
libvdwxc � a scalable library
for van der Waals density functionals

Ask Hjorth Larsen1, Mikael Kuisma2, Yann Pouillon3, Joakim
Löfgren4, Paul Erhart4, Per Hyldgaard5

1 Nano-bio Spectroscopy Group and ETSF Scienti�c development centre,

Departamento de Física de Materiales, Universidad del País Vasco, Spain
2 Department of Chemistry, University of Jyväskylä, Finland

3 Universidad de Cantabria, Spain
4 Department of Applied Physics, Chalmers University of Technology, Sweden
5 Department of Microtechnology and Nanoscience, Chalmers University of

Technology, Sweden

January 8, 2019

libvdwxc Shameless plug for ASE

What is libvdwxc?

I Small library for evaluating the non-local energy and its
derivatives for functionals in the vdW-DF family (vdW-DF1,
vdW-DF2)

I libvdwxc allows electronic structure codes to evaluate these
functionals in combination with libxc

I Written in C

I https://libvdwxc.org

I Supports the recent spin-polarized vdW formalism
T. Thonhauser et al, Phys.Rev.Lett. 115, 136402 (2015)

I Currently two codes can use libvdwxc: GPAW and Octopus

I Dependencies: FFTW; optionally MPI, FFTW-MPI, PFFT

I License: GPL (for now)

libvdwxc Shameless plug for ASE

van der Waals functionals

Form

I LDA correlation + GGA exchange + vdW correlation:

EvdWxc = ELDAc [n] + EGGAx [n] + ENL
c [n]

I Non-local term is:

ENL
c [n] =

1

2

∫∫
n(r)φ[n](r, r′)n(r) drdr′

I (So the vdW-DF functionals are true non-local density
functionals, and not �corrections�)

I M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

I K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)

libvdwxc Shameless plug for ASE

(Our own) motivations for libvdwxc

I Improve vdW support in the GPAW code

I Old vdW-DF implementation in GPAW was not scalable
beyond 20 cores

I Test on molecule from S22 test set in large box showed 75%+
time spent doing MPI_Gather

I Add vdW support to Octopus

I Di�erent codes have di�erent vdW implementations, numerics,
van der Waals kernel parametrizations, making comparisons
di�cult

libvdwxc Shameless plug for ASE

Why another library?

I The existing library Libxc is for local and semilocal density
functionals

I Libxc calculates energy and derivatives pointwise

I Libxc also provides special semilocal functionals used by the
vdW-DF family

I But: Non-local functionals require infrastructure which is not
in Libxc � in our case vdW kernel, spline interpolation, FFTs,
. . .

I Also: Must be designed for scalability

I Similar library: GridXC (talk by Alberto García later)

libvdwxc Shameless plug for ASE

Evaluating vdW functionals

Consider again:

ENL
c [n] =

1

2

∫∫
n(r)φ[n](r, r′)n(r) dr dr′

I The kernel has the form φ(q0(r), q0(r
′), ‖r− r′‖)

I q0 is a GGA-like quantity: q0(r) = q0(n(r), ‖∇n(r)‖)
I The kernel can be pre-parametrized and stored in a �le

I During a calculation, the double space integral must still be
evaluated

I The double space integral is expensive but can be
approximated as a single integral using the method by
Román-Pérez and Soler

libvdwxc Shameless plug for ASE

The Román-Pérez�Soler method

I Discretize q0 to 20-point grid (typically) and expand the kernel
in 20× 20 = 400 terms

φ(q0, q
′
0, d) =

20∑
α,β=1

φαβ(d)pα(q0)pβ(q
′
0).

I pα are �xed auxiliary functions to interpolate values on the
coarse q0 grid

I Let θα(r) = n(r)pα(q0(r)), and the energy becomes a
convolution

Enl
c =

1

2

∑
αβ

∫∫
θα(r)φαβ(‖r− r′‖)θβ(r′) drdr′,

=
1

2

∑
αβ

∫
θ∗α(k)θβ(k)φαβ(k) dk.

libvdwxc Shameless plug for ASE

Full algorithm

I Calculate q0(r) and θα(r)

I Transform θα(r) to Fourier space → θα(k)

I Calculate energy from convolution as well as derivative

Fα(k) =
∑
β

θβ(k)φαβ(k)

I Transform Fα(k) back to Fα(r)

I Evaluate potential using Fα(r)

libvdwxc expects the density on a uniform real-space 3D grid.
Fourier transforms are the most expensive operation.

libvdwxc Shameless plug for ASE

Parallel 3D Fourier transforms with FFTW3-MPI

Strategy

f̂(k) =

∫∫∫
f(x) exp(−ik · x) dx1 dx2 dx3

I A single FFT does not parallelize well

I What we really have is a 3D array of 1D transforms

I Di�erent cores can do di�erent (but whole) 1D transforms

I Luckily we can use FFTW-MPI for all this

I (Remaining operations are local!)

libvdwxc Shameless plug for ASE

Parallel Fourier transforms

____x_______ ____________
/ / / / /| /___________/|
/ / / / / | /___________/||
/ / / / / | /___________/|||
/__/__/__/__/ | forth /___________/||||
| | | | | | -------> | |||||
| | real| | | <------- | Fourier |||||
z |space| | / back | space |||/
| | | | | y | ||/
|__|__|__|__|/ |___________|/

Algorithm

I Get data into block distribution over x only

I Take Fourier transform over y and z

I Transform to block distribution over y (parallel transpose)

I Fourier transform over x

libvdwxc Shameless plug for ASE

Performance tricks

I FFT output goes into input bu�er

I θα(r) and friends are strided (α axis is contiguous, not r)

I Work on transposed output

I In general, write non-silly loops (mind memory order, bu�ers)

(None of this is particularly advanced)

2D versus 3D distributions

I libvdwxc can also use PFFT which distributes over two axes at
a time

I More scalable

I But less e�cient for realistically sized DFT grids in our tests,
due to extra redistribution step

libvdwxc Shameless plug for ASE

Distribution from GPAW/Octopus to FFT format

______________ ________________
/ / /| / / / / / / / / /|
/______/______/ | / / / / / / / / / |
/ / /| | / / / / / / / / / |
/______/______/ |/| forth /_/_/_/_/_/_/_/_/ |
| | | | | -------> | | | | | | | | | |
| GPAW|grid |/| / <------- | | | | | | | | | /
+------+------+ |/ back | | | FFTW| | | | /
| or Octopus | / | | | | | | | | | /
|______|______|/ |_|_|_|_|_|_|_|_|/

Octopus can also distribute from irregular boxes.

libvdwxc Shameless plug for ASE

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

101

102

103

104
T

im
e

[s
]

1N
3N
SCF

2N
4N
diag

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

100

101

102

103

total xc
libvdwxc

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

10−1

100

101

102

total
FFTW
convolution

I Test with Au144 + organic ligands (2500 atoms x [1,2,3,4])
and GPAW LCAO mode

I 1) Full scf step, 2) XC timings including redistribution, 3) time
spent in libvdwxc

libvdwxc Shameless plug for ASE

Challenges and future work

I Most important: Get codes to interface libvdwxc instead of
rolling their own

I Support pluggable kernels

I Facilitate data redistribution for DFT code

I Easier installation: Solve MKL/FFTW linking problem
(MKL is evil)

I (Also: Add Vydrov�van Voorhis functional)

libvdwxc Shameless plug for ASE

libvdwxc

I Web page: https://libvdwxc.org

I Development: https://gitlab.com/libvdwxc/libvdwxc

I Features: Non-local energy of vdW-DF family of functionals:
(vdW-DF, vdW-DF2, vdW-DF-CX)

I Requirements: FFTW3 or FFTW3-MPI + MPI

I Uses kernel parametrization from Quantum Espresso (so far!)

I A.H. Larsen, M. Kuisma, J. Löfgren, Y. Pouillon, P. Erhart,
and P. Hyldgaard:
Modelling Simul. Mater. Sci. Eng. 25 065004, 2017.
�libvdwxc: a library for exchange�correlation functionals in the

vdW-DF family�

https://libvdwxc.org
https://gitlab.com/libvdwxc/libvdwxc

libvdwxc Shameless plug for ASE

The Atomic Simulation Environment

ASE is a free (LGPLv2.1+) toolkit to set up and control atomistic
calculations in a fully scripted environment using Python.

Main features

I The Atoms object: A collection of atoms

I Calculators: Capable of calculating energies and forces of
atoms, often using an external code as backend

I Algorithms working with atoms/calculators: Structure
optimization, molecular dynamics, basin hopping, minima
hopping, nudged elastic band, . . .

I Many utilities: Build crystals, surfaces, . . .

I Read/write structures in many formats

I Also: GUI, command-line utilities

libvdwxc Shameless plug for ASE

Example: Structure optimization with Espresso

from ase import Atoms

from ase.optimize import BFGS

from ase.calculators.espresso import Espresso

atoms = Atoms('H2O', positions =[[-1, 0, 0],

[1, 0, 0],

[0, 0, 1]])

atoms.center(vacuum =3.0)

atoms.calc = Espresso(

ecutwfc =40., pseudo_dir='.', tprnfor=True ,

pseudopotentials ={'H': 'H_ONCV_PBE -1.0. upf',

'O': 'O_ONCV_PBE -1.0. upf'})

opt = BFGS(system , trajectory='opt.traj',

logfile='opt.log')

opt.run(fmax =0.05)

libvdwxc Shameless plug for ASE

Codes with ASE calculators

ASAP Abinit Atomistica
CP2K Castep DFTB+
Dacapo ELK Exciting
FHI-aims Fleur GPAW
Gaussian Gromacs Hotbit
JDFTx LAMMPS MOPAC
NWChem Octopus OpenKIM
OpenMX QUIP Quantum Espresso
Siesta Turbomole VASP
deMon matscipy

libvdwxc Shameless plug for ASE

Communication with
external codes

Atoms

Calculator

External code

generate

input

script

retrieve and

convert data

"get

potential

energy"

solve Schrödinger

equation

return the

potential

energy

1) One process per calculation

I ASE creates input�le, runs code
in subprocess (see �gure)

2) Persistent subprocess

I External process remains alive
over multiple calculations

I IO uses sockets, pipes or �les

3) Within same process

I Direct access to functions, data

I Requires Python bindings

libvdwxc Shameless plug for ASE

Sockets in ASE using the i-PI protocol

I i-PI is a �universal force engine� specifying a protocol for
communicating atomic positions, forces, etc., over sockets

I Idea is to run a driver from server, while code runs as a client

I http://ipi-code.org/

I ASE implements the i-PI protocol

I ASE launches server which can be used as a calculator,
ase.calculators.socketio.SocketIOCalculator

I The SocketIOCalculator wraps another (ordinary) calculator
and can automatically launch the client process (for Quantum
Espresso, Siesta, FHI-aims)

I ASE can also run as a client

http://ipi-code.org/

libvdwxc Shameless plug for ASE

from ase.build import molecule

from ase.calculators.siesta import Siesta

from ase.optimize import BFGS

from ase.calculators.socketio import SocketIOCalculator

socket = 'mysocket '

fdf_arguments = {'MD.TypeOfRun ': 'Master ',

'Master.code': 'i-pi',

'Master.interface ': 'socket ',

'Master.address ': socket ,

'Master.socketType ': 'unix'}

atoms = molecule('H2O', vacuum =3.0)

atoms.rattle(stdev =0.1)

siesta = Siesta(fdf_arguments=fdf_arguments)

opt = BFGS(atoms , trajectory='opt.siesta.traj',

logfile='opt.siesta.log')

with SocketIOCalculator(siesta , unixsocket=socket) as calc:

atoms.calc = calc

opt.run(fmax =0.05)

libvdwxc Shameless plug for ASE

ASE

I Web page: https://wiki.fysik.dtu.dk/ase/

I Gitlab: https://gitlab.com/ase/ase

I Mailing lists, IRC:
https://wiki.fysik.dtu.dk/ase/contact.html

I A.H. Larsen et al 2017 J. Phys.: Condens. Matter 29 273002.
�The atomic simulation environment�a Python library for
working with atoms�

https://wiki.fysik.dtu.dk/ase/
https://gitlab.com/ase/ase
https://wiki.fysik.dtu.dk/ase/contact.html

	libvdwxc
	

	Shameless plug for ASE

