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Abstract

This thesis concerns the application of localized atom-centered ba-
sis functions in the projector augmented wave method. Localized
basis sets allow calculations to be performed on considerably larger
systems compared to the usual grid or plane-wave methods. We de-
scribe the transition from the generic PAW formalism to basis set
calculations, resulting in modifications to the Kohn-Sham eigenvalue
problem.

Basis functions are implemented as numerical pseudo-atomic or-
bitals, and methods are described for expanding the basis set with
multiple-zeta and polarization functions to improve basis set flexi-
bility. Generated basis sets are tested by comparison of atomization
and adsorption energies to accurate grid-based calculations.

Finally an expression for the force affecting an atom is derived
and implemented, thus allowing structure relaxations and molecular
dynamics simulations.
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Chapter 1

Introduction

Many properties of matter, both physical and chemical, are determined by the
interactions of electrons. Quantum mechanics can be used to infer any quantity
relating to the electronic structure of materials, although only trivial systems
can be treated analytically. The advances in computer technology brought about
in the recent decades have enabled high-quality numerical ab-initio, or first-
principles, calculations on systems involving hundreds or thousands of atoms
depending on the methods and approximations. Our primary subject will be
density functional theory (DFT) calculations, one of the predominant methods
in computational quantum mechanics.

A central challenge to numerical calculations is that the oscillatory behaviour
of electronic wave functions near nuclei is difficult to represent efficiently. This
problem can be dealt with by considering only electronic valence states, repre-
senting the screened nuclei by pseudopotentials. Augmented plane-wave methods
are other ways of taking care of the problem, using different methods to repre-
sent wave functions in the regions near and far from the nuclei. The projector
augmented wave method is a generalization of the pseudopotential methods and
augmented-wave methods due to P. Blöchl [8]. So far this method has been
combined mostly with the use of plane-wave basis sets or real-space grids to
represent wave functions [9, 10].

This thesis concerns the implementation of localized basis sets in the pro-
jector augmented wave method, specifically in the Gpaw code. Gpaw is an
implementation of the projector augmented wave method based on real-space
grids. It is written in the Python and C programming languages and released
as part of the CAMP Open Software project [10, 24, 26].

The use of localized basis sets is a trade-off between numerical accuracy and
performance. Plane-wave and grid-based methods can represent wave functions
with arbitrary precision using sufficiently fine grids, whereas localized basis set
methods focus on a few, carefully selected basis functions to improve perfor-
mance, allowing calculations on much larger systems.

The basis functions are numerical pseudo-atomic orbitals, each consisting of
a radial part and a spherical harmonic angular part. In the transition from real-
space grid-based calculations to localized basis sets, operators are represented in
terms of matrix elements with basis functions. This involves two-center integrals
between pairs of basis functions or the corresponding Bloch states [22, p. 309-
312].
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2 1. Introduction

Basis functions are generated by solving the radially symmetric Schrödinger
equation for the isolated atom, then transforming the resulting valence atomic
orbitals to get smooth pseudo wave functions as prescribed by the PAW formal-
ism. To improve the basis set, extra radial functions are added for each valence
state. Finally, polarization functions are added to improve the angular flexibil-
ity of the basis set, having symmetries not present among the valence states. We
have implemented a method whereby the polarization functions are generated
by interpolating the pseudo wave function of a reference molecule or crystal.
The reference is calculated using the real-space grid. Observing that the gen-
erated wave functions have a similar, almost universal shape, we conclude that
they can be reasonably represented by a properly chosen Gaussian-like function.

The basis sets have been tested on a range of systems and compared to the
results using the grid basis.1 Most tests use simple molecules or crystals. We
have also performed a more realistic test by calculating adsorption energies for
more complicated systems. These calculations are done without correction for
basis set superposition errors, which appear to impact the results significantly.
Results are likely to improve correspondingly once such a correction has been
implemented.

Finally we have derived and implemented an atomic force expression for use
with the basis sets. The force expression differs from the real-space grid case
because the basis functions are fixed to the atoms. Moving the atoms therefore
alters the basis. The atomic force implementation is tested using finite-difference
as well as a more advanced egg-box force test.

The content of this thesis is organized as follows.

• Chapter 2 presents briefly the prerequisite quantum mechanical theory
including density functional theory, focusing on the Kohn-Sham ansatz
which is the foundation of the succeeding chapters.

• Chapter 3 describes the projector augmented wave method. This involves
the evaluation of pertinent observables and modifications to the Hamilto-
nian and Kohn-Sham variational problem.

• Chapter 4 introduces localized basis sets and formulates the ensuing changes
to the PAW formalism, once again changing the Kohn-Sham problem.

• Chapter 5 describes the methods by which basis sets are generated. This
involves the calculation of pseudo-atomic orbitals and the selection of suit-
able auxiliary basis functions.

• Chapter 6 presents concisely some notable test results from calculations
using localized basis sets.

• Chapter 7 concerns the calculation of atomic forces in the PAW method
using atom-centered basis functions. Also includes subsequent testing.

1Further test results are available in the thesis by Marco Vanin[17].



Chapter 2

Quantum mechanical

background

This chapter will describe the basic prerequisite theory of density functional
theory and the Kohn-Sham equations, starting with the transition from many-
body systems to the widely applied independent-particle methods.

2.1 Many-body Schrödinger equation

Consider the time-independent Schrödinger equation1 for a system containing
a number of atoms and N electrons,

Ĥ|Ψ〉 = E|Ψ〉, (2.1)

where Ψ(r1, . . . , rN ) = Ψ({rn}) is the antisymmetric many-body electronic wave
function[20, p. 474] for the N electrons present in the system. Ignoring nuclear
kinetic energies2, the Hamiltonian for this system is given by the electronic
kinetic energy operator plus the Coulomb interaction potentials between all
distinct electrons and nuclei, and therefore has the form [19, pp. 52-53]

Ĥ = −1

2

∑

n

∇2
n + v, (2.2)

v =
1

2

∑

m 6=n

1

||rn − rm|| −
∑

na

Za

||Ra − rn||
+

1

2

∑

a6=b

ZaZb

||Rb − Ra||
, (2.3)

with Za and Ra denoting nuclear charges and positions. The full energy (of a
pure state, for simplicity) E is then given by

〈Ψ|Ĥ|Ψ〉 = T + Eint + Eext + Enuc = E, (2.4)

1From this point on we shall use Hartree units, i.e. we define the reduced Planck’s constant
~, the elementary charge e, the electron mass me and the electrostatic constant 1

4πǫ0
to be 1.

This implies that the Bohr radius a0 and the Hartree energy Ha are also 1.
2The nuclear kinetic energies, nuclei being overwhelmingly heavier than electrons, can

usually be neglected when describing purely electronic behaviour due to the dependence on
inverse mass of the kinetic energy operator −

1
2M

~
2∇2. This more formally corresponds to

working in the limit M → ∞, which is called the Born-Oppenheimer approximation.[19, pp.
482-484]

3



4 2. Quantum mechanical background

where we introduce the symbols for the expectation values of each term in the
Hamiltonian: T for the kinetic energy, Eint for the energy of the interacting elec-
trons, Eext for the external electronic-nuclear energy and Enuc for the (constant
for our purposes) nuclear electrostatic energy.

The primary computational obstacle with the many-body wave function is
that it requires three coordinates for each electron. If we were to represent it on
a grid, memory requirements would be O(expN), for which reason this prob-
lem has been termed the exponential wall [2]. Much work has been invested in
developing more computationally feasible independent-electron methods, where
each electron is assigned a single-particle wave function ψn(r). Generally this
involves defining an effective Hamiltonian, defining a modified Schrödinger equa-
tion from which the wave functions are obtained as the (orthogonal) solutions:

Ĥeffψn(r) = ǫnψn(r), (2.5)

where fn are the occupation numbers. The effective Hamiltonian is generally
defined by replacing the potential v by an effective potential vσeff(r) which is
different for particles with different spins3 σ, such that the effective Hamiltonian
itself becomes spin-dependent:

Ĥσ
eff = −1

2
∇2 + vσeff . (2.6)

The effective potential takes different forms depending on the methods used.
For future convenience, note that for any system of this kind, the state operator
is given by[19, p. 62]

ρ̂ =
∑

n

fn|ψn〉〈ψn|, (2.7)

and the electronic density is

n(r) =
∑

n

fnψ
∗
n(r)ψn(r) =

∑

n

fn〈ψn|r〉〈r|ψn〉. (2.8)

These independent-particle expressions are fundamental for many modern elec-
tronic structure methods including the PAW method which we will consider
later. First, however, we will turn to a different underlying piece of theory,
namely density functional theory.

2.2 Density functional theory

In has been shown by P. Hohenberg and W. Kohn that the electronic density can
be regarded as a fundamental, basic variable in place of the wave functions [1].
This has led to the entire field of density functional theory. Density functional
theory rests on the two Hohenberg-Kohn theorems which will be detailed below.

We consider again the many-body Hamiltonian (2.2) with the potential

v = vext +
∑

m 6=n

1

||rn − rm|| , (2.9)

3The spin-dependence is necessary to take the Pauli exclusion principle properly into ac-
count. If the system under consideration is not spin-polarized, however, this can be ignored
except each state will be spin-degenerate and thus doubly occupied.



2.3. Kohn-Sham ansatz 5

where vext is the potential due to the nuclei (but can in general inlude other
effects as well). Then the Hohenberg-Kohn theorems state:

• Given the ground state electron density n0, the external potential vext is
determined uniquely down to a constant.

• There exists a functional EHK[n] of the density which is, given vext, glob-
ally minimized by the ground state density. The global minimum E0 =
EHK[n0] is equal to the ground state energy.

Since knowing the effective potential determines the entire Hamiltonian and
by extension any physical property pertaining to the system, the ground state
electron density is, by the first theorem, also sufficient to determine any physical
property. The second theorem guarantees that the ground state density can be
found by variationally through the ground state density.4.

Thus, the energy is a functional of the electron density

EHK[n] = T [n] + Eint[n] + Eext[n] +Enuc. (2.10)

While the Hohenberg-Kohn theorems guarantee that physical properties are
determined by the electron density alone, thereby not needing any explicit rep-
resentation of many- or single-body wave functions, the Hohenberg-Kohn the-
orems do not provide any explicit way to obtain quantities [19, pp. 131-132].
The Kohn-Sham ansatz [3] is a practical approach which considers again an
independent-particle system rather than the many-body problem.

2.3 Kohn-Sham ansatz

The fundamental assumption of this approach is that there exists an independent-
particle system which reproduces the ground state density. Any formulation
which is capable of reproducing the exact ground state density is in principle
exact by the first Hohenberg-Kohn theorem.

First of all, the interacting-electron functionals T [n] and Eint[n] are replaced
by the non-interacting kinetic energy Ts[n] and the energy EHa[n] of the total
electron density, called the Hartree energy. We further introduce a correction
Exc[n], called the exchange-correlation energy, which accounts for the inter-
action effects. This correction is generally chosen as a particular approxima-
tion, indeed the only inherent approximation, and shall be discussed later. The
Hartree energy is given by

EHa[n] =
1

2

∫
n(r)n(r′)

||r − r′|| d3rd3r′ =
1

2

∫

n(r)vHa(r) d3r, (2.11)

with the Hartree potential

vHa(r) =

∫
n(r′)

||r − r′|| d3r′. (2.12)

4Proofs of the Hohenberg-Kohn theorems can be found in [19, pp. 123-125]



6 2. Quantum mechanical background

By now we can write the total energy as

E0 = Ts[{ψn}] +EHa[n] + Eext[n] + Exc[n]

=
∑

n

fn
〈
ψn
∣
∣− 1

2∇
2
∣
∣ψn
〉

+
1

2

∫

vHa(r)n(r) d3r

+

∫

vext(r)n(r) d3r + Exc[n]. (2.13)

We define the Kohn-Sham Hamiltonian as the functional derivative[20, pp. 290-
291] of the Kohn-Sham energy with respect to the conjugate wave function

ψ∗
n(r). Using that ∂n(r)

∂ψ∗

n(r) = fnψn(r) from Equation (2.8),

δE0

δψ∗
n(r)

= −1

2
fn∇2ψn(r) +

{
δEHa

δn(r)
+
δEext

δn(r)
+
δExc

δn(r)

}
δn(r)

δψ∗
n(r)

= fn

[

−1

2
∇2 + vHa(r) + vext(r) + vxc(r)

]

ψn(r)

= fnĤKSψn(r), (2.14)

where we have defined vxc(r) = δExc[n]
δn(r) . Note that the factor 1/2 in the Hartree

term has disappeared due to the implicit quadratic dependence on density. The
Hamiltonian thus has the form of a Laplacian plus an effective potential, like
(2.6).

To solve this, we formulate a variational problem in ψn, using Lagrange mul-
tipliers λnm to enforce the constraint that the wave functions must be mutually
orthogonal:

Ω({ψn}, {λnm}) = E0[{ψn}] −
∑

mn

λmn (〈ψn|ψm〉 − δnm) . (2.15)

This expression is minimal for the set of orthogonal wave functions that consti-
tutes the ground state. Since the energy functional has to be stationary with
respect to the wave functions (and thus the conjugate wave functions) at a
minimum, we can set the derivative of Ω to zero, obtaining

0 =
δΩ

δψ∗
n(r)

=
δE0

δψ∗
n(r)

−
∑

mn

λmnψm(r), (2.16)

or

fnĤKS|ψn〉 =
∑

m

λmn|ψm〉. (2.17)

Evidently the wave functions |ψn〉 are not eigenstates of the Hamiltonian until
we diagonalize the matrix of Lagrange multipliers, resulting in a set of modified
states such that

ĤKS|ψn〉 = ǫn|ψn〉, (2.18)

where we have collapsed the Lagrange multipliers λnn and occupation numbers5

fn to ǫn, the Kohn-Sham energy eigenvalue. In order for this to be correct, how-

5At first sight the exclusion of the occupation numbers appears ill-defined for unoccupied
states. Generally the eigenvalue equation is solved without regard for the occupation numbers,
simply yielding orthogonal states with yet arbitrary occupation. Occupation numbers are
added afterwards by populating the lowest-energy states or generally by means of a Fermi-
Dirac distribution to get densities, potentials etc.



2.4. Iterative solution scheme 7

ever, we must of course have determined the effective potential which appears
in the Hamiltonian, which depends on the still unknown density. All this can
be done iteratively, thus arriving at a self-consistent state.

2.4 Iterative solution scheme

The iterative method used to solve the Kohn-Sham equations will be briefly
outlined below. When referring to wave functions, density and effective potential
below, those are provisional estimates which will converge to self-consistent
quantities when the algorithm finishes.

Each provisional wave function is initialized using a qualified guess, for ex-
ample a linear combination of atomic orbitals. The following steps are then
repeated until converged:

• The electron density is calculated from the wave functions6 and occupation
numbers (Equation (2.8)).

• The Hartree potential is calculated. This can be done efficiently by solving
the Poisson equation7 ∇2vHa(r) = −4πn(r), which is more effective than
using (2.12) directly.

• The effective potential is calculated by adding the Hartree potential vHa,
the external potential vext and the exchange-correlation potential vxc.

• The Kohn-Sham equations are solved for the eigenstates cf. (2.18). When
using small basis sets, such as localized atomic orbitals, the Hamiltonian
can be diagonalized completely. With more parameters, for example when
using grid-based wave functions in Gpaw, it is more efficient to use an
iterative method which runs only partially to completion on each self-
consistency iteration.

• The occupation numbers are updated according to the Kohn-Sham ener-
gies which are known by (2.18).

This completes the description of the Kohn-Sham ansatz. The only approxima-
tion applied is contained within the exchange-correlation functional which we
shall discuss next.

2.5 Exchange and correlation

The antisymmetry of the electronic many-body wave function leads to a change
in physical properties, called the exchange interaction, while many-body effects
relating to the electronic Coulomb repulsion lead to correlation. We shall not
describe these interactions thoroughly here. For our purposes it suffices to note
that these effects are in general non-local and cannot be readily accounted for
in independent-particle formulations.

6In succeeding iterations, it can be necessary to use density mixing to improve convergence.
Instead of using directly the newly calculated density, this density is set to a normalized,
weighted linear combination of the previous densities.

7The unusual factor of 4π emerges from the vacuum permittivity in Hartree units, the
original Poisson equation being ∇2v(r) = −n(r)/ǫ0.



8 2. Quantum mechanical background

In the Kohn-Sham scheme, they are grouped together in the exchange-
correlation functional8 Exc[n] written in terms of an exchange-correlation energy
density ǫxc[n](r), such that

Exc[n] =

∫

n(r)ǫxc[n](r) d3r. (2.19)

The exchange-correlation potential is then defined as

vxc(r) =
δExc[n]

δn(r)
= ǫxc[n](r) + n(r)

δǫxc[n]

δn(r)
. (2.20)

While ǫxc[n](r) can depend in any way on n, it is usually assumed to be either
fully local, meaning that it is characterized purely by the value of the density
at r, or semi-local, meaning that the behaviour of n in any neighbourhood of r

is sufficient to characterize it.
One of the few cases where exchange and correlation effects can be evaluated

exactly is the free electron gas. The local density approximation, LDA, approxi-
mates the exchange-correlation energy density ǫxc[n](r) in each point with that
of a uniform electron gas with the same electron density.

As for semi-local energy functionals, the generalized gradient approximations,
GGAs, express ǫxc[n] as a function of the value n(r) and the gradient ∇n(r)
of the density at r. Calculations done in this work generally use either LDA
or the PBE functional, a generalized gradient approximation due to Perdew,
Burke and Ernzerhof [4].

2.6 From pseudopotentials to the PAW method

Owing to the strong attractive potential in the vicinity of a nucleus, electrons
will have large kinetic energy densities in this region. This, along with the
requirement of wave function orthogonality, causes the electronic wave functions
to exhibit swift oscillations near the nucleus. On the contrary, in the interstitial
regions between nuclei in a bonding environment, the wave functions are very
smooth. This poses a significant problem to computational methods, since the
quickly oscillating parts of the wave functions must be represented with very
high resolution grids, but this resolution is a waste of memory in the large
interstitial regions.

The strongly bound electronic states, being localized close to the nucleus,
tend not to contribute appreciably to the bonding properties of elements. Var-
ious methods have been formulated which disregard the core electrons, replac-
ing the strong attractive potential of the nucleus with a smooth pseudopotential
which takes into account the screening effect of the disregarded electronic states.
The electronic wave functions calculated using pseudopotentials are generally
termed pseudo wave functions, and do not exhibit the strong oscillations oth-
erwise found. The original wave functions are then termed all-electron wave
functions, a nomenclature inherited in the PAW method as well.

Our basis set implementation is very similar to that of the Siesta code which
uses Kleinman-Bylander projectors, which are non-local pseudopotentials some-
what reminiscent of the PAW method [11, 6]. An even more advanced method,

8In practice this would be the spin-dependent Exc[n↑, n↓], leading to spin-specific exchange-

correlation potentials v↑
xc(r) and v↓

xc(r), though we shall omit these considerations here.
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the ultrasoft pseudopotentials [5], extending the Kleinman-Bylander potentials,
improves the smoothness further by circumventing norm conservation. This
is the method used in the Dacapo plane-wave code, developed at Camd [25].
The projector augmented wave method due to Blöchl[8, 9, 7] generalizes the
pseudopotential methods, allowing the reconstruction of the all-electron wave
functions. This will be the subject of the next chapter.

2.7 Conclusion

At this point we have reformulated the troublesome many-body problem into
a better-scaling independent-electron formulation which, by the results of den-
sity functional theory, is exact down to our approximation of the exchange-
correlation functional. We have further outlined a concrete iterative method
whereby the Kohn-Sham equations are solved to yield the self-consistent Kohn-
Sham wave functions, thus enabling the evaluation of many physical quantities9,
and provided an overview of existing methods comparable to the PAW method.

9Since the Kohn-Sham problem is an artificial construct, the resulting wave functions and
eigenvalues cannot readily be ascribed a particular physical meaning, and are not guaranteed
to predict all physical quantities as can be done with the true wave function.[19, pp. 146-147]
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Chapter 3

The projector augmented

wave method

The projector augmented wave method, first proposed by Peter E. Blöchl in
1994[8], is a method for reformulating an ordinary Kohn-Sham problem with
numerically inconvenient behaviour into a more computationally digestible form,
which involves a different Kohn-Sham problem plus certain corrections. This
chapter will describe the PAW method in detail.

3.1 Overview

The PAW method proposes to solve the numerical problem of swiftly oscillating
wave functions by considering, rather than the all-electron Kohn-Sham problem,
a modified problem posed in terms of smooth pseudo quantities.

We shall divide the effort to make this method work into three parts. First
we must decide on a transformation T̂ between all-electron wave functions |ψn〉
and pseudo wave functions |ψ̃n〉, such that

|ψn〉 = T̂ |ψ̃n〉. (3.1)

Second, we must obtain a way in which to evaluate the all-electron quantities
such as energies and densities from the pseudo quantities.

Third, we must reformulate the variational problem in terms of pseudo wave
functions, which will result in a different Hamiltonian and thus different Kohn-
Sham equations.

3.2 The PAW transformation

Let us consider a transformation which leaves the pseudo wave functions iden-
tical to the all-electron ones far from the atoms, while each atom a imposes a
modification described by some operator T̂ a which is localized to a spherical
region, the augmentation sphere with cutoff radius rac , around that atom. In
the following we require that the augmentation spheres do not overlap. Such an

11
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operator can be written

T̂ = 1 +
∑

a

T̂ a. (3.2)

Now, since any operator is completely determined by specifying its action on
any basis in definition space in terms of some other basis in image space, we
shall choose two basis sets. The natural choice for a basis set for all-electron
entities is the set {|φai 〉} of Kohn-Sham atomic orbitals of the isolated atom.
For each of these we choose one smooth wave function, obtaining the set {|φ̃ai 〉}.
Then T̂ a is completely determined by requiring that each smooth basis function
be mapped to one of the all-electron atomic orbitals, such that for all i,

|φai 〉 = (1 + T̂ a)|φ̃ai 〉. (3.3)

The functions |φai 〉 shall be referred to as all-electron partial waves whereas
the smooth functions |φ̃ai 〉 are termed pseudo partial waves. They are chosen
such that φai (r) = φ̃ai (r) for all r outside the local augmentation sphere, which
enforces the requirement that the transformation must be unity outside the
augmentation sphere.1 If the pseudo partial waves form a complete set, the
pseudo wave function ψ̃n can be expanded as a linear combination of pseudo
partial waves. One way to express this is through an arbitrary projection P̂
which has to be the identity operator within the augmentation region. Such a
projection operator can be written generally as

P̂ =
∑

ij

|φ̃ai 〉[O−1]ij〈faj |, (3.4)

where 〈faj | is a set of functions, as many as there are partial waves, and where

Oji = 〈faj |φ̃ai 〉 must form a regular matrix. If we define

〈p̃ai | =
∑

j

[O−1]ij〈faj |, (3.5)

the partial-wave expansion of the pseudo wave function reads

|ψ̃〉 =
∑

ai

|φ̃ai 〉〈p̃ai |ψ̃〉. (3.6)

The functions |p̃ai 〉 are called projectors, and each of them is specially associated
with a particular pseudo partial wave:

〈p̃ai |φ̃aj 〉 =
∑

k

[O−1]ik〈fak |φ̃aj 〉 = [O−1O]ij = δij . (3.7)

Thus non-corresponding projectors and the pseudo partial waves are orthog-
onal. To sum up, any choice of linearly independent functions |fai 〉 thereby
corresponds to a set of projector functions |p̃ai 〉 such that the orthogonality con-
dition (3.7) applies.

1While the formulas presented here presume non-overlapping augmentation regions, modest
violations of this requirement will introduce only small errors since the overlapping cross-site
quantities are both small near the cutoff.
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The relation between all-electron and pseudo wave functions can now be
written in terms of |φai 〉, |φ̃ai 〉 and |p̃ai 〉, using (3.2):

|ψ〉 = T̂ |ψ̃〉 = |ψ̃〉 +
∑

a

T̂ a|ψ̃〉 = |ψ̃〉 +
∑

ai

T̂ a|φ̃ai 〉〈p̃ai |ψ̃〉 (3.8)

= |ψ̃〉 +
∑

ai

(

|φai 〉 − |φ̃ai 〉
)

〈p̃ai |ψ̃〉, (3.9)

for which reason the transformation operator has the final form

T̂ = 1 +
∑

ai

(

|φai 〉 − |φ̃ai 〉
)

〈p̃ai |. (3.10)

We use the frozen core approximation, meaning that the core electronic states
(generally the largest closed electronic shell) are assumed not to participate in
bonding. For this reason, partial waves and projectors are calculated for the
valence states, and possibly extra, unoccupied states to improve the partial wave
basis.

In conclusion, the computational advantage of using this operator lies in
the proposition that one can use a relatively coarse grid in real or reciprocal
space to represent the smooth wave function |ψ̃〉, whereas its interactions with
the atoms are separated out as partial wave expansions. The partial waves can
then be represented on an atom-centered radial grid which does not need to be
equidistant. Thus the cumbersome all-electron behaviour can be dealt with by
using high radial resolution near the nucleus. Finally the expansion coefficients
〈p̃ai |ψ̃〉, which constitute the link between the two representations, involve purely
smooth functions and are therefore well-behaved too.

3.3 Operators and expectation values

Our grand plan is to obtain a Kohn-Sham Hamiltonian which we can use with
the iterative scheme from Section 2.4. The Hamiltonian can, like in Section
2.3, be defined through a derivative of the energy expression. Thus we have to
derive the energy expression, which requires rewriting several quantities such
as electron densities, charge densities and so on in a PAW context. This is the
objective of the next sections.

In general, the expectation value of an operator Â is

〈Â〉 =
∑

n

fn〈ψn|Â|ψn〉 +
∑

ac

〈φac |Â|φac 〉, (3.11)

where the subscript c denotes the frozen core states.2 The wave functions can
be represented in a plane wave basis, on a real-space grid such as in Gpaw or
as a linear combination of localized functions, though the specifics of the latter
case will be dealt with in the next chapter.

We will now rewrite expression for the expectation value in terms of PAW

2The spin-degenerate core states are here considered different states altogether, thus avoid-
ing bothersome occupation factors of fc = 2.
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quantities. Define the one-center wave function contributions

|ψan〉 =
∑

i

|φai 〉〈p̃ai |ψ̃n〉, (3.12)

|ψ̃an〉 =
∑

i

|φ̃ai 〉〈p̃ai |ψ̃n〉, (3.13)

such that

|ψn〉 = |ψ̃n〉 +
∑

a

(

|ψan〉 − |ψ̃an〉
)

. (3.14)

The first bracket in (3.11) is then

〈ψn|Â|ψn〉 = 〈ψ̃n|Â|ψ̃n〉 +
∑

a

{

〈ψ̃n|Â|ψan − ψ̃an〉 + 〈ψan − ψ̃an|Â|ψ̃n〉
}

+
∑

ab

〈ψan − ψ̃an|Â|ψbn − ψ̃bn〉. (3.15)

Due to numerical issues, we want to avoid brackets involving both all-electron
and pseudo entities. Extracting the diagonal (a = b) terms from the last sum
and incorporating them into the second and third terms, one eventually obtains

〈ψn|Â|ψn〉 = 〈ψ̃n|Â|ψ̃n〉 +
∑

a

{

〈ψan|Â|ψan〉 − 〈ψ̃an|Â|ψ̃an〉
}

+
∑

a

{

〈ψ̃n − ψ̃an|Â|ψan − ψ̃an〉 + 〈ψan − ψ̃an|Â|ψ̃n − ψ̃an〉
}

+
∑

a6=b

〈ψan − ψ̃an|Â|ψbn − ψ̃bn〉. (3.16)

If Â is a local operator, the third term is zero, since ψ̃n(r) =
∑

a ψ̃
a
n(r) inside the

augmentation regions (apart from any side effect of using non-complete pseudo
partial waves and projectors), whereas ψan(r) = ψ̃an(r) outside.

The fourth term, which runs over pairs of distict atoms, is likewise zero for
local operators, since the augmentation regions do not overlap. The one-center
matrix elements are equal to

〈ψan|Â|ψan〉 =
∑

ij

〈ψ̃n|p̃ai 〉〈φai |Â|φaj 〉〈p̃aj |ψ̃n〉, (3.17)

〈ψ̃an|Â|ψ̃an〉 =
∑

ij

〈ψ̃n|p̃ai 〉〈φ̃ai |Â|φ̃aj 〉〈p̃aj |ψ̃n〉, (3.18)

so the full expression for the expectation value is

〈Â〉 =
∑

n

fn〈ψ̃n|Â|ψ̃n〉 +
∑

naij

fn〈ψ̃n|p̃ai 〉〈φai |Â|φaj 〉〈p̃aj |ψ̃n〉

−
∑

naij

fn〈ψ̃n|p̃ai 〉〈φ̃ai |Â|φ̃aj 〉〈p̃aj |ψ̃n〉 +
∑

ac

〈φac |Â|φac 〉. (3.19)

The first term involves only the pseudo wave functions on the regular grid,
whereas the matrix elements 〈φai |Â|φaj 〉 and 〈φ̃ai |Â|φ̃aj 〉 of the second and the
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third terms are evaluated pre-emptively in an atomic context on the radial grid,
thus avoiding again any brackets mixing all-electron and pseudo entities. Like
in (3.9), the pseudo wave functions interact with the partial wave expansions
only through the projections 〈p̃ai |ψ̃n〉, which are also numerically convenient.

The link between entities on the regular grid and the radial grid can be
expressed in terms of the atomic density matrices defined as

Da
ij =

∑

n

fn〈p̃ai |ψ̃n〉〈ψ̃n|p̃aj 〉. (3.20)

Aside from Da
ij there are no cross-grid-type integrations. The expectation value

can then be expressed as

〈Â〉 =
∑

n

fn 〈ψ̃n|Â|ψ̃n〉
︸ ︷︷ ︸

regular grid

+
∑

aij

Da
ji

{

〈φai |Â|φaj 〉 − 〈φ̃ai |Â|φ̃aj 〉
}

︸ ︷︷ ︸

radial grid

+
∑

ac

〈φac |Â|φac 〉
︸ ︷︷ ︸

radial grid

. (3.21)

This is straightforward for the kinetic energy, for example, but for other quan-
tities there can be special issues to consider.

3.3.1 Electron density

From the electron density (2.8) we separate out the total core state density
nac (r) =

∑

c〈φac |r〉〈r|φac 〉 of each atom (this distribution is a radial function of
the distance to the atom, but our coordinate system is off-site, we have to write
r rather than r), so the density including the frozen-core contribution can be
written

n(r) =
∑

n

fn〈ψn|r〉〈r|ψn〉 +
∑

a

nac (r). (3.22)

We cannot expect the core state density to be entirely contained within the
augmentation region. Therefore we define a pseudo core state density ñac (r),
which can be any smooth distribution within the augmentation sphere, but
must be equal to the all-electron core density outside. Then, since |r〉〈r| is
local, we can straightforwardly make use of (3.21) to write the density as

n(r) = ñ(r) +
∑

a

{na(r) − ña(r)} , (3.23)

where

ñ(r) =
∑

n

fn〈ψ̃n|r〉〈r|ψ̃n〉 +
∑

a

ñac (r), (3.24)

na(r) =
∑

ij

Da
ji〈φai |r〉〈r|φaj 〉 + nac (r), (3.25)

ña(r) =
∑

ij

Da
ji〈φ̃ai |r〉〈r|φ̃aj 〉 + ñac (r). (3.26)

To clarify the rationale for adding ñac (r), consider that if we had not done
so, any contribution of the all-electron core density outside the augmentation
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sphere would cause na(r) and ña(r) to differ, which they are only allowed to do
within the augmentation sphere. Since this is the only requirement, the part of
ñac (r) inside can be chosen as we see fit, which means any smooth function. In
Gpaw, the pseudo core density is chosen to be a sixth order polynomial with
only even powers, where the coefficients ensure that pseudo and all-electron core
densities join each other smoothly (if uneven powers are included, the derivative
of corresponding order will become discontinuous at r = 0).

3.3.2 Coulomb interaction

The total Coulombic energy contribution is due to electronic and nuclear charges,
where the electronic contribution n(r) has already been separated into smooth
and atomic contributions as seen above. However the nuclear charges Za and
core electron density still introduce sharp peaks in the electrostatic potential,
which are detrimental to our efforts to have only smooth entities on our primary
(real or reciprocal space) grids.

Let ρ(r) denote the total negative charge distribution:

ρ(r) = n(r) +
∑

a

Za(r) = n(r) −
∑

a

Zaδ(r − Ra), (3.27)

which uses Dirac delta functions to express the nuclear point charges Za. We
now introduce the compensation charges Z̃a(r), smooth charge distributions lo-
calized within the augmentation region of each atom. The compensation charges
are defined to cancel out the Coulomb interaction from the augmentation re-
gions (which can be accomplished by requiring them to have the same multipole
expansion, see below), thereby making the radially represented charge density in
the augmentation region neutral for the purposes of the regular-grid operations.

In order to save the rainforest we define the notation

(f |g) =

∫
f(r)g(r′)

||r − r′|| d3rd3r′, (3.28)

and let ((ρ)) = (ρ|ρ). The Hartree energy of the total charge is then3

EHa =
1

2
((ρ)) =

1

2
((n+

∑

a Z
a)). (3.29)

Now, writing the nuclear charges as Za = Z̃a+(Za− Z̃a), we can distribute the
different terms in such a way that we achieve charge neutrality in each region:

((ρ)) =
((

ñ+
∑

a Z̃
a +

∑

a(n
a − ña + Za − Z̃a)

))

=
((

ñ+
∑

a Z̃
a
))

+
((
∑

a(n
a − ña + Za − Z̃a)

))

+ 2
∑

b

(

ñ+
∑

a Z̃
a
∣
∣
∣nb − ñb + Zb − Z̃b

)

(3.30)

The second and third terms can be simplified by noting that the cross-atom
parts vanish, since na(r) = ña(r) and Za(r) = Z̃a(r) outside the augmentation

3While this expression includes the infinite point charge self-interaction, this could be
excluded at the cost of excessive notation. We shall keep these terms since they can be
excluded at a later time.
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sphere. Furthermore, using ñ(r) = ña(r) inside the augmentation region of
atom a, we can get rid of ñ in the last term. Therefore

((ρ)) = ((ñ+
∑

a Z̃
a))

+
∑

a

{
((na + Za)) + ((ña + Z̃a)) − 2(na + Za|ña + Z̃a)

}

+ 2
∑

a

{

(na + Za|ña + Z̃a) − ((ña + Z̃a))
}

= ((ñ+
∑

a Z̃
a)) +

∑

a

{
((na + Za)) − ((ña + Z̃a))

}

= ((ρ̃)) +
∑

a

{
((ρa)) − ((ρ̃a))

}
, (3.31)

where

ρ̃(r) = ñ(r) +
∑

a

Z̃a(r), (3.32)

ρa(r) = na(r) + Za(r) = na(r) −Zaδ(r − Ra), (3.33)

ρ̃a(r) = ña(r) + Z̃a(r). (3.34)

As mentioned before, the compensation charges are selected such that the mul-
tipole expansion of the charge on the radial grid is zero, to avoid interactions
with charges outside the augmentation region. We use a circumflex to denote
normalization (r̂ = r/r). Now, if Ylm(r̂) = YL(r̂) are the spherical harmonics[21,
p. 283], using L as a composite index for l and m, then the L’th term of the
multipole expansion reads

0 =

∫

||r − Ra||lYL(r̂ − Ra)
[

na(r) − ña(r) + Za(r) − Z̃a(r)
]

d3r

=
∑

ij

∆a
LijD

a
ji + ∆a

00δ0l −
∫

||r − Ra||lYL(r̂ − Ra)Z̃a(r) d3r, (3.35)

where we have used the atomic density definitions (3.25) and (3.26), remember-
ing that the core state densities are radial with respect to r − Ra, to define

∆a
Lij =

∫

||r − Ra||lYL(r̂ − Ra)
[

φai (r)φ
a
j (r) − φ̃ai (r)φ̃

a
j (r)

]

d3r, (3.36)

∆a
00 =

∫

Y00(r̂) [−Zaδ(r) + nac (r) − ñac (r)] d3r. (3.37)

The spherical harmonics form a complete set, so we can expand4 the compen-
sation charges as

Z̃a(r) =
∑

L

QaLg̃
a
L(r) =

∑

L

QaLg̃
a
l (||r − Ra||)YL(r̂ − Ra), (3.38)

where g̃al are normalized radial functions, which we choose to be Gaussians. We
then use the orthogonality property of spherical harmonics to obtain from (3.35)

4The sum is over all l = 0 . . .∞ and m = −l . . . l. In practice[10] we assume ∞ ≈ 2.
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an expression for the coefficients

QaL =
∑

ij

∆a
LijD

a
ji + ∆a

00δl0. (3.39)

Thus we have a final expression for the Hartree energy

EHa[ρ] = EHa[ρ̃] +
∑

a

(
EHa[ρa] − EHa[ρ̃a]

)
, (3.40)

where the atomic contributions – again – depend only on the pseudo wave
functions through the atomic density matrices Da

ij , the remaining quantities
being evaluated in the isolated-atom context.

3.3.3 Exchange-correlation functional

If the chosen exchange-correlation functional is (sufficiently) local, then

Exc[n] = Exc[ñ] +
∑

a

(Exc[n
a] − Exc[ñ

a]) , (3.41)

since ñ(r) = ña(r) everywhere inside each augmentation sphere, while n(r) =
ñ(r) everywhere outside.

3.3.4 The zero potential

Both for the density and the compensation charges, we have added and sub-
tracted quantities on the regular and radial grid to shift troublesome terms to
more suitable places. We can also do this with any fictional atomic potential
v̄a(r) which is localized to the augmentation region, as long as this potential is
mirrored on the regular grid to compensate.

For the isolated atom, the pseudo charge density and pseudo exchange-
correlation interaction correspond to a smooth potential contribution which will
be “felt” by the wave functions on the regular grid during a calculation. We
can choose the zero potential v̄a(r) to make this potential even more smooth.
In Gpaw, the zero potential is defined such that the atomic potential satisfies

vatom(r) = vHa(r) + vxc(r) + v̄(r) = a+ br2 (3.42)

within the augmentation region, a and b ensuring smoothness at the cutoff.
The energy contribution due to this potential is then

∫

ñ(r)
∑

a

v̄a(r) d3r −
∑

a

∫

ña(r)v̄a(r) d3r ≈ 0. (3.43)

3.3.5 Total energy

Each of the troublesome quantities in the total energy expression (2.13) has now
been reformulated in terms of smooth parts and parts which can be handled on
radial grids. We can now collect the results in a final energy expression

E = Ẽ +
∑

a

∆Ea = Ẽ +
∑

a

(

Ea − Ẽa
)

, (3.44)
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where

Ẽ =
∑

n

fn〈ψ̃n| − 1
2∇

2|ψ̃n〉 +
1

2

∫
ρ̃(r)ρ̃(r′)

||r − r′|| d3rd3r′

+

∫

ñ(r)
∑

a

v̄a(r) d3r + Exc[ñ], (3.45)

Ea =
∑

ij

Da
ji〈φai | − 1

2∇
2|φaj 〉 +

∑

c

〈φac | − 1
2∇

2|φac 〉

+
1

2

∫
ρa(r)ρa(r′)

||r − r′|| d3rd3r′ + Exc[n
a], (3.46)

Ẽa =
∑

ij

Da
ji〈φ̃ai | − 1

2∇
2|φ̃aj 〉 +

1

2

∫
ρ̃a(r)ρ̃a(r′)

||r − r′|| d3rd3r′

+

∫

ña(r)v̄a(r) d3r + Exc[ñ
a]. (3.47)

Importantly, once again the atomic parts ∆Ea = Ea−Ẽa depend on the pseudo
wave functions only through Da

ij .

3.4 The PAW Hamiltonian

For the purposes of the following partial derivatives, the following variables
are considered distinct: the pseudo wave functions ψ̃n(r), the pseudo electron
density ñ(r) and the atomic density matrices Da

ij . There are no other variables

which depend on ψ̃n(r) in any of the energy expressions – for example the pseudo
charge is ρ̃ = ñ+ Z̃a, where the compensation charges depend only on Da

ij .

We wish to define the pseudo Hamiltonian in a way similar to the ordinary
Kohn-Sham Hamiltonian of Chapter 2, only this time in terms of a derivative
with respect to the conjugate pseudo wave function, since we want these to be
our variational parameters. Using the chain rule,

δE

δψ̃∗
n(r)

=
δE

δψ̃∗
n(r)

∣
∣
∣
∣
fix

+
δE

δñ(r)

∣
∣
∣
∣
fix

δñ(r)

δψ̃∗
n(r)

+
∑

aij

∂E

∂Da
ij

∣
∣
∣
∣
∣
fix

δDa
ij

δψ̃∗
n(r)

, (3.48)

where the subscript fix denotes that the other variables are held constant,
though after this warning we shall omit this notation. We will now consider
each of the derivatives in turn. We define the pseudo Hartree potential as

ṽHa(r) =
δE

δρ̃(r)
=

1

2

δ

δρ̃(r)

∫
ρ̃(r)ρ̃(r′)

||r − r′|| d3rd3r′ =

∫
ρ̃(r′)

||r − r′|| d3r′, (3.49)

and the pseudo effective potential as

ṽeff(r) =
δE

δñ(r)
=
δEHa[ρ̃]

δρ̃(r)

δρ̃(r)

δñ(r)
+
∑

a

v̄a(r) +
δExc[ñ]

δñ(r)

= ṽHa(r) +
∑

a

v̄a(r) + ṽxc(r), (3.50)
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where we have also defined the pseudo exchange-correlation potential ṽxc(r) =
δExc[ñ]
δñ(r) . Next, the derivative of the density is simply

δñ(r)

δψ̃∗
n(r)

= fnψ̃n(r). (3.51)

Using
∑

r |r〉〈r| = 1 to avoid cumbersome integral expressions, we have

δDa
ij

δψ̃∗
n(r)

=
∂

∂〈ψ̃n|r〉
∑

n′r′

fn′〈p̃ai |ψ̃n′〉〈ψ̃n′ |r′〉〈r′|p̃aj 〉 = fn〈r|p̃aj 〉〈p̃ai |ψ̃n〉. (3.52)

Last, define the atomic Hamiltonians as

∆Ha
ji =

∂E

∂Da
ij

=
∂Ẽ

∂Da
ij

+
∂∆Ea

∂Dija

,

∂Ẽ

∂Da
ij

=

∫
δẼ

δρ̃(r)

∑

L

∂ρ̃(r)

∂QaL

∂QaL
∂Da

ij

d3r =

∫

ṽHa(r)
∑

L

∆a
Lij g̃

a
L(r) d3r. (3.53)

Explicit evaluation of ∂∆Ea

∂Da
ij

is omitted since it suffices to note that it is a function

of Da
ij and large numbers of isolated-atom variables[10, App. D]. The energy

derivative then becomes

δE

δψ̃∗
n(r)

= −1

2
fn∇2ψ̃n(r) + fnṽeff(r)ψ̃n(r) + fn

∑

aij

〈r|p̃aj 〉∆Ha
ji〈p̃ai |ψ̃n〉, (3.54)

which is equal to fn
ˆ̃Hψ̃n(r) cf. (2.14) if and only if the pseudo Hamiltonian is

ˆ̃H = −1

2
∇2 + ṽeff +

∑

aij

|p̃ai 〉∆Ha
ij〈p̃aj |. (3.55)

The pseudo Hamiltonian thus consists of the usual kinetic energy operator, the
somewhat modified effective potential and a new, non-local atomic term which
is specific to the PAW method.

3.5 Modified variational problem

Applying the transformation T̂ to the all-electron wave functions, we can reex-
press the variational problem (2.15) in terms of pseudo wave functions:

Ω = E[{ψn}] −
∑

mn

λmn (〈ψn|ψm〉 − δnm) (3.56)

= E[{T̂ ψ̃n}] −
∑

mn

λmn

(

〈ψ̃n|T̂ †T̂ |ψ̃m〉 − δnm

)

. (3.57)

Importantly, this means the pseudo wave functions are no longer orthogonal,
but instead must obey the special orthogonality condition

〈ψ̃n|T̂ †T̂ |ψ̃m〉 = 〈ψ̃n|Ŝ|ψ̃m〉 = δnm. (3.58)
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The operator Ŝ is the PAW transformation of the unit operator. The form of Ŝ
can be evaluated by substituting the unit operator for Â in the equation (3.19)
for the expectation value and requiring the resulting relation to be true for all
wave functions and occupation numbers. This yields

Ŝ = 1 +
∑

aij

|p̃ai 〉
(

〈φai |φaj 〉 − 〈φ̃ai |φ̃aj 〉
)

〈p̃aj | = 1 +
∑

aij

|p̃ai 〉∆Saij〈p̃aj |. (3.59)

Now set the derivative of the variational expression to zero:

0 =
δΩ

δψ̃∗
n(r)

=
δE

δψ̃∗
n(r)

−
∑

m

λmnŜψ̃m(r), (3.60)

yielding the general expression

fn
ˆ̃H|ψ̃n〉 =

∑

m

λmnŜ|ψ̃m〉, (3.61)

where the states are not generally eigenvectors. The final form of the Kohn-
Sham equations corresponding to a diagonalized Lagrange multiplier matrix is
(cf. Section 2.3)

ˆ̃H|ψ̃n〉 = ǫnŜ|ψ̃n〉. (3.62)

This completes our description of the PAW formalism. The iterative scheme
outlined in Section 2.4 is used to obtain the eigenstates. During an iterative
solution, it is – aside from the operations already listed in the Kohn-Sham solu-
tion scheme – also necessary to evaluate the inner products between pseudo wave
functions and projectors. Aside from this, the atomic variables can be precal-
culated. An element-specific collection containing all the required atomic quan-
tities, such as projectors, partial waves, zero potential, core densities, atomic
kinetic energy contributions and so on are called PAW setups.

Smoothness of the pseudo wave functions and other regular-grid based quan-
tities allows for surprisingly coarse grid resolutions. In Gpaw, wave function grid
spacings of around 0.15 to 0.2 Å are generally sufficient to obtain well-converged
results. Some quantities, such as the Hartree potential, are represented on finer
grids (generally half the grid spacing). The most important approximations
pertaining to the PAW method are finite grid spacing, projector/partial wave
completeness and the frozen core approximation.

The next chapter deals with the use of localized basis functions to represent
the wave functions. The primary difference is that many operators will be rep-
resented by matrices whose elements take the form of two-center integrals, but
the results of this chapter are generally still valid down to a few substitutions.
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Chapter 4

Atomic basis sets

This chapter describes the transition from grid-based calculations to the use of
atomic basis functions.

4.1 Background

DFT codes which use plane-wave or real-space grid basis sets have the ability
to represent any wave function with arbitrary precision given sufficiently fine
grids.

The use of small, exclusive sets of basis functions allows calculation time
and memory requirements to be reduced considerably at the cost of accuracy.
In a small basis set, the individual functions must be chosen carefully. Multi-
ple different schemes have been devised to accommodate reasonably accurate
representations using small basis sets.

• Linear combinations of Gaussian-type orbitals (GTOs) are widely used,
since many expressions can then be evaluated analytically. The Gaussian

code, for example, uses GTOs.[28]

• Another possible choice is Slater-type orbitals (STOs), which have the
form rle−ζr, resembling simple orbitals. In Gaussian-based methods it is
common to approximate STOs with fixed linear combinations of Gaussians
to obtain a more orbital-like behaviour.

• Numerical atomic orbitals (NAOs) differ in that they are represented nu-
merically on radial grids rather than analytically. While this makes calcu-
lations more time consuming, many of the required radial integrations can
be performed beforehand and tabulated. NAOs have the advantage that
they can be designed with any shape without extra computational cost,
and can easily be localized to avoid expensive long-range interactions, thus
achieving better scaling.

• Our approach is to use a basis of localized pseudo atomic orbitals (PAOs),
which are simply NAOs adapted to the use of pseudopotentials or, in the
present case, the PAW method. This is quite similar to the approach in
Siesta, although the formalism is somewhat different.

23
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In many cases, these limited basis sets are chosen to be atom-centered orbitals,
though they could equally well be located elsewhere.

4.2 Overview

What we are about to introduce is an expansion

|ψ̃n〉 =
∑

µ

cµn|Φµ〉 (4.1)

of the pseudo wave functions |ψ̃n〉 in terms of localized atom-centered orbital-
like functions |Φµ〉. While so far the variational parameters have been the
real-space grid representations of the pseudo wave functions, it will now be the
set of coefficients cµn. This will have precisely the following consequences for
the Kohn-Sham solution process:

• The variational problem must be reformulated in terms of coefficients.
The small number of parameters allows for a full diagonalization to be
performed in every self-consistency iteration (cf. Section 2.4).

• Integrals over the effective local potential ṽeff(r) in the Hamiltonian will
become a linear combination of grid/radial integrals.

• Grid-based inner products such as 〈ψ̃n| − 1
2∇2|ψ̃n〉 or grid/radial ones

like 〈p̃ai |ψ̃n〉 will be replaced by linear combinations of two-center integrals
involving pairs of basis functions or projectors.

Most of the PAW-specific work, however, needs not be reconsidered since the
fundamental transformation remains unchanged. Therefore the results of Chap-
ter 3, for example, remain valid.

4.3 Localized functions

Basis functions, projectors, compensation charges and several other entities, are
compactly supported functions defined on real space, each being centered on an
atom. Generally, each such function is represented as an arbitrary radial part
times an angular part, which is a spherical harmonic function.

Implementation-wise, the radial parts are stored as splines on a one-dimensional
grid whereas, as we shall see, the spherical harmonics can be accounted for an-
alytically.

For any such function X on any atom a we may write

X(r − Ra) = X(ra) = χ(ra)Ylm(r̂a), (4.2)

where ra = r − Ra are nucleus-centered coordinates.

4.4 Two-center integrals

Inner products between localized functions appear in several places, most no-
tably the total energy expression. It is for this reason necessary to calculate
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the product integral of two localized functions Φ(r) and X(r). In all relevant
cases, one of the functions is a basis function whereas the other is either a basis
function, the Laplacian of a basis function, or a projector function. Let the
functions be centered on atoms a and b with coordinates Ra and Rb, where a
and b are probably distinct:

Φ(ra) = ϕ(ra)YL1
(r̂a), (4.3)

X(rb) = χ(rb)YL2
(r̂b). (4.4)

The overlap integral 〈Φ|X〉 is nominally a function of both nuclear coordinates
Ra and Rb, though clearly, since the overlap is translation invariant, it depends
only on the atomic separation vector Rb − Ra:

〈Φ|X〉 =

∫

Φ∗(r − Ra)X(r − Rb) d3r =

∫

Φ∗(r)X(r − Rb + Ra) d3r, (4.5)

for which reason it suffices to describe it by the function

Θ(R) =

∫

Φ∗(r)X(r − R) d3r. (4.6)

This inner product is calculated using the same method as in Siesta. We
shall not describe this in detail (for a more detailed description, see the thesis
by Marco Vanin[17]), but will simply note the most important features since
we will need the final form in Chapter 7. This method uses the convolution
theorem of Fourier transforms to reexpress the overlap (4.6) in terms of the
Fourier transformed functions Φ∗(q) and X(q), such that

Θ(R) =

∫

Φ∗(q)X(q)e−iq·R d3q. (4.7)

By expanding the exponential in spherical harmonics, the overlap expression
can be reduced to a linear combination of spherical harmonics

Θ(R) = 〈Φ|X〉 =
∑

L

ΘL(R)YL(R̂). (4.8)

The radial functions ΘL(R) are evaluated by means of a Fourier-space inte-
gral, and each of them can be represented by a spline. Note that if multiple
localized functions with identical shapes appear in different locations, they still
correspond to the same splines, thus saving Fourier transforms.

For future benefit we define the kinetic energy overlap matrix Tµν , the pro-
jector overlap matrix1 Piµ and the basis function overlap matrix Sµν

Tµν =
〈
Φµ
∣
∣− 1

2∇
2
∣
∣Φν
〉
, (4.9)

P aiµ = 〈p̃ai |Φµ〉 , (4.10)

Sµν = 〈Φµ|Ŝ|Φν〉 = 〈Φµ|Φν〉 +
∑

aij

〈Φµ|p̃ai 〉∆Sij〈p̃aj |Φν〉. (4.11)

1Note that the variable P a

ni
in the original Gpaw article[10] corresponds to the adjoint of

this matrix, but the present convention is chosen to ensure that all the overlap matrices have
the usual antilinear/linear behaviour.
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These overlaps can be evaluated once the atomic positions are known by calling
the relevant splines with the relevant atomic separation vector. In the case
where the overlap involves a Laplacian, the Fourier transform differentiation
trick

∫ ∞

−∞

df(x)

dx
eiqx dt = iq

∫ ∞

−∞

f(x)eiqx dt (4.12)

is used rather than explicitly evaluating the Laplacian of the function.

4.5 Matrix formulation

Once again we want to formulate a Hamiltonian in terms of a derivative of
the energy. First of all, this requires an expression for the energy, which will
now involve various two-center integrals. Second, since we no longer can use the
pseudo wave functions themselves as parameters, we will have to reformulate the
variational problem again, obtaining a matrix form of the Kohn-Sham equations.

We consider again the pseudo wave function expansion

|ψ̃n〉 =
∑

µ

cµn|Φµ〉. (4.13)

The matrix of expansion coefficients C = [cµn] describes the transformation
between the pseudo wave functions and the basis functions, although it does
not technically represent a change of basis since it is not generally a square
matrix.2 Now, for any operator Â, we may write

〈ψ̃n|Â|ψ̃m〉 =
∑

µν

c∗µn〈Φµ|Â|Φν〉cνm, (4.14)

which in matrix notation becomes the familiar-looking

A′ = C†AC, (A)µν = 〈Φµ|Â|Φν〉, (A′)mn = 〈ψ̃m|Â|ψ̃n〉. (4.15)

Specifically, the pseudo wave function orthogonality condition becomes

〈ψ̃m|Ŝ|ψ̃n〉 =
∑

µν

c∗µm〈Φµ|Ŝ|Φν〉cνn = δmn (4.16)

or

C†SC = IN×N , Sµν = 〈Φµ|Ŝ|Φν〉. (4.17)

Let F = diag({fn}) be the diagonal matrix of occupation numbers fn and define

ρ = CFC†, ρµν =
∑

n

cµnfnc
∗
νn. (4.18)

2In practice some circumstances, such as matrix diagonalization, prompt the adoption of
square matrices. The number of Kohn-Sham states is then increased to the number of atomic
orbitals for the purposes of these operations, while the extraneous columns are discarded
afterwards.



4.6. Variational problem 27

This operator will prove quite useful later. Observe that for any operator Â,
∑

n

fn〈ψ̃n|Â|ψ̃n〉 =
∑

nµν

fnc
∗
nµ〈Φµ|Â|Φν〉cnν =

∑

µν

ρνµ〈Φµ|Â|Φν〉

= Tr[ρA], (4.19)

i.e. ρ represents the state operator except it does not include any atomic or
core state contributions. A more correct name would therefore be the pseudo
valence Kohn-Sham state operator, though it shall henceforth be known as just
the state operator. The pseudo kinetic energy can then be rewritten as
∑

n

fn〈ψ̃n| − 1
2∇

2|ψ̃n〉 =
∑

nµν

fnc
∗
µn〈Φµ| − 1

2∇
2|Φν〉cνn =

∑

µν

ρνµTµν , (4.20)

the pseudo electron density is

ñ(r) =
∑

n

fnψ̃
∗
n(r)ψ̃n(r) +

∑

a

ñac =
∑

µν

ρνµΦ
∗
µ(r)Φν(r) +

∑

a

ñac (r), (4.21)

and the atomic density matrices are

Da
ij =

∑

nµν

fncµn〈p̃ai |Φµ〉〈Φν |p̃aj 〉c∗νn =
∑

n

PiµρµνP
∗
jν . (4.22)

We have now shown that all quantities that determine the energy can be ex-
pressed by the state operator. Thus, the energy can be regarded as a function
only of this.

4.6 Variational problem

We can now write down our variational problem by exploiting the dependence
of the energy on the state operator:

Ω = E(ρ) −
∑

mn

λnm

(

〈ψ̃m|Ŝ|ψ̃n〉 − δmn

)

(4.23)

= E(ρ) −
∑

mnµν

λnm

(

c∗µm〈Φµ|Ŝ|Φν〉cνn − δmn

)

. (4.24)

The minimal energy occurs at a point where the energy is stationary with re-
spect to the coefficients {cµm}. By differentiation with respect to the conjugate
coefficient c∗ξk, we get

∂Ω

∂c∗ξk
=
∑

µν

∂E

∂ρµν

∂ρµν
∂c∗ξk

−
∑

mnµν

λnm

(

∂c∗µm
∂c∗ξk

cνn + c∗µm
∂cνn
∂c∗ξk

)

〈Φµ|Ŝ|Φν〉 = 0. (4.25)

Observe that
∂c∗νn

∂c∗
ξk

= δνξδnk, whereas
∂cµn

∂c∗
ξk

= 0. Then if the electronic temper-

ature is 0, such that the occupation numbers are fixed, we have

∂ρµν
∂c∗ξk

=
∑

n

(

∂cµn
∂c∗ξk

c∗νn + cµn
∂c∗νn
∂c∗ξk

)

fn = δνξcµkfk. (4.26)
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We can define the Hamiltonian matrix as ∂E
∂ρνµ

= Hνµ, such that (4.25) becomes

0 =
∂Ω

∂c∗ξk
=
∑

µ

Hξµcµkfk −
∑

nν

〈Φξ|Ŝ|Φν〉cνnλnk. (4.27)

Finally we obtain the equation

∑

µ

Hξµcµkfk =
∑

nν

Sξνcνnλnk, (4.28)

either side of which is seen to be the (ξ, k)’th element of a matrix product.
Since this is supposed to be the case for all (ξ, k), we can reformulate it as a
generalized eigenvalue problem

HC = SCΛ. (4.29)

Here we have taken the liberty of including the occupation numbers into the
Lagrange multipliers. This is equivalent to the previous variational problems
we have encountered: with diagonalization of the Lagrange multiplier matrix,
the elements of Λ become the familiar Kohn-Sham eigenenergies.

For completeness we shall mention that if we had differentiated by cµk rather

than c∗µk, the result would have been the “adjoint” equation C†H = ΛC†S,
which is completely equivalent to (4.29) for real H, S and Λ. If all variables are
assumed real, the result (4.29) is also obtained.



Chapter 5

Basis set generation

In this chapter we shall describe the relevant types of basis functions and the
process by which they are generated.

5.1 Overview of atomic basis sets

As mentioned previously, atomic orbitals are natural choices for atom-centered
basis functions. These can readily be obtained from the single-particle all-
electron wave functions which emerge from the solution of the Kohn-Sham
equations for the isolated atom.1

However, the all-electron orbital is not well suited to represent the smooth
extended wave functions prevalent in the PAW method. For this reason it will
obviously be necessary to transform them into smooth pseudo atomic orbitals.
Second, these orbitals are infinitely extended, which is of course unacceptable.
One solution is to neglect any sufficiently small overlaps between orbitals, but
it is generally better to make sure that the orbitals are strictly localized.2 This
we will achieve by adding a suitable external potential when solving the radial
Kohn-Sham equations.

Since we are using the frozen core approximation, only valence states are
of any interest. This means that so far, each element has a pseudo atomic
orbital ΦPAO

nlm for every atomic valence state labelled by the principal, angular
momentum and magnetic quantum numbers n, l and m, given by

ΦPAO
nlm (r) = ϕnl(r)Ylm(r̂), (5.1)

each of the orbitals being the product of a radial part ϕln(r) which is indepen-
dent of m, and a corresponding spherical harmonic.

The atomic orbitals themselves are typically not sufficient to achieve desir-
able accuracy. For this reason, extra radial functions are usually added to the
atomic basis for each valence state with corresponding angular behaviour.

1A radial atomic Kohn-Sham solver is already implemented in Gpaw since it is used to
calculate the all-electron partial waves. This will be reused with certain modifications, as we
shall see later.

2E. Artacho et al.[15] note that neglecting overlaps below a certain threshhold rather than
enforcing localization, while useful particularly for e.g. Gaussian-type orbitals, can lead to
numerical instabilities due to the basis spanning a different Hilbert space.
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Furthermore, while the isolated atoms possess valence states corresponding
only to certain angular momentum quantum numbers l, thus allowing wave
functions with only a certain angular behaviour, this restriction does not apply
for systems other than the isolated atom. Therefore polarization functions,
i.e. basis functions that correspond to values of l which do not appear on the
isolated atom, can be used to improve the angular flexibility of the basis. In this
case, one can also add extra radial functions for the same l, or include further
polarization functions with even higher l, though with 2l + 1 different angular
parts, this becomes increasingly expensive.

Depending on the number of radial functions per valence state and the num-
ber of polarization functions, we will refer to basis sets are as “SZ” (single-
zeta, containing atomic orbitals only), “DZP” (double-zeta polarized), “TZDP”
(triple-zeta doubly-polarized) and so on.3 Soler et al. note that DZP basis sets
achieve good accuracy in Siesta while still being computationally inexpensive,
for which reason we shall aim primarily towards obtaining good basis sets of
this kind.[11]

The following sections will describe in turn pseudo-atomic orbital calcula-
tion, multiple-zeta functions and polarization functions.

5.2 Atomic orbital calculation

Consider the Kohn-Sham equation4 for some all-electron wave function X(r) on
an isolated atom,

[

−1

2
∇2 + veff(r)

]

X(r) = ǫX(r), (5.2)

where the effective potential is a purely radial function. This is a second-order
linear partial differential equation which is separable into radial and angular
parts. Let us define the trial product solution

Xlnm(r) =
χln(r)

r
Ylm(r̂), (5.3)

where we have taken the liberty of naming the angular part and the indices in
a rather suggestive manner, and we have extracted a factor of r in the radial
part for future convenience. Plugging the trial solution into (5.2), using the
spherical expression for the Laplacian, and dividing by Xlnm, one can readily
show that radial as well as angular parts must each obey different differential
equations (the method is described in e.g. [23]). For the angular part this results
in spherical harmonic solutions which are eigenfunctions of the Laplacian, and
the quantum numbers l and m emerge naturally.

The radial functions χln, being cause for more trouble, are determined by

−d2χln(r)

dr2
+

[
l(l + 1)

r2
+ 2(veff(r) − ǫn)

]

χln(r) = 0, (5.4)

3The name zeta probably stems from the letter ζ being used to denote the decay parameter
of Slater-type orbitals. Having several different Slater functions with different decay rates thus
implies several “zetas”.

4Basis functions are so far calculated using the non-scalar-relativistic Kohn-Sham equations
mentioned here, but it is possible to run the calculations with scalar-relativistic corrections
too. This is relevant only for heavy elements. So far we have found that non-scalar-relativistic
basis functions produce better results.
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with the boundary condition that the wave function must tend to zero at r → ∞
and at r = 0 (since we are solving for rX(r), this is true for s-type orbitals as
well).

Since the all-electron wave functions oscillate rapidly near r = 0, it is ad-
vantageous to use a non-equidistant grid

r =
βg

N − g
, g = 0 . . . N − 1, (5.5)

g =
rN

β + r
. (5.6)

This change of variables evidently alters the differential quotients in (5.4),
though we shall not bother with these details. The differential equation is
then solved numerically by guessing an energy, then integrating radially. In
fact, one radial integration is performed from zero to a point somewhere in the
middle, while another integration is performed backwards from infinity, techni-
cally meaning the outermost grid point. The two half-solutions are then joined
in the middle. If the energy guess is wrong, these solutions cannot be joined
differentiably, and the size of the derivative discontinuity can be used to adjust
the energy guess. The procedure is repeated until the entire augmented solution
is differentiable.

We use the PBE functional for exchange and correlation by default, since
this is the most likely choice for serious calculations using the basis functions.
It should also be noted that the solution is spin-paired.

Figure 5.1 shows all the all-electron Kohn-Sham wave functions for copper
calculated using the above method. It will prove useful to note here that the
radial part has an rl asymptotical behaviour near r = 0.

5.2.1 Confinement scheme

The wave-function tails, being very large, are badly suited to numerical calcu-
lations. A simple way to obtain a wave function which is strictly confined to a
small, finite region, is to place the atom in an infinite spherical potential well
with some cutoff rconf , which is equivalent to moving the boundary condition
χ = 0 from infinity to rconf .

Doing this we can simply use the solution method from above to obtain
localized wave functions. However, a sudden jump in the potential to infinity
generally implies a discontinuity in the first derivative of the wave functions at
the boundary. Figure 5.2, shows the free-atom solution and a confined orbital
using the infinite hard-wall potential. The discontinuity of the derivative will
cause the second-order derivative to be infinite (or at least very high in grid-
based terms), which yields unwanted contributions to the kinetic energy which
might e.g. induce a considerable egg-box effect (a numerical error related to the
inhomogeneity of space when using finite grid resolution; this is explained in
Section 7.5). To prevent this, the wave function can be confined in a more
controlled manner by adding an external confinement potential Vconf which is
zero or close to zero near to the atom, but approaches infinity at the cutoff rconf .

Specifically, we define the confinement potential in the same way as Junquera



32 5. Basis set generation

0 1 2 3 4 5
r

-1

0

1

2

3
r

�(r)
All-electron wave functions for copper

1s
2s
2p
3s
3p
3d
4s

Figure 5.1: The all-electron Kohn-Sham wave functions for copper.

et al.[12]:

Vconf(r) =







0 r ≤ rconf

A
rconf−r

exp
(

− rconf−ri

r−ri

)

ri < r < rconf

∞ rconf ≤ r

(5.7)

The Kohn-Sham equations are solved exactly as in (5.4), except for the addition
of the external potential Vconf to the effective potential, and the fact that we
(still) integrate inwards from rconf rather than infinity. As we shall see for most
elements, good values of rconf turn out to be around 5 to 8 Bohr with somewhat
different values for each valence state. A smoothly confined wave function and
the corresponding confinement potential are shown on Figure 5.2.

5.2.2 Pseudo orbital calculation

Knowing by now the all-electron Kohn-Sham wave functions |Xµ〉, the next step
is to derive the pseudo wave functions |Φµ〉, which means that we have to solve

|Xµ〉 = T̂ |Φµ〉 = |Φµ〉 +
∑

i

(

|φi〉 − |φ̃i〉
)

〈p̃i|Φµ〉 (5.8)

for |Φµ〉. Applying the i’th projector 〈p̃i| and using the orthogonality condition

〈p̃i|φ̃j〉 = δij , we obtain

〈p̃i|Xµ〉 = 〈p̃i|Φµ〉 +
∑

j

〈p̃i|
(

|φj〉 − |φ̃j〉
)

〈p̃j |Φµ〉

=
∑

j

〈p̃i|φj〉〈p̃j |Φµ〉, (5.9)
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Figure 5.2: The atomic orbital confinement scheme. The red curve
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which is an ordinary system of linear equations for the inner products 〈p̃j |Φµ〉
which we can solve right away since the remaining entities are known. Knowing
these inner products, it is a simple matter to write down the pseudo wave
function by rearranging Equation (5.8):

|Φµ〉 = |Xµ〉 +
∑

i

(

|φ̃i〉 − |φi〉
)

〈p̃i|Φµ〉. (5.10)

Now, if the all-electron partial-wave expansion of |Xµ〉 were exact, this would
be quite fine. However, the incompleteness of the partial waves and projectors
causes the part of |Xµ〉 which cannot be represented as a linear combination of
all-electron partial waves to spill out into |Φµ〉, resulting in oscillatory behaviour
near r = 0. This effect can be seen in Figure 5.3 for a sodium wave function
calculated using the full expansion (5.10). While this error tends to be small for
most elements, it will still cause some degree of undesirable numerical behaviour.

To avoid this, we could alternatively make use of the “ideal” partial-wave
expansion within the augmentation region

|Φµ〉 =
∑

i

|φ̃i〉〈p̃i|Φµ〉, (5.11)

which assumes completeness of the projectors and pseudo partial waves. This
expression has the obvious virtue of guaranteeing that the wave function behaves
like a pseudo wave function near r = 0, but due to incompleteness outside the
augmentation region, it will not become exactly 0 at the desired cutoff (the
pseudo-only expansion in Figure 5.3). A reasonable solution, then, is to combine
(5.10) and (5.11) by weighting the all-electron terms with a function w which
approaches zero smoothly for r → 0, but is equal to 1 outside the augmentation
region. With this weighting function, we have

Φµ(r) =
∑

i

〈p̃i|Φµ〉φ̃(r) + w(r)

(

Xµ(r) −
∑

i

〈p̃i|Φµ〉φ(r)

)

. (5.12)

This is the final expression for the first-zeta basis functions. The choice of w(r)
is largely inconsequential as long as it is smooth at 0, since the all-electron and
pseudo partial waves join each other smoothly already. Presently,

w(r) =

{
r2/r2c , r < rc

1, r ≥ rc
, (5.13)

where rc is the radius of the augmentation region.5 This is the weighted expan-
sion curve in Figure 5.3.

Finally, Figure 5.4 illustrates the full generation process: the calculated
Kohn-Sham all-electron wave function (green) is localized within a certain radius
(red, dashed), then transformed to a pseudo wave function (blue), differing from
the all-electron one within the augmentation sphere of radius rcut.

5One could also choose a function which approaches 1 smoothly, but when the cutoff is
located exactly at rc, this is unnecessary since the pseudo and all-electron partial waves join
each other exactly here. This would only be a problem if w approached 1 before reaching rc.
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formed to a pseudo wave function.
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Figure 5.5: Miscellaneous PAOs for the fixed energy shift 0.3 eV. Lines
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5.2.3 Confinement radius selection by energy shift

Since some elements possess naturally larger orbitals than others, it is not el-
egant to have to specify each cutoff by hand to get reasonably proportioned
localized wave functions. We employ once again the same approach as Siesta

to overcome this.[12] By specifying the wanted energy shift ∆E of the confined
orbital compared to the free-atom orbital, the corresponding confinement radius
is uniquely determined in a uniform way for all elements.

Since we cannot straightforwardly calculate the cutoff for a particular en-
ergy, the method is implemented by means of bisection, repeating the following
procedure until the energy shift is equal to the desired value within a certain
threshold.

The energy shift is calculated for the two trial confinement radii rsmall and
rlarge, which are selected such that the as of yet unknown, desired cutoff radius
lies somewhere between them. The energy shift is then calculated at rmiddle

halfway between rsmall and rlarge, and depending on whether this energy here is
larger or smaller than the desired one, either rsmall or rlarge is moved to rmiddle,
thus trapping the desired cutoff in a smaller interval. This process is repeated
as required to meet some set tolerance.

With energy shifts between 0.1 and 0.3 eV, cutoff radii can be expected to
lie between 3.5 Bohr (2s-orbitals of fluorine, oxygen) and 11.5 Bohr (Sodium
3s, lithium 2s), with most elements between 5 and 8 Bohr. Figure 5.5 shows a
number of examples.
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5.3 Multiple-zeta basis sets

Apart from the atomic orbitals themselves, there are no natural ways in which
to further expand the basis sets. Several approaches have been formulated, and
we have implemented two: the Siesta method, which is inspired by the split-
valence approach, and a second approach wherein the second-zeta basis function
is obtained by differentiating the first-zeta one with respect to the orbital energy.

The split-valence approach originates from the use of basis functions which
are linear combinations of Gaussians. To add extra radial functions for valence
states, one or more of the most extended Gaussians of the orbital would be
“freed” (or “split off”), becoming separate radial functions.[11]

In our case, the second radial function is obtained by subtracting a simple,
rather arbitrary function ∆ϕ(r) (which takes the role of the most extended
Gaussian mentioned above) from the pseudo-atomic orbital. Thus we define

ϕdz(r) = ϕsz(r) − ∆ϕ(r). (5.14)

The function ∆ϕ is defined as a polynomial within a certain radius rsplit, and is
equal to the first-zeta wave function outside, such that ϕdz becomes zero outside
rsplit:

∆ϕ(r) =

{
rl(a− br2) r < rsplit

ϕsz(r) r ≥ rsplit
. (5.15)

The coefficients a and b are determined by requiring the polynomial to join the
first-zeta wave function continuously and differentiably at rsplit:

a− br2split =
ϕsz(rsplit)

rlsplit

(5.16)

−2brsplit =

[
d

dr

ϕsz(r)

rl

]

r=rsplit

, (5.17)

such that

b = − 1

rsplit

[
d

dr

ϕsz(r)

rl

]

r=rsplit

, (5.18)

a =
ϕsz(rsplit)

rlsplit

+ br2split. (5.19)

With this approach, the second-zeta basis function will be confined within a
smaller region than the first-zeta one. Figure 5.6 shows the first-zeta function,
the subtracted function and resulting second-zeta function.

Once again, specifying the split radii for all the elements by hand would be
a cumbersome endeavour. Siesta already handles this in an elegant way, which
we have likewise borrowed[12]: the split radius is determined by requiring the
part of the first-zeta function outside rsplit to have a particular norm T . On
Figure 5.6, this area corresponds to the region below the graph between the two
dashed lines.

The split radius is thus determined by
∫ ∞

rsplit

ϕ2
sz(r)r

2 dr = T 2. (5.20)
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Figure 5.6: Generation of extra radial functions. The split radius is
most practically determined by specifying the norm of the single-zeta tail
beyond it.

The integration is performed by adding appropriately weighted, squared func-
tion values, starting at infinity (or rather the right-most grid point) and moving
inwards until the accumulated sum totals T 2. This prevents the special nor-
malization issues that pertain to the pseudo-character of the wave function near
r = 0 from affecting the result.

We have found that using a value of around T 2 = 0.03, or T ≈ 0.17, tends to
produce the lowest total energies. This is essentially equal to the value T ≈ 0.15
reported for Siesta.[11]

5.3.1 Energy derivative approach

A different way to generate an extra orbital is to take the derivative of the
pseudo-atomic orbital with respect to the orbital energy. This scheme is used
among other things in linear augmented plane-wave methods.[19, pp. 345-348]

The second-zeta function is here defined as

ϕdz(r) =
dϕsz(r)

d∆E
, (5.21)

which can be implemented by calculating ϕsz(r) for two slightly different energy
shifts (actually using two adjacent or otherwise close confinement radii) and
subtracting. Each function is normalized before subtraction. This is the usual
way to do it, because it guarantees that ϕdz becomes orthogonal to ϕsz, although
this property is not in fact useful to us. Since we are using pseudo orbitals for
ϕsz, we should note that it does not in fact matter whether the derivative is
taken before or after the transformation to pseudo wave functions.
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Figure 5.7: The energy derivative approach. Shows a first-zeta orbital
and second-zeta orbitals corresponding to the infinite hard-wall potential
method, a smooth confinement potential and finally an approach where
the derivative is taken with respect to the inner cutoff parameter ri of
the potential.

When ϕsz is calculated using the infinite hard-wall potential, the resulting
basis function will be discontinuous and thus useless. By using a smooth con-
finement potential, the function becomes almost continuous but still has a small
discontinuity at the cutoff. Finally, if instead of differentiating by ∆E, we dif-
ferentiate by the inner cutoff parameter ri of the confinement potential (5.7),
the function becomes smooth. These different methods are shown in Figure 5.7.
Using lower values of ri to define the potential, the features of the derivative
function can be shifted towards smaller r.

Generally the basis functions generated by this method are less smooth than
those of the previous section, with the further drawback that they have some-
what larger curvature far from the nucleus (while this effect appears dispro-
portionately large on Figure 5.7 due to the rφ(r) axis, it is in fact a relatively
modest problem). So far, we observe that calculated energies are consistently
higher for DZ basis sets when using this scheme compared to the split-valence-
like scheme of the previous section. For this reason we consider the previous
approach better, although it may well be possible to obtain more suitable shapes
using different confinement potentials.

5.4 Polarization functions

We have now seen considered ways to construct basis functions that correspond
to the valence states on an atom. Polarization functions, as mentioned, are basis
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functions corresponding to angular momenta not present among the valence
states, which will probably be needed to properly describe the wave functions
in a bonding environment.

5.4.1 Methods for selecting polarization functions

We have considered several methods:

• The obvious possibility is to use the unoccupied atomic orbitals with ap-
propriate angular momentum. This has the drawback that the orbitals
in question are generally more delocalized than the valence states, and
possibly unbound. Although they can be confined using the same method
as for the first-zeta functions, we find this method somewhat unphysical,
since the choice of confinement potential will largely determine the shape.

• Siesta polarizes one of the valence orbitals directly by applying a small
electric field, then using perturbation theory to derive a differential equa-
tion for the polarization function[11].

• Another possibility is to construct a reference system such as a molecule
or a crystal, and obtain a polarization function by interpolating the actual
wave functions calculated on the grid. This will be done below.

• Finally one can just choose a function of some simple form. It turns
out that this simple method is sufficient since the functional form can be
chosen in such a way as to universally resemble the results found by the
interpolation method.

The next section details the reference wave function interpolation scheme.

5.4.2 Wave function interpolation using Gaussians

Suppose we want to find a polarization function for a particular atom corre-
sponding to a particular angular momentum quantum number l. The plan is
to construct a reference system, such as a molecule, for which we calculate the
wave functions using the grid code.

Then we will choose a number of primitive functions, and construct the
polarization function from the linear combination of these which best reproduces
the l-character component of the reference wave function around the atom under
consideration.

Note that we want, like before, one radial function ϕ(r) shared by 2l + 1
basis functions with different spherical harmonic angular parts Ylm, such that

Φm(r) = ϕ(r)Ylm(r̂) for all m = −l . . . l, (5.22)

where the radial function is composed of primitive Gaussian-like, localized func-
tions χi, which we shall call quasi-Gaussians:

ϕ(r) =
∑

i

ciχi(r), χi(r) =

{

rle−αir
2 − rl(ai − bir

2), r < rconf

0 r ≥ rconf
, (5.23)
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where ai and bi are chosen to make χi smooth at rconf :

ai = (1 + αir
2
conf)e

−αir
2
conf , (5.24)

bi = αie
−αir

2
conf . (5.25)

For future convenience, let

Xim(r) = χi(r)Ylm(r̂) (5.26)

denote the primitive functions including angular dependence. The Gaussian-
like functions are not chosen because of the convenient properties of Gaussians
(products of Gaussians being Gaussians, exact integration and so on, which
would not work anyway due to the polynomial correction), but simply because
they resemble pseudo wave functions.

Choosing a set of αi then defines a basis of primitive functions. The next
step is to determine the expansion coefficients ci by maximizing the overlap
with the pre-calculated wave functions of some reference system (usually being
the dimer corresponding to the atom whose polarization function we wish to
calculate, but this could also be a periodic system with multiple k-points). To
do this, we define a projection operator

P̂k =
∑

n

|ψ̄k
n〉〈ψ̄k

n|, (5.27)

where |ψ̄k
n〉 are orthonormalized pseudo wave functions, such that 〈ψ̄k

n|ψ̄k′

n′ 〉 =
δkk′δnn′ . The wave functions are inherently Bloch orthogonal, but band or-
thogonality must be enforced – this is achieved by performing Gram-Schmidt
orthogonalization. The plan is then to calculate the coefficients that maximize
the overlap expression

B =
∑

km

||P̂kΦk
m||2

||Φk
m||2 , (5.28)

where the k-point specific polarization function Φk
m is obtained from the canon-

ical one in (5.22) by summation over neighbouring cell coordinates Rc with
appropriate phases. Hence

Φk
m(r) =

∑

Rc

eik·RcΦm(r − Rc) =
∑

iRc

cie
ik·RcXRc

im(r) (5.29)

where we have defined XRc

im to mean the displacement of Xim by Rc. The overlap
measure B must of course be rewritten to depend explicitly on the coefficients.
First,

||P̂kΦk
m||2 =

∑

n

〈Φk
m|ψ̄k

n〉〈ψ̄k
n|Φk

m〉

=
∑

nij

∑

RcR
′

c

eik·(R′

c−Rc)c∗i 〈XRc

im |ψ̄k
n〉〈ψ̄k

n|X
R′

c

jm〉cj . (5.30)

Likewise,

||Φk
m||2 =

∑

ij

∑

RcR
′

c

eik·(R′

c−Rc)c∗i 〈XRc

im |XR′

c

jm〉cj . (5.31)



42 5. Basis set generation

The overlap measure B can then be expressed in terms of matrices,

B =
∑

km

c†Sk
mc

c†σk
mc

, (5.32)

where c is the column matrix of coefficients ci, and the matrix elements are

Sk
mij =

∑

nRcR
′

c

eik·(Rc−R′

c)〈XRc

im |ψ̄n〉〈ψ̄n|XR′

c

jm〉, (5.33)

σk
mij =

∑

RcR
′

c

eik·(Rc−R′

c)〈XRc

im |XR′

c

jm〉. (5.34)

While it might be possible to simplify the optimization problem by setting the
derivative of B with respect to the coefficients to zero, so far we have written
an implementation of the Nelder-Mead or downhill simplex algorithm[18, pp.
305–309] to maximize the overlap, selecting an initial simplex in the space of
coefficients, then running the algorithm until a certain threshold is reached. All
pertinent inner products can be pre-evaluated. This operation is equivalent to
the cross-grid type product integrations 〈p̃ai |ψ̃k

n〉 from Chapter 3 for Bloch wave
functions. Even smij are calculated in this way by putting one of them on the
grid, since this will ensure that the matrix elements are subject to the same
numerical issues.

The algorithm converges consistently for any tested number of primitives
(between one and thirty). The coefficients will, since there is no norm-enforcing
mechanism, tend to diverge: if many primitives are used, some coefficients can
be thousands of times larger than others, effectively disregarding part of the
primitive basis. This does not appear to be harmful – the generated polarization
function is consistent regardless of the number of Gaussians, see Figure 5.8.

5.4.3 Generated functions

Rather than specifying the Gaussian decay parameters αi, it is practical to spec-
ify characteristic lengths rch,i = 1/

√
αi. In the following plots, characteristic

lengths are equidistantly distributed between 1 Bohr and half the polarization
function cutoff.

Figure 5.9 shows examples of generated polarization functions. The cutoff
is in each of these cases equal to the largest cutoff found among the single-
zeta basis functions with default parameters. Some of the functions (nitrogen,
oxygen and fluorine) appear “hunchbacked” to varying extent.

This hunchback effect probably appears because the polarization function
“wants” to describe parts of the reference wave functions around other atoms,
thus resulting in a more delocalized distribution which would not appear if the
projection scheme took into account that those atoms were equipped with basis
functions of their own (this, of course, is a rather silly error which can be fixed
by using a better projection scheme). This prompts the optimizer to select a
very large coefficient to the most extended primitive, whereas the second-most
extended primitive gets a proportionately large, negative coefficient to cancel
out this effect for smaller r (with more primitives and sharper confinement, this
numerical instability can in fact result in several such oscillations).6

6An interesting test is to construct an analytic, fictional reference wave function with the
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Figure 5.8: Polarization functions for oxygen in H2O with varying
numbers of primitive functions with evenly distributed characteristic
radii.

The hunchback effect is quite dependent on which reference system is used.
For some reference systems, such as Cl2 and Be2, disproportionately large cutoff
radii (e.g. more than 1.5 times the largest first-zeta cutoff) are required for the
polarization function to behave smoothly.

The hunchback effect is particularly pronounced in periodic systems with
more than one atom in the unit cell, which is quite unsurprising considering
that the electron cloud is delocalized. In the case of a single-atom cell, however,
the projection scheme performs better, and produces reasonably well-behaved
functions. This, of course, requires using simple, cubic crystals which is not
physically accurate in general.

As mentioned, a different projection scheme would be capable of taking care
of this problem, such as the one described by Gusso[14]. As it will turn out in
the next section, however, the exact shape of the polarization function is not all
that important.

5.4.4 Single-Gaussian polarization functions

On closer inspection, it is evident that many of the generated polarization func-
tions have quite similar overall shapes, though individual cutoffs vary signifi-
cantly.

Figure 5.10 shows several interpolated polarization functions plotted with
scaled r-axis (for most elements the scale corresponds to the cutoff, but this

shape of a quasi-Gaussian, and observe that this is interpolated correctly. Reducing the cutoffs
of the interpolating functions below the cutoff of the reference function will then result in the
hunchback effect, and further reduction can result in quite violent oscillations.
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Figure 5.9: Miscellaneous polarization functions, some of which
are “hunchbacked”. Calculated using reference molecules CH4, NH3,
H2O, HF, AlCl3 and SiO. Each function is composed of four primitive
Gaussian-like orbitals.

is not true for all of them). As can be seen, particularly for low values of r,
the functions exhibit a very similar behaviour.7 The part of the wave function
located far from the atom is likely to be considerably influenced by the bonding
environment, which means its exact shape here might be less important.

Therefore, this near-universal behaviour can be well described by a single,
appropriately chosen Gaussian. The Gaussian shown on 5.10 has a characteristic
radius of 0.35 (measured on the r/r0 axis, not in Bohr radii).

With this in mind, the present polarization function selection method is to
use a single quasi-Gaussian with a characteristic length of 0.25 times the cutoff
of the largest pseudo-atomic orbital calculated with a confinement energy of 0.3
eV. This is just a temporary solution until more test results are available, so a
more generic selection method can be implemented.

5.5 Basis set parameters in practice

By this point, we have the following parameters to consider when creating basis
sets:

• The energy shift ∆E defining the first-zeta cutoff rconf . Sensible values[12]
are 0.1eV ≤ EC ≤ 0.3eV, although we find that lower values can be neces-

7The suspicious reader might suggest that this is because each function has just one dom-
inant Gaussian near r = 0. This, however is not true. The least extended Gaussians can be
chosen differently, but the behaviour of the interpolated function remains largely unaffected.
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Figure 5.10: Contracted and normalized d-type 4-Gaussian polariza-
tion functions for various elements. The overall shape appears to be
universal for small r. The dashed line is a hand-fitted quasi-Gaussian.

sary, particularly when concerned with energy calculations on molecules.

• The confinement potential parameters A and ri in (5.7), if using the
smooth confinement scheme. The default values are A = 12 and ri =
0.6rconf .

• The tail norm values that define the split radii rsplit for each multiple-zeta
basis function. The default is a squared tail norm of T 2 = 0.03 for the
second zeta function. Good values for subsequent zeta-functions are not
yet known, but the default value is T 2 = 0.1 for the following one.

• The characteristic radius rch which defines the shape of the polarization
function, along with the polarization function cutoff. The cutoff is gen-
erally chosen equal to the largest present single-zeta cutoff, and we have
found so far that for hydrogen through chlorine, rch = .25rszconf generally
produce low energies for ∆E = 0.3 eV. The wave function interpolation
scheme can still be necessary to estimate good values of rch for transition
metals and generally elements with high atomic numbers. When adding
more than one polarization function, the present behaviour is to use the
usual multiple-zeta scheme rather than adding more Gaussians.

Generating a basis set generally takes a few seconds to around one minute.
Most CPU time is spent solving the all-electron Kohn-Sham problem, although
using periodic reference systems for the polarization function can be quite time-
consuming if the cutoff spans many cells.
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Figure 5.11: Double-zeta polarized basis set for oxygen. This is the
canonical type of basis set presently used for serious calculations, gen-
erated with default parameters.

Figure 5.11 shows the default basis set for oxygen. This is a double-zeta
polarized basis set, using the tail-norm method for the second-zeta functions and
a single quasi-Gaussian for polarization. With a total of five radial functions,
remember that the true number of basis functions during a calculation is larger
due to the multiple angular parts. This atom possesses thirteen basis functions:
one for each s-type, three for each p-type and five for the d-type polarization
function.

5.5.1 Notes on state selection

For the elements hydrogen through calcium, the valence states are either s-
states only or both s- and p-states. These elements are therefore assigned d-type
polarization functions. Transition metals, on the contrary, having s- and d-type
valence states, get polarization functions of type p. Polarization functions with
larger angular momentum have not been tested systematically yet.

In the rare case that an element has no occupied valence s-orbital, it is
very important to add an s-type orbital, which should not just be considered a
polarization function. As it turns out, the only element with this behaviour is
palladium, unless using non-standard definitions of valence versus core states.

Having now described the methods used to generate basis functions, next
chapter compares various basis sets with grid-based calculations.



Chapter 6

Basis set test results

This chapter presents the results of different tests using the localized basis func-
tions, comparing results to similar grid-based calculations. We will first present
some test results performed on simple molecules and atoms, then consider ad-
sorption energies in more complex systems.

We note first that it is not very useful to compare total energies calculated
using grid-based versus atomic basis set methods. The grid-based total energy
is generally much lower but does not say much about the actual accuracy that
can be obtained with basis sets, since the accuracy is determined to a large
extent by the inherent error cancellation due to the subtraction in atomization
energies.

6.1 Molecule tests

In this section we calculate the atomization energies of molecules, comparing
different basis sets with each other and equivalent grid-based energies. The
particular calculations presented in this section have been performed by Marco
Vanin, using the basis set generation code of Chapter 5 [17].

The atomization energy ∆Ea of a molecule is the difference in total energy
between the molecule and its constituent atoms:

∆Ea = Emol −
∑

atoms

Eatom (6.1)

We consider the G2-1 set of molecules with experimentally obtained geometries.
These are available in the module gpaw.testing.g2 included with Gpaw. All
calculations are done using cells of 12 × 13 × 14 Å and a grid spacing of h =
0.18 Å. Calculations on systems with non-zero magnetic moments are of course
performed as spin-polarized. This means isolated atoms are spin-polarized,
while most, but not all, molecules are spin-paired.

Figure 6.1 shows the performance of DZ, DZP, TZP and TZDP basis sets.
Figure 6.1a corresponds to a confinement energy shift of ∆E = 0.1 eV used
when generating the first-zeta basis functions, whereas 6.1b uses an energy of
∆E = 0.01 eV. Remaining basis set parameters are defaults (see Section 5.5).

A few observations will help to understand the graphs. In terms of total
energies, the addition of extra basis vectors will always lower the energy, con-
ferring extra variational freedom to the wave function. Since the isolated atoms

47



48 6. Basis set test results

are described by atomic orbitals, it would at first appear reasonable to assume
that the corresponding energies are very close to exact. But this is not true for
two reasons:

• The confinement energy shifts ∆E add to the total energy for each valence
state.

• The atomic calculation generating the basis functions is spin-paired.

The first of these effects is largely negated by using an energy shift of 0.01 eV
as in Figure 6.1b, and the corresponding decrease of atomic energies explains
why the calculated energies here generally lie higher (since the atomic energies
are subtracted) than in 6.1a.

Results using the DZP basis or larger basis sets mostly lie within 0.5 eV
of grid values. It is evident that the DZP basis is the smallest which yields
reasonable results, and that the DZP results for most elements are only slightly
improved by adding further basis functions. While using triple-zeta basis sets
can improve the results for some systems, the addition of an extra polarization
function only yields very marginal improvements.

6.2 Adsorption energies

To test basis set performance under more realistic conditions, we calculate ad-
sorption energies for a collection of more complex systems, again comparing the
results to grid-based calculations. Vivien Petzold has kindly provided a collec-
tion of relaxed geometries for such systems calculated in Gpaw using grid-based
wave functions. One such system is shown on Figure 6.2.

We consider the adsorption of O, NO and CO onto different surfaces of
palladium and rhodium. To calculate an adsorption energy we must calculate
the total energy Emol of the isolated molecule (or atom), the energy Esurf of the
empty crystal surface and the energy Eads of the combined system, where the
molecule has been adsorbed onto the surface. The adsorption energy is then
given by the difference

∆Eads = Efull − Esurf − Emol. (6.2)

The calculations are carried out with the same parameters used for the relax-
ation.1 The molecules have DZP basis sets with an energy shift of ∆E = 0.01
eV, while the metals have ∆E = 0.1 eV. The calculations generally use 8×8×1
or 8 × 10 × 1 k-points.

The results are shown in Table 6.1. Note that all total energies and ad-
sorption energies are in fact negative. The “Site” column denotes the type of
location on the surface where the molecule is adsorbed. Hollow sites are denoted
by hol, bridge sites by brd. Fcc sites correspond to a location where an atom
would be placed in an fcc crystal (as opposed to hcp). The last three columns
compare the adsorption energies for basis-set and grid calculations.

1In order to make the calculation converge it is generally necessary to use a non-standard
density mixer (see Section 2.4), which is more conservative in the sense that it uses a smaller
than normal weight for newly calculated densities. It is common to weight the new density
by only 0.1 when doing calculations on metals, while we find that it has to be reduced even
further, to 0.06.
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(a) ∆E = 0.1eV

(b) ∆E = 0.01eV

Figure 6.1: Atomization energies of the G2-1 dataset of small
molecules for different basis sets and for two different energy shifts.
Energies are relative to the grid values. The unit is eV. This figure is
borrowed from Marco Vanin [17].
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Figure 6.2: CO adsorbed on a bridge site of a Pd (100) surface. This
figure shows the basic cell repeated 3 × 3 times.

The calculated adsorption energies differ by between 0.1 eV and 1 eV, most
errors being around 0.6 eV. The larger deviations may well be due to the basis set
superposition error. To explain this, we consider two entities, such as a molecule
and a crystal surface. When brought close together, each entity can “borrow”
degrees of freedom which are less important to the other entity, thereby “enlarg-
ing” its own basis set. This results in lower energies of the composite system,
which is consistent with our results.

The basis set superposition error can be remedied by making sure that the
same basis is available in all systems. For example, in the case of the empty
surface calculation, the adsorption site is equipped with “ghost orbitals” cor-
responding to the basis functions that would have been there if the molecule
were present. It is also likely that the results could be improved by using a
larger basis set – we have already seen that TZP basis sets can improve results
appreciably for some systems.

6.3 Conclusion

We have tested the generated basis sets by calculating atomization energies and
adsorption energies. In order to get reasonably converged atomization energies,
it is necessary to use DZP basis sets or better. Using larger basis sets than DZP
can bring about improvements for certain systems, but many systems are well
described with DZP.

As for adsorption energies, we do not yet find the present implementation
to yield results with desirable accuracy. A large part of the error may well
be caused by the basis set superposition error, which can be eliminated in a
systematic way.
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Surf. Ads. Site E
grid

surf E
lcao
surf E

grid

mol E
lcao
mol E

grid

full E
lcao
full E

grid

ads E
lcao
ads Err

Rh100 O hol 106.31 91.42 2.18 1.79 113.53 98.75 5.04 5.53 0.50

Rh100 NO brd 106.31 91.42 12.99 11.61 121.78 106.28 2.48 3.25 0.77

Rh100 CO brd 106.31 91.42 15.23 14.14 123.54 108.45 2.00 2.90 0.89

Pd111 O fcc 41.71 32.81 2.20 1.79 48.20 39.00 4.29 4.41 0.11

Pd111 NO fcc 41.71 32.81 12.99 11.61 56.94 47.16 2.24 2.75 0.51

Pd111 CO fcc 41.71 32.81 15.25 14.13 58.94 49.49 1.98 2.55 0.57

Pd100 O hol 55.89 44.02 2.20 1.79 62.31 50.22 4.22 4.42 0.20

Pd100 NO hol 55.89 44.02 12.99 11.61 70.93 58.28 2.05 2.65 0.61

Pd100 CO brd 55.89 44.02 15.25 14.13 73.01 60.54 1.86 2.39 0.53

Table 6.1: Adsorption energies in eV calculated with grid and basis
sets. The energies obtained using basis sets consistently predict more
stable adsorbed states. All energies are negative. While absolute energies
deviate considerably between the two methods, error cancellation yields
much smaller final deviations.
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Chapter 7

Force calculations in LCAO

The purpose of this chapter is to calculate the force Fa on an atom a within
the PAW formalism.

This force is equal to the derivative of the total energy E with respect to
the nuclear coordinates Ra of a. The force expression which applies to the grid-
based case does not apply in our case because of the complication that the basis
functions move along with the atoms.

7.1 Strategic considerations

The plan is to use the chain rule on ∂E
∂Ra after identifying a suitable set of inter-

mediate parameters through which to differentiate. One could also differentiate
the energy expression term by term, but using the chain rule is probably easier,
since several useful partial derivatives (such as ṽeff(r) = δE

δñ , etc.) appear more
readily this way.

In the following, the symbol a shall refer to the particular atom whose forces
are about to be calculated, while arbitrary atoms will be indexed by b to avoid
notational confusion. Recall that the total energy (3.44) is

E = Ẽ +
∑

b

(

Eb − Ẽb
)

, (7.1)

where

Ẽ =
∑

µν

ρνµ
〈
Φµ
∣
∣− 1

2∇
2
∣
∣Φν
〉

+
1

2

∫
ρ̃(r)ρ̃(r′)

||r − r′|| d3rd3r′

+
∑

b

∫

ñ(r)v̄b(r) d3r + Exc[ñ]. (7.2)

The atomic contributions Eb and Ẽb, which we do not bother listing here, can
be lobbed together in an expression ∆Eb = Eb − Ẽb. This is a function of the
atomic density matrices Db

ij and some atomic variables, i.e. the only dependence

on environment, and thereby nuclear position, is through Db
ij . Hence ∆Eb is a

function only of Db
ij for the purposes of differentiation with respect to nuclear

coordinates.
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The pseudo charge density ρ̃ which completely determines the Coulombic
contribution to Ẽ is

ρ̃(r) = ñ(r) +
∑

bL

QbLg̃
b
L(r), (7.3)

where the expansion coefficients QbL depend on Db
ij plus some internal, atomic

variables which are constant. For this reason, ρ̃ depends on ñ, Db
ij and the

location of the atom-centered functions g̃bL.

With this and (7.2) in mind, the total energy will be regarded as a function
of precisely the following variables, where each variable is itself dependent on
the nuclear coordinates in some manner yet to be described:

• The density matrix elements ρµν .

• The kinetic energy overlap matrix elements Tµν = 〈Φµ| − 1
2∇2|Φν〉.

• The electron density ñ(r).

• The compensation charge expansion functions g̃aL, which move rigidly with
the atoms. Only those belonging to a change with Ra.

• The zero potentials v̄a which also move rigidly with the atoms.

• The atomic density matrices Db
ij .

The force is then

Fa = − ∂E

∂Ra , (7.4)

where1

∂E

∂Ra =
∑

µν

∂E

∂ρµν

∂ρµν
∂Ra +

∑

µν

∂E

∂Tµν

∂Tµν
∂Ra +

∑

L

∫
δE

δg̃aL(r)

dg̃aL(r)

dRa d3r

+

∫
δE

δñ(r)

∂ñ(r)

∂Ra d3r +

∫
δE

δv̄a(r)

dv̄a(r)

dRa d3r +
∑

bij

∂E

∂Db
ij

∂Db
ij

∂Ra . (7.5)

Note that contrary to the grid-based case, the expression
∂Db

ij

∂Ra which occurs in
the last term may be nonzero even for a 6= b. This is because Db

ij contains
overlaps between projectors of atom b with basis functions on all other atoms,
including a. In a related matter, many matrix element derivatives in other terms
are in fact zero due to both or neither of the corresponding localized functions
moving along with a, an issue which will be considered later. By not applying
any assumptions about whether the basis functions move along with the atoms,
we will obtain a universal result which is valid for any basis, atom-centered
or not, which should reduce to the grid-based force expression under suitable
simplifications.

1The use of hard d in the differential quotients involving radial functions such as v̄a ex-
presses that the functions are taken to be functions of the atomic position (only).
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7.2 Evaluation of force contributions

The force contributions from each of the partial derivatives in (7.5) will now be
evaluated in turn.

7.2.1 State operator contribution

Our immediate problem is the derivatives of the coefficient matrices, which are
unknown. Using the definition ∂E

∂ρµν
= Hνµ and the generalized eigenvalue

equation HC = SCΛ and its adjoint (see Section 4.6, Equation (4.29)), we can
rewrite:

∑

µν

∂E

∂ρµν

∂ρµν
∂Ra =

∑

µν

Hνµ
∂

∂Ra

∑

n

cµnfnc
∗
νn

=
∑

µνn

{
∂cµn
∂Ra fnc

∗
νnHνµ +Hνµcµnfn

∂c∗νn
∂Ra

}

= Tr

[
∂C

∂RaFC†H

]

+ Tr

[

HCF
∂C†

∂Ra

]

= Tr

[
∂C

∂RaFΛC†S

]

+ Tr

[

SCΛF
∂C†

∂Ra

]

= Tr

[

FΛ

(

C†S
∂C

∂Ra +
∂C†

∂RaSC

)]

. (7.6)

In the last step we have used that Λ and F are both diagonal matrices and there-
fore commute. Now consider the orthogonality condition (4.16), or C†SC = I.
Its derivative with respect to Ra must evidently be zero:

∂C†

∂RaSC + C† ∂S

∂RaC + C†S
∂C

∂Ra =
∂I

∂Ra = 0. (7.7)

This we can use to eliminate the dependene of (7.6) on coordinate matrix deriva-
tives, obtaining

∑

µν

∂E

∂ρµν

∂ρµν
∂Ra = −Tr

[

FΛC† ∂S

∂RaC

]

. (7.8)

Recall that the Lagrange multipliers after diagonalization of the Hamiltonian
are Kohn-Sham energies, λnn = ǫn, such that

∑

µν

∂E

∂ρµν

∂ρµν
∂Ra = −

∑

nµν

ǫnfnc
∗
µn

∂Sµν
∂Ra cνn. (7.9)

The derivative of the overlap matrix element Sµν is

∂Sµν
∂Ra =

∂Θµν

∂Ra +
∑

bij

∆Sbij

{

∂P b∗iµ
∂Ra Pjν + P b∗iµ

∂P bjν
∂Ra

}

, (7.10)
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where Θµν = 〈Φµ|Φν〉 and P biµ = 〈p̃bi |Φµ〉, and we have used that ∆Sbij consists of
internal atomic variables and thus is invariant to translation. By manipulating
the summation indices the final result becomes

∑

µν

∂E

∂ρµν

∂ρµν
∂Ra = −

∑

nµν

cνnǫnfnc
∗
µn

∂Θµν

∂Ra

− 2ℜ
∑

nµνbij

cνnǫnfnc
∗
µn

∂P b∗iµ
∂Ra ∆SbijP

b
jν . (7.11)

7.2.2 Kinetic energy contribution

The kinetic energy contribution is simply

∑

µν

∂E

∂Tµν

∂Tµν
∂Ra =

∑

µν

ρνµ
∂Tµν
∂Ra . (7.12)

7.2.3 Compensation charge contribution

The energy and the compensation charge basis functions can be related by using
the chain rule. To this end, note first that the pseudo Hartree potential ṽHa is
the derivative

δE

δρ̃(r)
= ṽHa(r). (7.13)

Second, choosing for the moment to perceive the charge as a functional of the
pseudo density ñ along with all the compensation charges Z̃b =

∑

L′ QbL′ g̃bL′ , we
may write

δρ̃[ñ, {QbL′ , gbL′}]
δg̃aL

=
δ

δg̃aL

[

ñ+
∑

bL′

QbL′ g̃bL′

]

= QaL. (7.14)

Thereby

∑

L

∫
δE

δg̃aL(r)

dg̃aL(r)

dRa d3r =
∑

L

∫
δE

δρ̃(r)

δρ̃(r)

δg̃aL(r)

dg̃aL(r)

dRa d3r (7.15)

=

∫

ṽHa(r)
∑

L

QaL
dg̃aL(r)

dRa d3r. (7.16)

Notice that this result is essentially indifferent to the introduction of basis func-
tions – the same formula applies when the wave functions are represented on a
grid, the only difference being that the coefficients QaL are ultimately evaluated
differently.

7.2.4 Pseudo density contribution

The pseudo density is given by (4.21),

ñ(r) =
∑

µν

ρνµΦ
∗
µ(r)Φν(r) +

∑

b

ñbc(r), (7.17)
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and we recall the definition ∂E
∂ñ(r) = ṽeff(r). The pseudo core density ñbc(r) is

independent of Ra except if a = b, so ñac (r) will be the only remaining core
contribution. Thereby

∫
∂E

∂ñ(r)

∂ñ(r)

∂Ra d3r =

∫

ṽeff(r)
dñac (r)

dRa d3r

+

∫

ṽeff(r)
∂

∂Ra

∑

µν

ρνµΦ
∗
µ(r)Φν(r) d3r, (7.18)

which can be rewritten to
∫

∂E

∂ñ(r)

∂ñ(r)

∂Ra d3r =

∫

ṽeff(r)
dñac (r)

dRa d3r

+ 2ℜ
∑

µν

ρνµ

∫
dΦ∗

µ(r)

dRa ṽeff(r)Φν(r) d3r. (7.19)

The former term is indifferent to the introduction of atomic basis functions.
The latter term is evaluated by integrating on the grid.

7.2.5 Zero potential contribution

The v̄a contribution is straightforwardly
∫

δE

δv̄a(r)

dv̄a(r)

dRa d3r =

∫

ñ(r)
dv̄a(r)

dRa d3r, (7.20)

and is therefore not dependent on atomic basis set specifics.

7.2.6 Atomic density contribution

The atomic hamiltonian is defined to be the derivative

∆Ha
ji =

∂E

∂Da
ij

, (7.21)

and we know that the atomic density matrix for some atom b is given by

Da
ij =

∑

µν

P biµρµνP
b∗
jν . (7.22)

Differentiating by Ra for fixed ρµν yields

∂Db
ij

∂Ra =
∑

µν

ρµν

(

∂P biµ
∂Ra P

b∗
jν + P biµ

∂P b∗jν
∂Ra

)

, (7.23)

such that finally

∑

bij

∂E

∂Db
ij

∂Db
ij

∂Ra =
∑

bijµν

∆Hb
jiρµν

(

∂P biµ
∂Ra P

b∗
jν + P biµ

∂P b∗jν
∂Ra

)

= 2ℜ
∑

bijµν

∆Hb
ji

∂P biµ
∂Ra ρµνP

b∗
jν , (7.24)

where the last expression can be obtained by either symmetry considerations or
appropriate index shuffling.



58 7. Force calculations in LCAO

7.3 General force expression

Combining all the equations (7.11), (7.12), (7.16), (7.19), (7.20) (7.24), we can
behold the complete force expression

Fa = −2ℜ
∑

bµνij

{

∆Hb
jiρµν − ∆Sbji

∑

n

cνnǫnfnc
∗
µn

}

∂P biµ
∂Ra P

b∗
jν

−
∑

µνn

cνnǫnfnc
∗
µn

∂Θµν

∂Ra −
∑

µν

∂Tµν
∂Ra ρνµ

− 2ℜ
∑

µν

ρνµ

∫
dΦ∗

µ(r)

dRa ṽeff(r)Φν(r) d3r −
∫

ṽeff(r)
dñac (r)

dRa d3r

−
∫

ṽHa(r)
∑

L

QaL
dg̃aL(r)

dRa d3r −
∫

ñ(r)
dv̄a(r)

dRa(r)
d3r. (7.25)

For mathematical clarity it may be worth noting that each of the terms involving
an overlap derivative, even the first term for which this is not immediately obvi-
ous, can in fact be written as a matrix trace, which is useful when implementing
the expression.

The overlap derivatives are written generically with respect to Ra here. In
this form, the force expression is true in general, i.e. for atomic orbital basis
sets as well as, say, the real-space grid basis – the only difference being that the
overlap derivatives are evaluated differently (most of them being zero for the
grid basis, with the exception of the projector overlaps).

Accomodation of Bloch states is very straightforward. Since each type of
overlap matrix is evaluated separately for each k-point, sums over k-points in
the energy expressions (not included in this work; see the developer guide on
the Gpaw web page [24]) translate directly to sums over force contributions
with k-point specific overlap matrices. Having multiple spins only affects the
integration of the effective potential.

In adapting the force expression specifically to atom-centered basis functions,
the overlap derivatives must be reexpressed in terms of interatomic separation
vectors rather than absolute positions, since the separation vectors are the nat-
ural variables of the two-center integral expressions (4.8). This will be done in
the next section.

7.4 Derivatives of two-center integrals

To evaluate the overlap derivatives above, we must calculate the derivative of
the two-center integral expansions (4.8). Since the real solid spherical harmonics
Ȳlm(R) = RlYlm(r) are simply polynomials in the cartesian coordinates, it
proves convenient to transfer a factor of Rl from the radial part to the formerly
angular part:

Θ̄lm(R) =
Θlm(R)

Rl
, (7.26)

Ȳlm(R) = RlYlm(R̂). (7.27)
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Then the overlap integral takes the form

Θ(R) =
∑

L

ΘL(R)YL(R̂) =
∑

L

Θ̄L(R)ȲL(R̂). (7.28)

Differentiation with respect to R yields

dΘ(R)

dR
=
∑

L

{
dΘ̄L(R)

dR
ȲL(R) + Θ̄L(R)

dȲL(R)

dR

}

=
∑

L

{
dΘ̄L(R)

dR
ȲL(R)R̂ + Θ̄L(R)

dȲL(R)

dR

}

, (7.29)

where we have used that if r2 = x2 + y2 + z2, then dr
dx = x

r and so on. In this
form all variables are trivially evaluated – the radial splines, being piecewise
polynomials, have piecewise polynomial derivatives as well.

Differentiation of an overlap with respect to a particular nuclear coordinate
Ra works out somewhat differently depending on matters of localized function
ownership: if e.g. both or none of the localized functions reside on the atom in
question, the overlap is translation invariant. We can write down the following
four cases, letting Rµ designate the location of whichever atom the µ’th function
belongs to:

∂Θµν(R
ν − Rµ)

∂Ra =







0 µ ∈ a, ν ∈ a

− dΘµν

dRµν µ ∈ a, ν /∈ a
dΘµν

dRµν µ /∈ a, ν ∈ a
0 µ /∈ a, ν /∈ a

(7.30)

where set inclusion denotes atomic ownership. We can then rewrite each of the
overlap derivative expressions in (7.25):

∑

µν

∂Θµν

∂Ra ρνµ =
∑

µ∈a

ν /∈a

∂Θµν

∂Ra ρνµ +
∑

µ/∈a
ν∈a

∂Θµν

∂Ra ρνµ (7.31)

= −
∑

µ∈a

ν /∈a

dΘµν

dRµν ρνµ +
∑

µ/∈a
ν∈a

dΘµν

dRµν ρνµ (7.32)

The former term can be rewritten by interchanging symbols, then reversing the
atomic separation vector:

−
∑

µ∈a

ν /∈a

∂Θµν

∂Rµν ρνµ = −
∑

µ/∈a
ν∈a

∂Θνµ

∂Rνµ ρµν =
∑

µ/∈a
ν∈a

∂Θ∗
µν

∂Rµν ρ
∗
νµ, (7.33)

which yields the final expression

∑

µν

∂Θµν

∂Ra ρνµ = 2ℜ
∑

µ/∈a
ν∈a

dΘµν

dRµν ρνµ, (7.34)

Using this, the summation sets for the overlaps appearing in (7.25) can be
reduced significantly. On a technical note, we have not yet implemented this



60 7. Force calculations in LCAO

final expression for the overlaps, but instead use the general force expression
(7.25) with the modification that a “mask” is applied to each overlap matrix,
multiplying the elements by 0, 1 or -1 according to (7.30). While this is obviously
not efficient, it can be useful because it allows direct finite-difference checks of
all overlap matrices.

7.5 Force test calculations

Having implemented Equation (7.25), this section aims to document that the
force is, in fact, calculated correctly. For this reason we run two tests. First a
simple check demonstrating that the calculated forces are reproduced by finite-
difference calculations in the general case of multiple k-points, and periodic
boundary conditions, then and a more comprehensive but gamma-point only
egg-box force test, which will be explained later.

Before we start, a useful initial test is to check that the calculated forces
have the correct symmetries and that they obey Newton’s 3rd law, i.e. that the
sum of all forces on all atoms must be zero for each direction. Interestingly, it
turns out that:

• Each of the force contributions involving derivatives with respect to the
state operator, kinetic energy and atomic density matrices separately sums
up to zero with very high precision.

• The sum of all the remaining force terms, i.e. those involving the effec-
tive potential and all terms that relate to compensation charges and zero
potential, must then also be zero in order for the result to obey Newton’s
3rd law. This is also the case, although each of the these terms separately
does not add up to zero. Furthermore the agreement is not as accurate as
for the above terms. The small deviation from Newton’s 3rd law during
any force calculation is caused largely by these terms.

7.5.1 Finite-difference checks

The easy way of testing calculated forces is by finite-difference. We use the
symmetric finite-difference approximation

F ax ≈ −E(x+ ∆x) − E(x− ∆x)

2∆x
(7.35)

and compare this to the calculated forces. Table 7.1 shows forces calculated
using Equation (7.25) as well as finite-difference. The system under considera-
tion is the diamond structure accessible in gpaw.utilities.bulk, except the
first atom at (0,0,0) is shifted by (0,0,-0.2) Angstroms such that the forces are
non-zero. The non-trivial parameters are listed in Table 7.2. With four atoms,
three directions and two energy evaluations per atomic force component, the
total number of energy evaluations is 24. Each calculation uses a new calcula-
tor object rather than reusing the previous density, which takes more time but
guarantees that there is no systematical bias. Evidently the numbers agree very
well, thus demonstrating that the implementation very probably works.
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Calculated forces [eV/A]

Localized basis sets Grid-based wave functions
Atom Fx Fy Fz Fx Fy Fz

1 5.29607 2.73416 4.95862 5.11187 2.65237 4.72001
2 -1.36114 -1.57156 -1.35054 -1.30671 -1.46240 -1.35617
3 -1.35456 -0.10720 -0.03019 -1.35063 -0.10693 -0.02625
4 -2.58200 -1.05918 -3.58148 -2.45308 -1.08390 -3.33826

Finite-difference forces [eV/A]

Localized basis sets Grid-based wave functions
Atom Fx Fy Fz Fx Fy Fz

1 5.29391 2.73727 4.95631 5.13250 2.65212 4.72042
2 -1.36292 -1.57049 -1.35015 -1.30683 -1.46227 -1.35642
3 -1.35217 -0.10762 -0.02952 -1.37083 -0.10678 -0.02636
4 -2.58162 -1.06121 -3.57841 -2.45353 -1.08377 -3.31776

Calculated forces minus finite-difference forces [eV/A]

Localized basis sets Grid-based wave functions
Atom Fx Fy Fz Fx Fy Fz

1 0.00216 -0.00311 0.00231 -0.02063 0.00025 -0.00041
2 0.00178 -0.00107 -0.00039 0.00012 -0.00013 0.00025
3 -0.00239 0.00042 -0.00067 0.02020 -0.00015 0.00011
4 -0.00038 0.00203 -0.00307 0.00045 -0.00013 -0.02050

Table 7.1: Forces calculated by differentiation compared to finite-
difference results calculated using LCAO as well as real-space grid basis.
The system is a perturbed diamond crystal with four atoms per cell.

Parameter Value

Cell [Å] (3.57, 2.52, 2.52)
Periodic yes

Grid spacing 0.15 Å
k-points (2, 4, 4)

Basis DZP
FD step ∆x 0.001 Å

Table 7.2: Parameters in finite-difference force test. Any parameters
not mentioned here are default values.
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7.5.2 Egg-box forces

In order to remove any remaining doubt about whether this works or not, we
perform a somewhat more comprehensive test, namely checking that the calcu-
lated forces reproduce the slope of the energy curve resulting from the egg-box
effect, which we shall now explain briefly.

Suppose we have a system consisting of any constellation of atoms inside
a periodic cell. Physically, the energy of this system is of course translation
invariant. However, due to the finite grid resolution, translation is not a true
symmetry operation, except when translating by an integer times the grid spac-
ing. Thus the energy will in general, as the system is gradually translated,
oscillate with a spatial frequency corresponding to the grid resolution. This is
called the egg-box effect, owing to the energy curve oscillating like the lid of an
egg box.

Consider a single atom in a periodic cell, using some grid spacing h. Then
select a set of dislocations xi, where 0 ≤ xi ≤ h/2, and calculate the energy
E(xi) and the force component Fx(xi) of the system translated by each of those
amounts. At each point the linearization

E(x+ dx) − E(x) = −F (x) dx (7.36)

must apply, i.e. the line segments through each point (xi, E(xi)) with slope
Fx(xi) must connect neighbouring points such as (xi+1, E(xi+1)).

Figure 7.1 shows an egg-box force test on a hydrogen atom. The test uses
the default DZP basis.2 The line segments join the calculated energy points
quite well in most locations. Curiously, the first couple of points tend to vary
discontinuously. This is probably because the energies are calculated “left to
right” on the graph, using the same calculator object. The translated density of
the previous calculation is then used as an initial guess for the next calculation:
after the first calculation it may not have converged as well as in the succeeding
ones, which becomes more important when considering very small energy differ-
ences as is the case here. This is might be more important for the LCAO-based
calculations, which use a somewhat more lax stop criterion by default.3 For
some reason the central part of the middle (h = 0.1750) plot appears slightly
off in both the grid and LCAO cases, which might also be helped by improving
the convergence criteria, though we cannot really explain this; at the very least
it is not specific to the use of atomic basis functions.

This test has been run on a number of different atoms, Al, C, Cl, F, H, Li,
N, O, S and Si, obtaining similar results.

7.6 Summary

We have by now derived a formula for the total force on an atom which is in
principle valid for any basis set. With atom-centered basis sets, this involves

2The test can be run using the command gpaw-test --lcao=dzp H, where the test pro-
gramme resides in gpaw/tools, if an appropriate DZP basis set is available.

3For LCAO calculations, the change in density per Kohn-Sham iteration is used as stop
criterion, whereas in the grid-based case, changes in density as well as wave functions are
considered, since the wave functions too are subject to iteration here and thus have to converge
as well.
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Figure 7.1: Egg-box force test for hydrogen with different grid spacings
h. The dots are calculated energies as a function of the sub-resolution
displacement x. The line segments are given by E(x) − F (x) dx ex-
trapolated around each point. The red/black curves represent grid-based
calculations while the blue/green ones use localized basis functions. The
energy zero is arbitrary.
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derivatives of localized function overlaps, which are calculated from the two-
center integral expansions.

The formula has been implemented in Gpaw and subsequently tested by
comparing calculated forces with finite-difference approximations. This was
done with periodic boundary conditions with multiple k-points. We have fur-
ther shown that the forces correctly account for the very small egg-box effect,
meaning that the calculated forces are highly accurate.



Chapter 8

Conclusion

We have derived a variational problem and corresponding Kohn-Sham equations
valid in the projector augmented wave method when using localized basis sets.
This has been implemented in the real-space grid-based Gpaw code. In using
localized functions, grid-based integrations are replaced by two-center integrals
which can be expressed as radial splines times spherical harmonics.

A basis set generator has been implemented which is capable of generating
multiple-zeta basis sets plus polarization functions. Basis sets consist of one
pseudoatomic orbital for each valence state, which is generated by solving the
Kohn-Sham equations for an isolated atom. Smooth shape is achieved by apply-
ing the reversed PAW transformation on the all-electron Kohn-Sham solutions.

Multiple-zeta basis sets can be generated by the split-valence-like method
employed in Siesta, or by means of an energy derivative of the pseudoatomic
functions. So far we have found the former method to produce better results.
Angular flexibility is improved by adding polarization functions. We have im-
plemented a method to generate polarization functions by interpolating the
polarized character of the wave function for a given reference system. Observ-
ing that the generated functions share a certain universal shape, it turns out
that they can generally be represented by a single Gaussian-like function.

Calculations on simple molecules show that double-zeta polarized basis sets
are required and in many cases sufficient to obtain reasonably converged atom-
ization energies. We find calculations of adsorption energies to deviate quite
considerably from grid results, which is likely due to the basis set superposition
error. This can probably be improved in the near future by the implementation
of “ghost orbitals”, which prevent the basis set superposition error by ensuring
that different calculations are done in the same Hilbert space.

Finally, we have derived an expression for the force acting on an atom,
which will enable geometry relaxations and molecular dynamics simulations.
The calculated forces reproduce finite-difference results and the egg-box effect
very accurately.
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