon leader has another AI whi
h is responsible for issuing orders to ea
hof the three or four squads simultaneously, and the
ompany leader similarly isresponsible for
ontrolling the three or four platoons. It is evident that thismodel
an in prin
iple be extended to arbitrarily high levels of organization,meaning that it will easily be equivalent to the se
ond variety of AI mentionedabove: the entire army
ould e�
iently be
ontrolled by AI provided that theAI elements in the hierar
hy are
apable of performing their tasks individually.There are numerous bene�ts of su
h a model, the most important of whi
hwe shall list here.
• Ta
ti
ally, if one unit is atta
ked the entire platoon or
ompany will beable to respond. In
lassi
al realtime strategy games this would result ina few units atta
king while the rest were standing behind doing nothing.47

Thus, this promotes sensible group behaviour whi
h has been la
king inthis genre sin
e its birth.
• It is easy for a human player to
ooperate with the AI. For example it issensible to let the AI manage all a
tivity on platoon and single-unit levelwhile the player takes
are of
ompany- and battalion-level operations.This will relieve the player of the heavy burden of mi
romanagement whi
hfrequently de
ides the game otherwise (as asserted in se
tion ??). Thus,more fo
us
an be dire
ted on strategy and ta
ti
s instead of managingthe
ontrols.
• The
ontrols may, as we shall see below, be stru
tured in su
h a wayas to abstra
t the
ontrol from the
on
rete level in the hierar
hy. Thismeans the player needs not bother whether
ontrolling an entire
ompanyor a single squad: dispat
h of orders to an entire
ompany will invoke the
ompany AI to interpret these orders in terms of platoon operations. Ea
hplatoon AI will further interpret these orders and have the individual units
arry out the instru
tions appropriately.
• A formation-level AI
an
hoose how to interpret an order to improve e�-
ien
y. For example the player might order a platoon to atta
k an enemytank, but the platoon AI might know that ri�es are not e�
ient againstthe tank armour. Therefore it might
on
eivably
hoose to employ onlythe platoon anti-tank se
tion against the tank while the remaining platoonmembers
ontinue e.g. suppressing enemy infantry. These
onsiderationsare easy for a human player, but
annot be employed on a large s
ale sin
ethe human
annot see the entire battle�eld simultaneously. On
e againthis eases mi
romanagement.There are, however, possible drawba
ks of the system.The worst danger of employing su
h an AI stru
ture is probably that the AImight do things that are unpredi
table to or
on�i
ting with the human player.Care must be taken to ensure that human orders are not interfered with, andthat the behaviour is predi
table to humans1.From a game design perspe
tive it might also be boring if the automatizationis too e�
ient, leaving the player with nothing to do. This problem, of
ourse,
an be eliminated simply by disabling
ertain levels of automatization. It is alsounlikely that the AI at higher levels of organization
an ever outwit a human
ommander, making sure that human intera
tion is still required.1Classi
al examples of this problem are when resour
e gatherers deplete resour
es andautomati
ally start harvesting from pat
hes too
lose to the enemy, or when the player issuesa movement order and the unit moves the �wrong� way into the line of �re be
ause thepath�nder has determined that this way is faster.48

9.2 Design
onsiderationsIt was stated above that the
ontrol of single entities versus large formations
ould be abstra
ted su
h that the player did not need to bother about the s
aleof operations. If this prin
iple is to be honoured, the user interfa
e must allowsimilar
ontrols at every level of organization. At the software designing levelthis may be parallelled by providing a
ommon interfa
e to be implemented bydi�erent AI
lasses. It should be possible to give move orders, atta
k orders andso on, and ea
h of these should have its implementation
hanged depending onthe
ontext, i.e. whether the order is issued to a formation or a single entity.It is therefore reasonable to propose that every unit, whether it is an ab-stra
t formation or a physi
al entity, should possess an AI, and this AI shouldexpose an interfa
e whi
h allows a standardized set of instru
tions. However theimplementation of these instru
tions should be left open, su
h that the di�erentkinds of units
an freely interpret them appropriately.It further proves useful to have di�erent types of AI spe
ialized in di�erentroles. The
ode whi
h manages movement not ne
essarily have mu
h in
ommonwith that whi
h manages shooting. Therefore it
an be an advantage to holdsu
h fun
tionality separate. Spe
i�
ally, this will result in a MobileAI and anAtta
kAI, ea
h of whi
h provides the
orresponding fun
tionality. Sin
e unitsmust provide the fun
tionality of both, the logi
al solution is to assign ea
h unita UnitAI whi
h
onforms to the spe
i�
ations of MobileAI as well as Atta
kAI.This design is obviously well-suited in an environment whi
h allows poly-morphism and inheritan
e, and for this reason the use of Java interfa
es areideal for the
ore AI
lassi�
ations.9.3 AI layering stru
tureAlong with the AI interfa
es that spe
ify the AI
apabilities, some simple im-plementations exist whi
h
an take
are of spe
i�
 roles. The following examplewill illustrate the usefulness of this prin
iple.The MobileAI interfa
e spe
i�es an orderMove method whi
h is supposedto make the relevant unit move to a spe
i�ed lo
ation. Also similar movementorders
an be appended or prepended to a queue of su
h orders. There is astandard implementation, MovementQueueAI whi
h takes
are of all this queuemanagement. Suppose now that a path�nder should be used to break the moveorder into straight-line segments leading around some obsta
les. This fun
-tionality
an be provided by wrapping the MovementQueueAI and providing aPathFindingAI with an orderMove method whi
h invokes the path�nder, thenenqueues the way points by using the underlying MovementQueueAI. The player,however, does not need to know that the AI responsible for path�nding a
tuallywraps an AI responsible for enqueueing movement orders. The only informationwhi
h is important is that the AI provides the movement fun
tionality.In a
ompletely unrelated matter, the Basi
Atta
ker whi
h is an imple-mentation of Atta
kAI is responsible for keeping tra
k of a target and whether49

or not to shoot. The implementations whi
h provide movement and targettingfun
tionality
an now be reused together. The AI of a physi
al entity su
has a tank (
alled a Moveable) is an implementation of UnitAI whi
h wraps aMobileAI and a Basi
Atta
ker. Thus the behaviour of a tank is di
tated byinter
hangeable AI �building blo
ks� that
an be expanded as required.This example is of
ourse dependent on the layout whi
h we have happenedto
hoose for the AI API, and this might not be what another developer wants.Nonetheless the design shows a �exibility whi
h allows almost arbitrary ex-tensions. In
on
lusion, units have a parti
ular AI interfa
e whi
h is exposesatta
king and movement fun
tionality, and the AI framework relies on delega-tion to various spe
i�
 implementations to provide this fun
tionality. Interfa
esare used for polymorphism.9.4 Future AI workIt is no se
ret that the limited work whi
h has gone into the AI implementationsin JWarsTM are not going to revolutionize the real-time strategy genre. How-ever the unique tree-organization allows for mu
h more
omplex and intelligentbehaviour whi
h
an be implemented in the future. This se
tion will mentionsome of the more promising improvements whi
h
an be done.
• Aggression modes. In some
ases it is desirable that units �re at everynearby enemy. But otherwise this might not be a good idea. If a re
on-naissan
e patrol opens �re on the enemy troops they are observing, theywill most likely be spotted and killed. If an infantry squad is waiting foran unsuspe
ting tank to
ome
lose enough to throw a grenade down theopen hat
h, then it is most unwise to open �re at a range of two hundredmetres. Thus, a good AI must know when to �re and when not to. Whenthe squad opens �re it is important that the remaining squads of the pla-toon, or the entire
ompany, open �re as well. It therefore makes sense tomake e.g. a
ompany AI responsible for starting su
h an ambush, thoughit requires that the AI supports, for example, an ambush state.
• Battle�eld-awareness. A
ommon problem in
ontemporary real-time strat-egy games is that an airstrike is ordered on an enemy fa
tory somewhere.While under way the planes are atta
ked by unseen anti-air
raft batteriesand shot down. In this
ase it would be bene�
ial to
all o� the atta
kentirely. But if there is only one anti-air
raft empla
ement, and if theatta
k involves twenty planes,
alling o� would be silly. Assigning an AIto the entire atta
k wing would easily provide a means of evaluating andhandling su
h threats.
• Morale-dependent AI. While under �re, people
an pani
 and retreat. Thiskind of AI
ould refuse to perform o�ensive a
ts if pani
 sets in. blahblah50

Chapter 10CombatThis
hapter deals with the
ombat model provided with JWarsTM. The
om-bat model en
ompasses di�erent modules pertaining to weapons and automati
�ring routines, targetting (via the spotting routines of Se
tion ??), armour anddamage.10.1 Analysis of
ombat dynami
sMost real-time strategy games use remarkably similar
ombat models. Unitswill �re automati
ally at enemy units when the enemy units
ome into range,wait for their weapons to reload and
ontinue �ring until they or the enemiesdie (or until they re
eive new orders and disengage).Every time a unit �res, it may or may not hit its target (in many games theywill even always hit the target), and do damage to the target and possibly thesurrounding units based on the weapon used and the type of target.The
anoni
al way of representing damage and the health of an entity is touse hit points. A unit has a
ertain number of hit points, and every time itgets hit by a weapon, a number of hit points based on the weapon type, target,lu
k or other fa
tors, gets subtra
ted. If a unit rea
hes 0 hit points it dies. Thehealth state of a unit is typi
ally represented graphi
ally by the
hara
teristi
green health bar, whi
h be
omes shorter and
hanges
olour to yellow and redas things go downhill.This is a very simple basis model whi
h is used in most games. We
anmention War
raft I-III, Star
raft, Dune II, all Command & Conquer games,and the list goes on.For JWarsTM, however, we have something more ambitious in mind. Realitydoes not deal in hit points. If a shell hits a tank, one of two things happen:either the shell boun
es o� the armour doing no or very little a
tual damage,or else the shell penetrates the armour and will likely
ause horrible damage.It does not take 7 hits or 5 hits like in the hit point model, but
ould take anynumber of hits. If the tank is su�
iently heavily armoured, no amount of hits51

from that
annon will destroy it1.Su
h realisti
 models have been used in the Steel Panthers series of turn-based strategy games. Our approa
h shall borrow some true and tested ideasfrom this highly realisti
 series of games.10.1.1 Combat rule setThe
ombat rule set is the basis for the implementation. This does not meanevery implementation has to use this rule set � this is only the default.
• There are two primary types of entities: vehi
les and infantry squads.
• Some vehi
les are tanks, whi
h have a hull and a turret whi
h
an tra-verse, whereas others are assault guns whi
h have a hull and an in�exiblesuperstru
ture with a
annon. Hull and turret or superstru
ture ea
hpossess an armour table, whi
h lists the thi
kness of steel armour in mil-limetres and the angle of armour plating. This information is borrowedfrom Tas
henbu
h der Panzer 1945-54 [?℄ and sometimes Steel Panthers:World at War [?℄.
• Infantry squads have a strength, i.e. a number of men.
• Ea
h entity
an have any number of weapons.
• A weapon has a maximum range, an a

ura
y, a �repower (determining itse�
ien
y against infantry), an armour penetration value (in millimetresof steel, numbers are borrowed from Steel Panthers: World at War [?℄), anammunition type and a reload time. A Weapon
an �re at a lo
ation butis not guaranteed to hit. Weapons
an deal splash damage, i.e.
ollateraldamage to units near the impa
t lo
ation.
• Whenever an infantry squad is hit or nearly hit by a weapon, people maydie depending on lu
k, impa
t distan
e, weapon �repower and possiblyother fa
tors.
• Whenever a vehi
le is hit dire
tly by a weapon, it might be destroyedbased on the weapon's armour penetration ability, the vehi
le's armourthi
kness and the angle of in
iden
e.
• Enemy units will automati
ally �re at ea
h other if within range.We intend to expand the ruleset in the future, to support
rewed weapons (e.g.infantry-operated anti-tank guns or FlaK), o�board artillery whi
h
an
ondu
tindire
t bombardments of any part of the battle�eld and aeroplanes whi
h areo�board most of the time but
an make bombing runs.1Anthony Beevor[?℄ notes a parti
ular o

asion on whi
h German panzers �red s
ores ofshells at an immobilized Soviet KV-1 heavy tank. Finally the Soviet
rewmen emerged tosurrender, badly shaken, but unhurt. 52

10.1.2 �Weapon vs. armour�, or �armour vs. weapon�?There is a tri
ky matter of evaluating di�erent ammunition types versus di�erentarmour types whi
h warrants a dis
ussion of the way su
h
he
ks are handled.This se
tion will dis
uss real-life weapons systems in order to determine themost sensible way of handling shell impa
ts.Suppose a shell hits a tank. We will want to
ompare the steel penetration ofthe weapon with the thi
kness of the armour. If the shell uses kineti
 energy asa means of penetrating the armour (e.g.
ommon armour pier
ing ammunition)then its ability to penetrate armour should be redu
ed with impa
t speed andthus travelling range. If the shell uses only explosive power (su
h as HEAT,high-explosive anti-tank whi
h is
ommonly used in infantry anti-tank weaponssu
h as the bazooka, Panzers
hre
k and Panzerfaust), then its steel penetrationis
ompletely independent of impa
t speed.The
ommon way of handling su
h a problem in obje
t oriented languagesis to equip ea
h weapon with a di�erent method for
al
ulating damage to steelarmour. The problem is that several types of armour
an also exist, whi
h meansthe weapon will have to distinguish manually between target types anyway. Seebelow: should the implementation be provided by weapon or armour?armour.
al
ulateDamage(weapon)//Allows armour
lass to sele
t implementationweapon.
al
ulateDamage(armour)//Allows weapon
lass to sele
t implementationWe have de
ided that the
omplexity of armour is generally greater thanthat of weapons, and that the implementation should therefore be left to thearmour
lass.For example, diverse defensive te
hnologies range from no armour (infantry)to steel and spa
ed armour. The previously mentioned HEAT ammunition usesa
uriously shaped warhead to a
hieve a dire
ted explosion, forming a jet ofmolten metal[?℄ whi
h
an travel a
ertain distan
e largely una�e
ted by thetype of armour it penetrates. This
an be negated by mounting a thin layerof armour on vehi
les some distan
e away from the armour, meaning that thejet will disperse before rea
hing the inner armour layer. This is
alled spa
edarmour. Figure 10.1 shows a Soviet T-34 tank equipped with a mesh to detonatesu
h warheads prematurely. A more modern te
hnology
alled explosive rea
tivearmour or ERA uses explosive
harges as part of the tank armour to obstru
tthe jet, nullifying its penetrative
apabilities[?℄.Thus weapons
an be
hara
terized by a sele
t few parameters, whereasarmour has the bene�t of possessing the method whi
h de
ides what happenson impa
t, given the weapon parametres. This allows armour systems arbitrary
omplexity (they
an provide any implementation) whereas weapons have toexpress their e�
ien
y in terms of a pre-determined set of parameters. In orderto distinguish di�erent types of weapons (whi
h is still ne
essary), a few standardtypes are hard
oded: high-explosive, armour pier
ing, HEAT and bullets. Bullettype weapons are
onsidered spe
ial: unlike the other types, they are
onsidered53

Figure 10.1: Soviet T-34 tank with wire mesh for prote
tion against the Panzerfaustanti-tank weapon.[?℄to �re volleys
onsisting of several shots (su
h as from a ma
hine gun or a wholesquad �ring several ri�es). Also, if the �rst weapon de
lared on an infantry squadhas the bullet type, then it is
onsidered issued to every member of the squad,meaning it will have its �repower multiplied a

ording to the number of men.The other ammunition types have no expli
it meaning, but when
al
ulatingdamage, the armour
an distinguish these types on an if-else basis.10.1.3 Stru
ture of the weapons APIThere are four
on
epts whi
h are introdu
ed in order to properly separate the
ode.
• Weapon. A weapon has a
ategory (see Se
tion ??) whi
h stores its
a-pabilities, and a state, being either loaded or not. The weapon has a �reroutine whi
h ultimately might result in people getting killed (no humanswere harmed during the making of this routine).
• WeaponModel. The weapon model serves as an interfa
e between the set ofweapons belonging to a unit and the
ode whi
h attempts to
ontrol theunit's more aggressive anti
s. The weapon model
an be used to emulatethe weapon set independently of the a
tual weapons, whi
h allows theweapon
ode to be substituted without breaking e.g. the unit AI.
• ArmourModel. Responsible for handling the (nearby) impa
t due to the�ring of a weapon. Present implementations in
lude two armour models,being infantry- and vehi
le-spe
i�
, respe
tively.54

• Damageable. Responsible for handling any damage
aused when the ar-mour model reports that it
ould not withstand the punishment. Presentlythis only serves to alert a unit of when it is destroyed, but is supposed totake
are of destroyed radios, �re
ontrol, suspension, engine et
. if someday those
on
epts are implemented.10.1.4 Firing routineThe �ring routine
orresponding to a parti
ular weapon takes the sour
e lo
a-tion and the target lo
ation in the main
oordinate system as parameters, andvalidates by
he
king whether the weapon is loaded and within �ring range of thedestination. It is desirable, though not presently implemented, that dire
t-�reweapons (as opposed to indire
t-�re weapons whi
h are used for bombardments)should also
on�rm that they are within line of sight of the target.If �ring is possible, the a
tual hit lo
ation is
al
ulated. If the weapon typeis �bullet�, meaning that it �res a volley of proje
tiles (su
h as in the
ase ofma
hine guns), then the hit lo
ation is always exa
tly the targetted lo
ation,sin
e this is where the bullets will hit on average. Bullets are then assumed tohit in the general area and not on exa
tly the
entral point. Other types ofweapons have their impa
t lo
ation determined based on lu
k and the �e�e
tiverange� of the weapon, but other fa
tors may be in
luded later.Finally, the set of all entities within the weapon's splash range of the im-pa
t lo
ation is determined by using a utility method provided by the
ollisiondete
tor. All units in this set have10.1.5 Impa
t handling by armourThere are presently two types of armour model: infantry and vehi
le. As men-tioned previously, the armour model determines what happens to a unit whenhit. The infantry armour model
al
ulates a number of
asualties based on lu
k,the impa
t distan
e and the �repower of the weapon in question.The vehi
le armour model is somewhat more
ompli
ated. Vehi
le armouris spe
i�ed by
ategories (see Se
tion ??). The armour thi
kness is spe
i�ed inmillimetres, along with the armour plating angle, on the vehi
le front, side andrear. Tanks, having a turret, have another su
h set of numbers, see Figure ??.10.2 Spotting and targetting
55

Chapter 11Control

56

Chapter 12Graphi
sWhile graphi
al beauty is not one of the primary obje
tives of JWars, the ren-dering system is designed with some
are for performan
e and pra
ti
al usability.The system relies on Java2D and the Swing framework, as these shall prove rea-sonably e�
ient for our purposes, not to mention the
onvenien
e that they arein
luded with the Sun Java Runtime Environment.There are numerous alternative graphi
s libraries whi
h
ould likewise havebeen used, ranging from the low-level OpenGL wrapper, JOGL[?℄, to s
enegraphimplementations su
h as Java3D[?℄, Xith3D[?℄ and the game library LWJGL[?℄.In the following we shall dis
uss a number of rendering strategies with the intentof applying them with AWT/Swing. However, importantly, these terms do notapply only to this framework; they are general prin
iples used in rendering inmany di�erent
ontexts.12.1 A
tive versus passive renderingAs mentioned in Se
tion ??, realtime strategy games normally
onsist of a
en-tered main display whi
h displays the battle�eld and the animated a
tion. Sur-rounding this display is typi
ally an overview map and a number of status panelswhi
h are not animated, or
ontain relatively little graphi
ally heavy
ontent.The main battle�eld display will require
ontinuous redrawing due to thedynami
al nature of its
ontent, and the rendering operations are expe
ted to be
omplex and demanding for the
omputer. Widget toolkits su
h as AWT/Swingare not designed for this kind of rendering, and it will be ne
essary to manage therendering manually: the main display will use a
tive rendering, i.e. it will drawdire
tly to the s
reen when requested, and requests will be issued
ontinuously.Note that most real-time
omputer games issue su
h requests at the max-imum possible frequen
y to ensure the best smoothness of animations. This
an be done from a rendering loop whi
h issues repaint instru
tions
ontinu-ously. We have de
ided to use a less aggressive approa
h and render only on
eevery time the logi
 is updated; this will o

ur at a 50 Hz rate, whi
h proves57

su�
iently smooth for a 2D game where most entities move reasonably slowly.However in fast-pa
ed 3D games this is barely
onsidered su�
ient by skilledplayers1.On the other hand, sin
e the surrounding panels are not generally animated,these
omponents are ideally represented by Swing widgets using the normalpassive rendering, where repaints are s
heduled as required and taken
are ofwhen the
omputer �feels like it�. Sin
e the panels are going to display datawhi
h depends on the internal game state and
ontain buttons whi
h might a�e
tthat state, and sin
e AWT/Swing appli
ations run largely from a parti
ularthread, namely the so-
alled Event Dispat
h Thread, it will be ne
essary eitherto syn
hronize the intera
tion between the user interfa
e and the model, or toexe
ute all relevant
ode in the Event Dispat
h Thread.12.2 Double bu�eringDouble bu�ering refers to a te
hnique whi
h
an be used to improve the per-
eived performan
e of an appli
ation. A naïve implementation of a renderingloop would simply
lear the rendering surfa
e, then perform the drawing op-erations and terminate. This will most likely
ause the s
reen to �i
ker. Theexplanation is that the drawing operations take so long time that the user no-ti
es the s
reen being temporarily empty. Double bu�ering uses two drawingsurfa
es: a on-s
reen bu�er whi
h is displayed, and an o�-s
reen bu�er whi
hresides somewhere in the
omputer (or hopefully the graphi
s adapter) memory.A graphi
al update
ould
onsist of
learing the o�-s
reen bu�er and performingall the rendering operations onto it. Then the o�-s
reen bu�er is drawn (or blit-ted, a parti
ular te
hnique used for rendering images) onto the on-s
reen bu�er,making the
hanges visible in one sweep. The blitting
an even be syn
hronizedwith the refresh rate of the s
reen, though we shall not go into detail with this.There are other te
hniques asso
iated with double bu�ering, for examplepage �ipping whi
h inter
hanges the o�-s
reen and on-s
reen bu�ers simply byswit
hing a pointer. There are approa
hes that use even more bu�ers, althoughthis is hardly of interest here.Swing appli
ations are automati
ally double bu�ered. Only the main dis-play, whi
h is a
tively rendered (and whi
h therefore does not use the Swingrepainting me
hanisms)
annot automati
ally be double bu�ered. Implement-ing proper double bu�ering would require the allo
ation of the aforementionedbu�ers, preferably in video memory. Fortunately this is not ne
essary in ourparti
ular
ase be
ause AWT happens to provide a Canvas
lass whi
h
an haveits own BufferStrategy2. Double bu�ering is hen
e of little pra
ti
al
on
ern,though it remains important to any rendering system.1It is
ommonly known that televisions use mu
h lower framerates. Smoothness is in this
ase a
hieved be
ause the frames are blurred and perhaps interla
ed.2A Swing-
ompetent reader might noti
e that the JFrame
an likewise use su
h aBufferStrategy. But doing so would a�e
t the passively rendered panels in the GUI aswell. Only the Canvas o�ers the desired
ontrol over the rendering pro
ess.58

12.3 Battle�eld rendering and layersAs it has previously been explained, the primary display shows some subset ofthe battle�eld, the
ontent of the viewport, in high detail. There are severaltypes of graphi
s whi
h are to be displayed here, and it will prove advantageousto organize them in layers.1. First, there is the ground terrain. As des
ribed in Se
tion ??, the terrainis represented by a tile map of terrain tiles,
alled the terrain map, andea
h su
h tile is
apable of drawing itself to the s
reen (provided an AWTgraphi
s
ontext). Not all of the tiles need to be drawn � see Se
tion 12.4.2. The next step is to draw all the ground units, e.g. tanks and infantry. Sin
eit is
umbersome to traverse all existing entities and determine whetherthey are inside the view, the
ollision dete
tor
omes in handy:
onvertingthe viewport bounds to
ollision grid
oordinates allows the traversal ofonly those
ollision tiles that overlap the viewport, and thus
leanly pro-vides all the entities to be rendered. Ea
h entity, being a so-
alled sprite,is responsible for painting itself given its s
reen
oordinates.3. Having painted the ground and the entities on the ground, the next levelis vegetation (whi
h is presumed to be taller than those entities). Ea
hterrain tile is
apable of drawing its vegetation to the s
reen, and this willoverlap any units present3.4. When
annons are �ring, there should be explosion animations to desig-nate the lo
ations of impa
t. These should be visible to the player (even ifphysi
ally situated below trees) sin
e they provide valuable information.There might be ro
kets or aeroplanes �ying through the air. All thesethings (although neither ro
kets or planes exist in JWarsTM yet)
an allbe rendered together. While airborne proje
tiles should theoreti
ally berendered ordered by their altitude, this would be troublesome, and evenwhen aeroplanes are implemented in JWarsTM, there will hardly be suf-�
iently many of them so
lose together as to warrant su
h an ordering.5. Finally it might be desirable to display information su
h as text in themain display. When a unit is sele
ted, a green line indi
ates its dire
tionof travel, whereas a red line indi
ates its target. These e�e
ts whi
h arenot physi
al entities serve to enhan
e the ability of the player to
ontrolthe for
es. Their purpose is to
onvey information to the player withoutotherwise obstru
ting the battle�eld view. We shall refer to this kind ofe�e
ts as the Head-up display or HUD. This type of display is
ommonlyused in military aeroplanes and
omputer games.3When an entity stops moving it will be drawn on top of the trees. This makes sure thatthe entity
annot go �missing� in the woods, whi
h would be a serious moment of irritationfor the player. Interestingly, this feature was originally a glit
h in the rendering routine.59

Some of these layers will mostly have stationary
ontent, su
h as the ground andtrees, the display of whi
h should be updated only when viewport is relo
ated.Others will have dynami

ontent, su
h as explosions and moving entities. Thefollowing se
tion will provide a solution to rendering these layers e�
ientlytaking into a

ount their di�eren
es.12.4 Optimization of the rendering routineObviously, a battle�eld display in whi
h no movement o

urs needs not expendany resour
es rendering. However if a
ar is driving a
ross the s
reen, the areaimmediately around the
ar will need to be updated as it moves. The terraindirti�
ation system is designed to take
are of this, ensuring that minimal timeis used to needlessly render terrain.Whenever an entity moves, the
ollision dete
tor is responsible for traversingthe area and
he
king whether the entity
ollides with others. Suppose everyterrain tile in the terrain map
an be in one of two states, either dirty or not.The
ollision dete
tor
an then traverse the terrain tiles overlapped by the spritebelonging to that entity, and set the state of these terrain tiles to dirty, signifyingthat the tiles need to be redrawn. This will allow the painting routine to �lterout those tiles that are dirty and paint them, ignoring the rest.There is one problem with this approa
h: while it will a

ommodate the �rstthree layers, the dynami
al
ontent su
h as the HUD
annot be rendered in thisway, be
ause the
ollision dete
tor does not (and should not) know about this.This will result in the terrain not being repainted while the HUD
hanges, thusleaving graphi
al artifa
ts on the display.Our solution is to render the �rst three layers onto a se
ondary o�-s
reenbu�er (whi
h needs only relatively little repainting work). The se
ondary o�-s
reen bu�er is � every frame � then rendered onto the primary o�-s
reen bu�erwhi
h we introdu
ed in Se
tion 12.2. Finally the remaining layers, whi
h gener-ally need
omplete repainting for every update, are rendered onto the primaryo�-s
reen bu�er, the
ontent of whi
h is �nally blitted to the s
reen.While the introdu
tion of this extra step takes some time, it yields mu
hbetter performan
e. Drawing an image (su
h as the se
ondary o�-s
reen bu�er)is a fast pro
ess, whereas the remaining in-game graphi
s, involving rotationsand possibly transparen
y, are mu
h more time
onsuming.Finally, let us summarize the
omplete rendering routine.1. Render any dirty terrain within the viewport to the se
ondary o�-s
reenbu�er.2. Render any dirty entities within the viewport to the se
ondary o�-s
reenbu�er.3. Render the vegetation of any dirty terrain within the viewport to these
ondary o�-s
reen bu�er.4. Render the se
ondary o�-s
reen bu�er to the primary o�-s
reen bu�er.60

5. Render any animated e�e
ts onto the primary o�-s
reen bu�er.6. Render the HUD onto the primary o�-s
reen bu�er.7. Render the o�-s
reen bu�er onto the s
reen.12.5 Con
lusionIn this
hapter we have derived a double bu�ered a
tive rendering routine fortwo-dimensional top-down view game graphi
s. The routine saves time by usinga third bu�er to keep tra
k of the areas on the s
reen in whi
h no movemento

urs.

61

Chapter 13Con
lusion

62

Bibliography[1℄ Sean Riley, Game Programming with Python (Charles River Media, 2004.ISBN 1-58450-258-4)[2℄ T.H. Cormen et al., Introdu
tion to Algorithms, 2nd Edition (M
Graw-HillBook Company, 2001. ISBN 0-262-03293-7)

63

