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libvdwxc Shameless plug for ASE

What is libvdwxc?

I Small library for evaluating the non-local energy and its
derivatives for functionals in the vdW-DF family (vdW-DF1,
vdW-DF2)

I libvdwxc allows electronic structure codes to evaluate these
functionals in combination with libxc

I Written in C

I https://libvdwxc.org

I Supports the recent spin-polarized vdW formalism
T. Thonhauser et al, Phys.Rev.Lett. 115, 136402 (2015)

I Currently two codes can use libvdwxc: GPAW and Octopus

I Dependencies: FFTW; optionally MPI, FFTW-MPI, PFFT

I License: GPL (for now)
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van der Waals functionals

Form

I LDA correlation + GGA exchange + vdW correlation:

EvdWxc = ELDAc [n] + EGGAx [n] + ENL
c [n]

I Non-local term is:

ENL
c [n] =

1

2

∫∫
n(r)φ[n](r, r′)n(r) drdr′

I (So the vdW-DF functionals are true non-local density
functionals, and not �corrections�)

I M. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I.
Lundqvist, Phys. Rev. Lett. 92, 246401 (2004)

I K. Berland and P. Hyldgaard, Phys. Rev. B 89, 035412 (2014)
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(Our own) motivations for libvdwxc

I Improve vdW support in the GPAW code

I Old vdW-DF implementation in GPAW was not scalable
beyond 20 cores

I Test on molecule from S22 test set in large box showed 75%+
time spent doing MPI_Gather

I Add vdW support to Octopus

I Di�erent codes have di�erent vdW implementations, numerics,
van der Waals kernel parametrizations, making comparisons
di�cult
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Why another library?

I The existing library Libxc is for local and semilocal density
functionals

I Libxc calculates energy and derivatives pointwise

I Libxc also provides special semilocal functionals used by the
vdW-DF family

I But: Non-local functionals require infrastructure which is not
in Libxc � in our case vdW kernel, spline interpolation, FFTs,
. . .

I Also: Must be designed for scalability

I Similar library: GridXC (talk by Alberto García later)
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Evaluating vdW functionals

Consider again:

ENL
c [n] =

1

2

∫∫
n(r)φ[n](r, r′)n(r) dr dr′

I The kernel has the form φ(q0(r), q0(r
′), ‖r− r′‖)

I q0 is a GGA-like quantity: q0(r) = q0(n(r), ‖∇n(r)‖)
I The kernel can be pre-parametrized and stored in a �le

I During a calculation, the double space integral must still be
evaluated

I The double space integral is expensive but can be
approximated as a single integral using the method by
Román-Pérez and Soler
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The Román-Pérez�Soler method

I Discretize q0 to 20-point grid (typically) and expand the kernel
in 20× 20 = 400 terms

φ(q0, q
′
0, d) =

20∑
α,β=1

φαβ(d)pα(q0)pβ(q
′
0).

I pα are �xed auxiliary functions to interpolate values on the
coarse q0 grid

I Let θα(r) = n(r)pα(q0(r)), and the energy becomes a
convolution

Enl
c =

1

2

∑
αβ

∫∫
θα(r)φαβ(‖r− r′‖)θβ(r′) drdr′,

=
1

2

∑
αβ

∫
θ∗α(k)θβ(k)φαβ(k) dk.
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Full algorithm

I Calculate q0(r) and θα(r)

I Transform θα(r) to Fourier space → θα(k)

I Calculate energy from convolution as well as derivative

Fα(k) =
∑
β

θβ(k)φαβ(k)

I Transform Fα(k) back to Fα(r)

I Evaluate potential using Fα(r)

libvdwxc expects the density on a uniform real-space 3D grid.
Fourier transforms are the most expensive operation.
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Parallel 3D Fourier transforms with FFTW3-MPI

Strategy

f̂(k) =

∫∫∫
f(x) exp(−ik · x) dx1 dx2 dx3

I A single FFT does not parallelize well

I What we really have is a 3D array of 1D transforms

I Di�erent cores can do di�erent (but whole) 1D transforms

I Luckily we can use FFTW-MPI for all this

I (Remaining operations are local!)
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Parallel Fourier transforms

____x_______ ____________
/ / / / /| /___________/|
/ / / / / | /___________/||
/ / / / / | /___________/|||
/__/__/__/__/ | forth /___________/||||
| | | | | | -------> | |||||
| | real| | | <------- | Fourier |||||
z |space| | / back | space |||/
| | | | | y | ||/
|__|__|__|__|/ |___________|/

Algorithm

I Get data into block distribution over x only

I Take Fourier transform over y and z

I Transform to block distribution over y (parallel transpose)

I Fourier transform over x



libvdwxc Shameless plug for ASE

Performance tricks

I FFT output goes into input bu�er

I θα(r) and friends are strided (α axis is contiguous, not r)

I Work on transposed output

I In general, write non-silly loops (mind memory order, bu�ers)

(None of this is particularly advanced)

2D versus 3D distributions

I libvdwxc can also use PFFT which distributes over two axes at
a time

I More scalable

I But less e�cient for realistically sized DFT grids in our tests,
due to extra redistribution step
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Distribution from GPAW/Octopus to FFT format

______________ ________________
/ / /| / / / / / / / / /|
/______/______/ | / / / / / / / / / |
/ / /| | / / / / / / / / / |
/______/______/ |/| forth /_/_/_/_/_/_/_/_/ |
| | | | | -------> | | | | | | | | | |
| GPAW|grid |/| / <------- | | | | | | | | | /
+------+------+ |/ back | | | FFTW| | | | /
| or Octopus | / | | | | | | | | | /
|______|______|/ |_|_|_|_|_|_|_|_|/

Octopus can also distribute from irregular boxes.
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I Test with Au144 + organic ligands (2500 atoms x [1,2,3,4])
and GPAW LCAO mode

I 1) Full scf step, 2) XC timings including redistribution, 3) time
spent in libvdwxc
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Challenges and future work

I Most important: Get codes to interface libvdwxc instead of
rolling their own

I Support pluggable kernels

I Facilitate data redistribution for DFT code

I Easier installation: Solve MKL/FFTW linking problem
(MKL is evil)

I (Also: Add Vydrov�van Voorhis functional)
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libvdwxc

I Web page: https://libvdwxc.org

I Development: https://gitlab.com/libvdwxc/libvdwxc

I Features: Non-local energy of vdW-DF family of functionals:
(vdW-DF, vdW-DF2, vdW-DF-CX)

I Requirements: FFTW3 or FFTW3-MPI + MPI

I Uses kernel parametrization from Quantum Espresso (so far!)

I A.H. Larsen, M. Kuisma, J. Löfgren, Y. Pouillon, P. Erhart,
and P. Hyldgaard:
Modelling Simul. Mater. Sci. Eng. 25 065004, 2017.
�libvdwxc: a library for exchange�correlation functionals in the

vdW-DF family�

https://libvdwxc.org
https://gitlab.com/libvdwxc/libvdwxc
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The Atomic Simulation Environment

ASE is a free (LGPLv2.1+) toolkit to set up and control atomistic
calculations in a fully scripted environment using Python.

Main features

I The Atoms object: A collection of atoms

I Calculators: Capable of calculating energies and forces of
atoms, often using an external code as backend

I Algorithms working with atoms/calculators: Structure
optimization, molecular dynamics, basin hopping, minima
hopping, nudged elastic band, . . .

I Many utilities: Build crystals, surfaces, . . .

I Read/write structures in many formats

I Also: GUI, command-line utilities
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Example: Structure optimization with Espresso

from ase import Atoms

from ase.optimize import BFGS

from ase.calculators.espresso import Espresso

atoms = Atoms('H2O', positions =[[-1, 0, 0],

[1, 0, 0],

[0, 0, 1]])

atoms.center(vacuum =3.0)

atoms.calc = Espresso(

ecutwfc =40., pseudo_dir='.', tprnfor=True ,

pseudopotentials ={'H': 'H_ONCV_PBE -1.0. upf',

'O': 'O_ONCV_PBE -1.0. upf'})

opt = BFGS(system , trajectory='opt.traj',

logfile='opt.log')

opt.run(fmax =0.05)
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Codes with ASE calculators

ASAP Abinit Atomistica
CP2K Castep DFTB+
Dacapo ELK Exciting
FHI-aims Fleur GPAW
Gaussian Gromacs Hotbit
JDFTx LAMMPS MOPAC
NWChem Octopus OpenKIM
OpenMX QUIP Quantum Espresso
Siesta Turbomole VASP
deMon matscipy
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Communication with
external codes

Atoms

Calculator

External code

generate

input

script

retrieve and

convert data

"get

potential

energy"

solve Schrödinger

equation

return the

potential

energy

1) One process per calculation

I ASE creates input�le, runs code
in subprocess (see �gure)

2) Persistent subprocess

I External process remains alive
over multiple calculations

I IO uses sockets, pipes or �les

3) Within same process

I Direct access to functions, data

I Requires Python bindings
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Sockets in ASE using the i-PI protocol

I i-PI is a �universal force engine� specifying a protocol for
communicating atomic positions, forces, etc., over sockets

I Idea is to run a driver from server, while code runs as a client

I http://ipi-code.org/

I ASE implements the i-PI protocol

I ASE launches server which can be used as a calculator,
ase.calculators.socketio.SocketIOCalculator

I The SocketIOCalculator wraps another (ordinary) calculator
and can automatically launch the client process (for Quantum
Espresso, Siesta, FHI-aims)

I ASE can also run as a client

http://ipi-code.org/
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from ase.build import molecule

from ase.calculators.siesta import Siesta

from ase.optimize import BFGS

from ase.calculators.socketio import SocketIOCalculator

socket = 'mysocket '

fdf_arguments = {'MD.TypeOfRun ': 'Master ',

'Master.code': 'i-pi',

'Master.interface ': 'socket ',

'Master.address ': socket ,

'Master.socketType ': 'unix'}

atoms = molecule('H2O', vacuum =3.0)

atoms.rattle(stdev =0.1)

siesta = Siesta(fdf_arguments=fdf_arguments)

opt = BFGS(atoms , trajectory='opt.siesta.traj',

logfile='opt.siesta.log')

with SocketIOCalculator(siesta , unixsocket=socket) as calc:

atoms.calc = calc

opt.run(fmax =0.05)
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ASE

I Web page: https://wiki.fysik.dtu.dk/ase/

I Gitlab: https://gitlab.com/ase/ase

I Mailing lists, IRC:
https://wiki.fysik.dtu.dk/ase/contact.html

I A.H. Larsen et al 2017 J. Phys.: Condens. Matter 29 273002.
�The atomic simulation environment�a Python library for
working with atoms�

https://wiki.fysik.dtu.dk/ase/
https://gitlab.com/ase/ase
https://wiki.fysik.dtu.dk/ase/contact.html
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