
Various parallel programmes using MPI

in Fortran

Nilas Mandrup Hansen, Ask Hjorth Larsen

January 27, 2010

1 Speed-Up due to Pipelining

We define the speed-up as s = T/Tpipe. In the case where the is no pipelining
the time it would take to do n operations would be T = 4n+1 (the last operation
is used only to flush the last result out of the buffer; this is largely a question
of definitions) while when using pipelining it is Tpipe = 4 + n+ 1 meaning that
the speed-up can be written as follows;

S =
4n+ 1

n+ 5
(1)

where the latency, the cycles taken before results start coming out, would be 4.

2 Timing and Optimization

In this small exercise, wall-clock times for different types of loops are to be
tested. The types are normally coded loops, unrolled loops, interchanged loops
and split loops. Also different compiler optimizations are tested.

a, Here a normally coded loop and a partly unrolled loop are compared. The
source code can be seen in appendix A in the subroutine ex2. Table 1 shows the
results from the normally coded version and the partly unrolled version compiled
with different compiler optimizations. For the version with no optimization, the

-O0 -O1 -O2 -O3
Normally coded 3.589 2.223 2.016 0.004
Unrolled 1.716 1.223 0.856 0.049
Time reduction −52% −45% −58% +965%

Table 1: Timing Results (in seconds). Normal loop vs. Unrolled loop.

unrolled version of the loop is much faster than the normally coded version.
With the O1 option on for the compiler, the unrolled version is again faster
than the normal version, but less so than in the case with no optimization. This

1

could indicate that the compiler itself creates some kind of unrolled version
when compiling. With option O2, the unrolled version is the fastest, while
for the O3 option the normally coded loop becomes the fastest. Evidently the
normally coded loop is simpler for the compiler to figure out, so it is capable of
optimizing it more aggressively.

b, Here a triply nested loop is being timed and compared to a version where
the loop nesting order is reversed. The loop in its ordinary version calls the
Fortran built-in function real on the outermost loop variable, but stores this
in a 3D array with leading dimension corresponding also to the outermost loop.
Thus, in the ordinary version, it is easy to reduce the number of integer-to-
real conversions, but the array is accessed contrary to its memory layout. The
reversed version of the loop accesses the array in memory-contiguous order, but
needs to call the real function many more times.

The source code can be seen in appendix A in the subroutine ex3a. The
results are shown in table 2. The reversed version is by far the fastest version.

-O0 -O1 -O2 -O3
Nested loop 1.851 1.791 1.819 0.148
Reversed 0.609 0.473 0.450 0.074
Time reduction 67% −74% −75% −50%

Table 2: Timing Results (in seconds). Nested loop vs its reversely nested loop.

It can be seen that the reversed version becomes more efficient when compiler
optimizations are used. However the O3 optimization considerably reduces the
computation time for both the nested loop and the reverse.

As a final part of the question, a loop containing an IF-statement and its
split version, without an IF-statement are to be compared. The source code can
be seen in appendix A in the subroutine ex3b. The results are shown in table
3. The split version is the fastest version when only compiler option O0 or O1

-O0 -O1 -O2 -O3
Loop with IF-statement 2.412 1.916 1.463 0.0067
Split version 1.753 1.238 1.551 0.267
Time reduction 27% −35% +6% +3885%

Table 3: Timing Results (in seconds). Loop with an IF-statement vs its split
version.

is used, while the loop with the IF-statement is the fastest if compiler option
O2 and O3 are used.

2

3 Loop Vectorization

Here we consider the possibility of vectorizing two versions of a DO-loop. See
exercise text. The two do loops do not perform the same operation and they do
not give the same result. The second DO-loop can be vectorized as follows;

a(2 : n) = b(1 : n− 1) + d(2 : n) (2)

d(2 : n) = a(1 : n− 1)− d(2 : n) (3)

The first DO-loop can not be vectorized, as values in one iteration depend directly
on values from the immediately preceding iteration.

For the last part of the question we should explain how the Intel compiler can
vectorize a particular loop with the cyclic dependency, where the dependency
goes p iterations back. Our guess is that the Intel compiler does the n operations
in vectors of size p. If one would show the execution time versus the parameter

Figure 1: Principle

p, we think it would have the form;

t = α
1

p
(4)

4 Parallel World with MPI

Here our first MPI program saying “Hello World” is created. The source code
can been seen in appendix B.

The MPI library is used by specifying the include ‘‘mpif.h’’. Then the
parallel environment is established with the MPI init command. To get the
number of processors and the rank of each processor the commands MPI rank

and MPI size is used. The command MPI Barrier is used to ensure that all
threads has done the do before the another cycle begins. To finalize the MPI
program the command MPI Finalize is used.

The results is shown below.
Hello world 0 4

Hello world 1 4

Hello world 2 4

Hello world 3 4

3

5 MPI Ping-Pong

In this question a MPI ping-pong program is written. A message is sent from
process 0 to process 1. When the process 1 have received the message, its sends
back the message to process 0 (ping-pong). This process is timed when com-
pleted a 1000 times.

First a single message is sent having a size of 16 byte. The time its takes
to send this message from process 0 to process 1 is 8.188E − 3s (Ping) and the
time its takes to send the message back from process 1 to process 0 is 7.907E−3s
(Pong). For the record it should be mentioned that the ping-pong is run on the
Bohr-cluster. The estimated bandwidth is given as (message size/transfer time);

Bandwidth =
Messagesize

transfertime
=

16byte

0.008s · 1000
≈ 2MB/sek. (5)

From the preceding equation an estimated bandwidth of approximately 2MB/sek.
can be found.

Next the message size is increased incrementally up to a final message size
of approximately 2MB. The results is shown in Fig. 2.

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

MByte

Wa
ll

Cl
oc

k
Ti

me

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

0

1

2

3

4

5

MByte

Wa
ll

Cl
oc

k
Ti

me

Process 0
Process 1
Slope = 2.10

Process 0
Process 1
Slope = 2.10

Figure 2: Timing results.

It can be seen that the wall clock time scales nearly linear with a slope of 2.1
which means that the approximate bandwidth is 2.1MB/sek..

The source code can be seen in appendix C.

4

6 Non-blocking communication

In this exercise the sum of the ranks of a set of processes enclosed by a ring is to
be calculated. In order to avoid deadlocking the method Issend-Recv-Wait

is used.

The output from a run on 8 processors produces the following output.

2 issendrecvwait 28

3 issendrecvwait 28

5 issendrecvwait 28

4 issendrecvwait 28

1 issendrecvwait 28

6 issendrecvwait 28

0 issendrecvwait 28

7 issendrecvwait 28

From the preceeding that the result is 28 from all processors as expected.

The send-receive method is now replaced with the MPI Sendrecv. the result
is shown in the following;

5 sendrecv 28

6 sendrecv 28

7 sendrecv 28

0 sendrecv 28

1 sendrecv 28

2 sendrecv 28

3 sendrecv 28

4 sendrecv 28

Again the result is 28. Finally the MPI Sendrecv Replace is used. The advan-
tage is here that one do not have to copy the receive buffer to the send buffer.
The resutls is shown in the following;

3 sendrecv_replace 28

4 sendrecv_replace 28

5 sendrecv_replace 28

6 sendrecv_replace 28

7 sendrecv_replace 28

0 sendrecv_replace 28

1 sendrecv_replace 28

2 sendrecv_replace 28

The source code can be seen in appendix D.

5

7 Collective communication

Here the sum of all teh ranks is again computed. To do this, the command
MPI Allreduce is used. In the present, the program is written such that is
processor has its rank stored in a variable. The MPI Allreduce reads this vari-
able from each processor and sum all the values, since it is given the argument
MPI SUM. The results is then distributed to all processors. The output is shown
below.

4 allreduce 28

6 allreduce 28

0 allreduce 28

2 allreduce 28

1 allreduce 28

5 allreduce 28

3 allreduce 28

7 allreduce 28

Result is 28.

To produce the i! of i = 1 the MPI Scan is used. The function basiccaly scans
each processor for a given value and the carries that value with it to the next
processor where it calculates the product using the MPI PROD. The result is
shown below;

5 720 8

7 40320 8

2 6 8

6 5040 8

1 2 8

4 120 8

0 1 8

3 24 8

It can be seen that processor 0 returns 1, processor 1 returns 2 and processer 2
returns 6 as expected. Finally the results from each processor is collected on a
single processor which do an I/O.

Collected 1 2 6 24 120 720 5040 40320

8 Monte Carlo computation of π

In the exercise, the quantity π is to be found by the Monte Carlo method of
integration. A unit circle is tightly enclosed by a square width is 2 meaning
that the area of the square is 4, while the area of the unit circle is π.

The square is filled with randomly placed seeds. Some will be placed outside

6

the unit circle, and some will be placed within the unit circle. The ratio π̂ will
be given as follows;

π̂ = 4 ·
nni

n
(6)

where π̂
n→∞

→ π as the number of seeds is increased. To produce a set of random
number from 0 to 1, the Fortran random number generator is used. A total of
2000 seeds is used for the computation.
When run on multiple processors, the command MPI reduce is used to collect
the numbers from each processor to a single value. An output example is shown
below for a MPI run on 8 processors.

0 3.104

1 3.09

3 3.146

4 3.138

5 3.16

2 3.136

6 3.214

7 3.152

Total 3.1425

where the first column is the rank and the second column is the value π from
each processor. The source code can be seen in appendix E.

9 Poisson solver using red-black Gauss-Seidel

method

We consider the Poisson equation

∇
2u(r) = f(r) (7)

in the 2D square domain r ∈]0; 1[×]0; 1[with some arbitrary boundary condi-
tions, say u(0, y) = u(1, y) = 1 and u(x, 0) = u(x, 1) = 0. We wish to implement
a parallel Fortran routine using MPI which solves this on a real-space grid ui,j

by repeatedly performing the operation

ui,j ←
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1 + h2fi,j). (8)

Depending on the order in which neighbouring elements are updated in this
fashion, the above scheme can be applied in several different ways. Here we
shall use the red-black Gauss-Seidel method.

Points are classified as “red” or “black” in a checkerboard pattern, such that
each point has four neighbours of the opposite colour. First all red points are
updated as per Eq. (8), requiring knowledge of only the black points. Then the

7

black points are updated, using the newly calculated red values. Each point is
thus updated once by performing two separate sweeps of the array.

To do this in parallel, we assign each CPU to be responsible for a distinct
subdomain, such that the subdomains are square (for simplicity) and equally
large. The edge points for one CPU will then, during a given sweep, depend on
values for which the neighbouring CPUs are responsible. Every CPU therefore
has to send and receive information to and from each of its four neighbours in
the grid, with the exception of those CPUs that are on the domain boundary.

9.1 Implementations and performance

We have implemented a main loop which performs one “red” sweep and one
“black” sweep per overall iteration, where each sweep is governed by the follow-
ing code:

call recv_buffers_nonblocking(rbuf, ranks, M, comm, reqs)

call update_local_array(U, M, M, h2, eps, color)

call copy_array_to_buffers(U, M, M, sbuf)

call send_buffers_blocking(ranks, sbuf, M, comm)

call wait_for_requests(ranks, reqs)

call copy_buffers_to_array(U, M, M, rbuf)

• First a non-blocking receive is started with a reception buffer rbuf (M is
the size of the array which must for simplicity be square).

• Then the local array slice U is updated according to the usual procedure
(the color parameter determines the checkerboard offset, h2 is the squared
grid-spacing and eps is the residual which is integrated dynamically).

• After the update, the array edges are copied out into a send buffer (sbuf)
and sent to the neighbours in a blocking manner (which is far from optimal;
the parallelization only helps to the extent that the processes do not finish
the previous step equally fast. This will be improved below).

• Finally the receive buffer is copied back into the array.

Figure 3 shows a speedup plot for the Poisson solver.
It scales to some extent, although less than perfectly due to the communica-

tion. We have previously theorized about another reason for bad scaling, namely
that the test computer is in fact a shared-memory machine, which means that
a sufficiently large number of CPUs can exhaust the main memory bandwidth
if they are loading large arrays (that do not fit in the caches) at the same time.

The latter we cannot do anything about, but for smaller matrices in partic-
ular, performance should improve by using a better non-blocking method. Our
plan is to update only the boundary points at first, then send the boundary
values in a non-blocking manner, then update the remaining interior points,
and finally copy the by hopefully received buffers back into the array.

Improved main loop for one sweep:

8

0 2 4 6 8 10 12 14 16
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

400
800
1200
1600
2400

Figure 3: Speedup of first Poisson solver for different CPU counts and matrix
sizes

call update_boundaries_and_copy_to_buffers(U, M, h2, eps, color, sbuf)

call send_buffers_nonblocking(sbuf, M, ranks, comm, reqs)

call update_interior(U, M, h2, eps, color)

call recv_buffers_blocking(rbuf, M, ranks, comm)

call wait_for_requests(ranks, reqs)

call copy_buffers_to_array(U, M, M, rbuf)

Figure 4 shows the speedup for the improved non-blocking scheme. It turns
out that this does scale better: for 16 CPUs, the previous method had a speedup
of 8 to 12 depending on matrix size, whereas the new one reaches 9.5 to 13.
The tendency is more favourable for smaller matrix sizes, consistently with the
theory of memory bandwidth exhaustion. We have observed that the variation
in serial speed due to the extra looping over boundary points does not contribute
measurably to calculation time.

10 Parallel matrix multiplication

We would like to perform the matrix multiplication AB = C in a distributed
manner using the Fox algorithm with MPI.

Let us say that we have p processes and, for simplicity, that p is a square
number such that we can have a quadratic process grid of b × b. We would
then like to allocate the matrices A, B and C in a blocked manner: Each CPU
has one block of A and B, and is responsible for calculating one block of C
(which means it will have to obtain data from the other blocks of A and B by
communicating with the other processes). We denote the (p, q)’th block by Apq

9

0 2 4 6 8 10 12 14 16
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p

400
800
1200
1600
2400

Figure 4: Speedup of improved Poisson solver. Consistently better scaling than
the previous implementation.

and its (i, j)’th element by apqij . The blocks contain, in total, all elements of A
exactly once.

Suppose we have a 2 by 2 process grid. As an example, the element c23 of a
4 by 4 square matrix product can be written down in the usual (“global”) way,
or in terms of 2 by 2 blocks of 2 by 2 elements, respectively:

c23 = a20b03 + a21b13 + a22b23 + a23b33 (9)

c23 = c1101 = a1000b
01
01 + a1001b

01
11 + a1100b

01
01 + a1101b

01
11. (10)

As an example, for 2 by 2 processes, block (1, 1) of the product is

C11 = A10B01 +A11B11 (11)

While process (1, 1) already has the (1, 1) slices of A and B, it will need
to receive the (1, 0) and (0, 1) slices of A and B, respectively, to finish the
calculation.

As a more complete example of Fox’ algorithm, this demonstrates the mul-
tiplication of a 3 by 3 matrix distributed on 9 processors:

C00 = A00B00 C01 = A00B01 C02 = A00B02

C10 = A11B10 C11 = A11B11 C12 = A11B12

C20 = A22B20 C21 = A22B21 C22 = A22B22

(12)

Thus, processes i0, i1, and i2 all need slice ii of A. Process ii will have to
broadcast its slice to those three processes before the step is performed. Aside

10

from this, only the local slices are used. Borrowing the notation “+ =” from
C/C++, the next step is:

C00+ = A01B10 C01+ = A01B11 C02+ = A01B12

C10+ = A12B20 C11+ = A12B21 C12+ = A12B22

C20+ = A20B00 C21+ = A20B01 C22+ = A20B02

(13)

This time process (i, i + 1) (modulo b) broadcasts its slice of A. Also each
proces has exchanged its slice of B with another process. Specifically process
(i, j) must have sent its slice to process (i, j − 1) (modulo b). To generalize: at
each step, the next processor to the “west” in the process grid broadcasts A

along the east-west direction. Then each process performs a block multiplication
with the currect local slices. Last, the local slice of B is sent back “north” in
the grid for the next step. For completeness, the final step in a 3 by 3 block
multiplication is:

C00+ = A02B20 C01+ = A02B21 C02+ = A02B22

C10+ = A10B00 C11+ = A10B01 C12+ = A10B02

C20+ = A21B10 C21+ = A21B11 C22+ = A21B12

(14)

10.1 Implementation

This is the interesting part of the source code for the multiplication function:

call copy(A, buf2, M)

do step=0,nblocks - 1

call copy(buf2, A, M)

root = mod(step + coords(1), nblocks)

call MPI_Bcast(A, MM, dtype, root, rcomm, err)

call multiply_add(A, B, C, M)

call MPI_Sendrecv(&

B, MM, dtype, ranks(NORTH), 0, &

buf, MM, dtype, ranks(SOUTH), 0, &

comm, status, err)

call copy(buf, B, M)

enddo

We perform as many steps as there are blocks, which is why there is a loop.
Each step consists of the following operations:

• A, B and C are the M by M matrices involved in the product. First A is
copied into a backup buffer (copy is a small utility subroutine), whereafter
it is broadcast from a particular rank on rcomm, a communicator for the
processor row.

• The subroutine call multiply add then adds the local slice product of A
and B to C.

11

0 2 4 6 8 10 12 14 16
Processors

0

5

10

15

20

25

30

S
p
e
e
d
u
p

800
1200
1600
2400

Figure 5: Speedup of Fox algorithm for various matrix sizes.

• Finally the local slice of B is propagated along the process grid to the
“north” by calling MPI Sendrecv. Another temporary buffer is used for
this.

10.2 Timings

Figure 5 shows the speedup of the matrix multiplication algorithm for different
matrix sizes and CPU counts. In most cases the speedup is superlinear as
the matrix slices fit better into the 8MB L2 cache when using many CPUs.
For the 800 by 800 matrix, performance decreases with 16 CPUs as there is
little work compared to the amount of synchronization. For larger matrices the
multiplication scales very well. The superlinear speedup disappears for the 2400
by 2400 matrix as the matrices never fit well into the cache.

12

A Source code - Timing and Optimaztion (main.f90)

1 program timing

2 implicit none
3

4 call ex3b
5 end program timing
6

7 subroutine ex3b()
8 implicit none

9

10 integer :: i, n, j, m=500

11 real(kind=8), dimension(:), allocatable :: a
12 real :: t1, t2
13 n = 100000

14

15 allocate (a(n))

16

17 do i=1, 100000
18 if (mod(i, 10) == 0) then

19 a(i) = 0.0
20 else

21 a(i) = real(i, 8)
22 endif

23 enddo
24

25

26 call cpu_time (t1)
27 do j=1, m

28 do i=1, n
29 if (mod(i, 10) == 0) then

30 a(i) = 0.0
31 else
32 a(i) = real(i, 8)

33 endif
34 enddo

35 enddo
36 call cpu_time (t2)
37 print*, t2 - t1, a(17)

38

39 call cpu_time (t1)

40 do j=1, m
41 do i=1, n

42 a(i) = real(i, 8)
43 enddo
44 do i=10, n, 10

45 a(i) = 0.0
46 enddo

47 enddo
48 call cpu_time (t2)
49 print*, t2 - t1, a(17)

50

51 end subroutine ex3b

52

53 subroutine ex3a()

54 implicit none
55

56 integer :: m, i, j, k, n, n0

57 real :: t1, t2
58 real(kind=8), dimension(:, :, :), allocatable :: f

59

60 m = 200
61

62 allocate (f(m, m, m))
63

64 ! warmup
65 do i=1,m

13

66 do j=1,m
67 do k=1,m

68 f(i, j, k) = real(i, 8)
69 enddo

70 enddo
71 enddo

72

73

74 call cpu_time (t1)

75

76 do i=1,m

77 do j=1,m
78 do k=1,m
79 f(i, j, k) = real(i, 8)

80 enddo
81 enddo

82 enddo
83 call cpu_time (t2)

84 print*, t2 - t1
85 print*, f(17, 17, 17)
86

87 call cpu_time (t1)
88 do k=1,m

89 do j=1,m
90 do i=1,m
91 f(i, j, k) = real(i, 8)

92 enddo
93 enddo

94 enddo
95 call cpu_time (t2)

96

97 print*, t2 - t1
98 print*, f(17, 17, 17)

99

100 end subroutine ex3a

101

102 subroutine ex2()
103 implicit none

104

105 real :: t1, t2

106 real :: t
107 integer :: it , i, n

108

109 real(kind=8), dimension(:), allocatable :: a
110

111 n = 100000
112

113 allocate (a(n))
114

115 ! warmup loop
116 do it=1, 100
117 do i=1,n

118 a(i) = real(i, 8)
119 enddo

120 enddo
121

122 call cpu_time (t1)

123

124 do it=1, 1024

125 do i=1,n
126 a(i) = real(i, 8)

127 enddo
128 enddo
129

130 call cpu_time (t2)
131

132 print*, t2 - t1
133

14

134 call cpu_time (t1)
135 do it=1, 1024

136 do i=1,n / 8
137 a(i) = real(i, 8)

138 a(i + 1) = real(i + 1, 8)
139 a(i + 2) = real(i + 2, 8)

140 a(i + 3) = real(i + 3, 8)
141 a(i + 4) = real(i + 4, 8)
142 a(i + 5) = real(i + 5, 8)

143 a(i + 6) = real(i + 6, 8)
144 a(i + 7) = real(i + 7, 8)

145 enddo
146 enddo
147 call cpu_time (t2)

148 print*, t2 - t1
149 end subroutine ex2

B Source code - Parallel World with MPI (question4.f90)

1 program helloworld

2 include ’mpif.h’
3

4 integer :: ierror
5 integer :: rank , size ,r
6

7 call MPI_Init (ierror)
8 call MPI_Comm_rank(MPI_Comm_World , rank , ierror)

9 call MPI_Comm_size(MPI_Comm_World , size , ierror)
10

11 do r=0,size

12 if (r.EQ.rank) then
13 print*,"Hello world",rank ,size

14 endif
15 call MPI_Barrier(MPI_Comm_World ,ierror)

16 enddo
17 call MPI_Finalize(ierror)
18

19 end program helloworld

15

C Source code - MPI Ping-Pong (mpi pingpong.f90)

1 program pingpong

2 include "mpif.h"
3 implicit none

4

5 integer :: n, npings
6 integer :: count

7 integer :: err
8

9 call MPI_Init (err)
10

11 do n=2, 19
12 count = 2**n
13 npings = 1000! * 32 / count

14 if (npings .le.4) then
15 npings = 4

16 endif
17 call runpingpong(count , npings)
18 enddo

19

20 call MPI_Finalize(err)

21

22 end program pingpong

23

24 subroutine runpingpong(count , npings)
25 include "mpif.h"

26 implicit none
27

28 integer :: err ! should really check error state but can ’t be bothered
29 integer :: rank , size

30 integer :: iping , npings
31 integer :: dest ! target rank (0 or 1)
32 integer :: tag = 0

33 integer :: count
34 integer :: comm

35

36 !character , dimension(count) :: sendbuf , recvbuf
37

38 integer , dimension(:), allocatable :: sendbuf , recvbuf
39 integer , dimension(MPI_STATUS_SIZE) :: stat

40 double precision :: t1, t2
41

42 allocate (sendbuf (count), recvbuf (count))
43 sendbuf = 0
44 recvbuf = 0

45

46

47 !character(count) :: sendbuf ! dimension(4)?
48 !character(count) :: recvbuf
49

50 call MPI_Comm_size(MPI_COMM_WORLD , size , err)
51 call MPI_Comm_rank(MPI_COMM_WORLD , rank , err)

52

53 comm = MPI_COMM_WORLD

54

55 if(size.ne.2) then
56 print*, ’Please use size 2’

57 call MPI_Finalize(err)
58 stop

59 endif
60

61 t1 = MPI_Wtime()

62

63 if (rank.eq.0) then

64 sendbuf (1) = 0!’p’
65 sendbuf (2) = 2!’i’

16

66 sendbuf (3) = 5!’n’
67 sendbuf (4) = 1!’g’

68 !sendbuf = ’ping ’
69 dest = 1

70 !print*, ’Rank:’, rank , ’Send:’, sendbuf
71 call MPI_Send (sendbuf , count , MPI_INTEGER , dest , tag , MPI_COMM_WORLD ,

err)
72 else
73 !sendbuf = ’pong ’

74 sendbuf (1) = 1
75 sendbuf (2) = 42

76 sendbuf (3) = 17
77 sendbuf (4) = 37
78 dest = 0

79 !call MPI_Recv (recvbuf , count , MPI_INTEGER , dest , tag , MPI_COMM_WORLD , &
80 ! stat , err)

81 endif
82

83 do iping = 1, npings - 1
84 call MPI_Recv (recvbuf , count , MPI_INTEGER , dest , tag , comm , stat , err)
85 !print*, ’Rank:’, rank , ’Recv:’, recvbuf , ’Send:’, sendbuf , ’Count:’,

iping
86 call MPI_Send (sendbuf , count , MPI_INTEGER , dest , tag , comm , err)

87 enddo
88

89 if (rank.eq.1) then

90 call MPI_Recv (recvbuf , count , MPI_INTEGER , dest , tag , comm , stat , err)
91 !print*, ’Rank:’, rank , ’Recv:’, recvbuf , ’Send:’, sendbuf

92 endif
93

94 t2 = MPI_Wtime()
95

96 print*, ’Rank ’, rank , ’Time ’, t2 - t1, ’Size ’, count , ’Number ’, npings

97

98

99 end subroutine runpingpong

D Source code - Non-Blocking communication

(ranksum.f90)

1 program ranksum

2 include "mpif.h"
3 implicit none
4

5 integer :: rank , size , err
6 integer :: comm

7 integer :: sum = 0
8 integer :: sendrq

9

10 integer :: src , dst
11 integer :: i

12

13 integer , dimension(1) :: sendbuf , recvbuf

14 integer , dimension(MPI_STATUS_SIZE) :: stat
15 integer , dimension(:), allocatable :: collectivebuf
16

17 call MPI_Init (err)
18 comm = MPI_COMM_WORLD

19

20 call MPI_Comm_rank(comm , rank , err)

21 call MPI_Comm_size(comm , size , err)
22

23 allocate (collectivebuf(size))

24 collectivebuf = 0
25

17

26 dst = mod(rank + 1, size)
27 src = modulo (rank - 1, size)

28

29 sendbuf (1) = rank

30

31 sum = 0

32 do i=1, size
33 call MPI_Issend(sendbuf , 1, MPI_INTEGER , dst, i, comm , sendrq , err)
34 call MPI_Recv (recvbuf , 1, MPI_INTEGER , src, i, comm , stat , err)

35 sum = sum + recvbuf (1)
36 sendbuf (1) = recvbuf (1)

37 call MPI_Wait (sendrq , stat , err)
38 enddo
39 if (rank.ne.recvbuf (1)) then

40 print*, ’BAD ’
41 endif

42 print*, rank , ’issendrecvwait ’, sum
43

44 call MPI_Barrier(comm , err)
45

46 sum = 0

47 do i=1, size
48 call MPI_Sendrecv(&

49 sendbuf , 1, MPI_INTEGER , dst , i, &
50 recvbuf , 1, MPI_INTEGER , src , i, &
51 comm , stat , err)

52 sum = sum + recvbuf (1)
53 sendbuf (1) = recvbuf (1)

54 enddo
55 if (rank.ne.recvbuf (1)) then

56 print*, ’BAD ’
57 endif
58 print*, rank , ’sendrecv ’, sum

59

60 flush (6)

61 call MPI_Barrier(comm , err)
62

63 sum = 0

64 do i=1, size
65 call MPI_Sendrecv_Replace(sendbuf , 1, MPI_INTEGER , dst , i, src, i, comm ,

&
66 stat , err)

67 sum = sum + sendbuf (1)
68 enddo
69 if (rank.ne.sendbuf (1)) then

70 print*, ’BAD ’
71 endif

72 print*, rank , ’sendrecv_replace ’, sum
73

74 ! If we want to use blocking Recv/Send , then we’ll have to get
75 ! e.g. even ranks to start with Send , while uneven ones start with Recv.
76 !enddo

77

78 sum = 0

79

80 recvbuf (1) = 0
81 call MPI_Allreduce(sendbuf , recvbuf , 1, MPI_INTEGER , MPI_SUM , comm , err)

82 sum = recvbuf (1)
83 print*, rank , ’allreduce ’, sum

84

85 sendbuf (1) = rank + 1

86 call MPI_Scan (sendbuf , recvbuf , 1, MPI_INTEGER , MPI_PROD , comm)
87 call MPI_Barrier(comm , err)
88

89 print*, rank , recvbuf , size
90 call MPI_Gather(&

91 recvbuf , 1, MPI_INTEGER , &
92 collectivebuf , 1, MPI_INTEGER , &

18

93 0, comm , err)
94 if(rank.eq.0) then

95 print*, ’Collected ’, collectivebuf
96 endif

97 call MPI_Barrier(comm , err)
98

99 call MPI_Finalize(err)
100 deallocate(collectivebuf)
101 end program ranksum

E Source code - Monto Carlo computation of π

(montecarlo.f90)

1 program montecarlo
2 include "mpif.h"

3 implicit none
4

5 integer :: ni = 0, nx = 0, n, i, nmax = 2000
6 real :: rx, ry
7 real :: pi, tmp

8 real :: sum = 0.0
9

10 integer :: seedsize = 7
11 integer , dimension(:), allocatable :: seed

12

13 integer :: err
14 integer :: rank , size

15

16 real , dimension(1) :: sendbuf

17 real , dimension(1) :: recvbuf
18

19 call MPI_Init (err)

20

21 call MPI_Comm_rank(MPI_COMM_WORLD , rank , err)

22 call MPI_Comm_size(MPI_COMM_WORLD , size , err)
23

24 call random_seed(size=seedsize)
25 allocate (seed(seedsize))
26 do i=1, seedsize

27 seed(i) = 42 + rank * 17
28 enddo

29 call random_seed(put=seed)
30

31 do n=1, nmax

32 call random_number(rx)
33 call random_number(ry)

34 tmp = rx**2 + ry**2
35 if (tmp.le .(1.0)) then

36 ni = ni + 1
37 else
38 nx = nx + 1

39 endif
40 enddo

41

42 pi = 4.0 * real(ni) / (real(ni) + real(nx))
43 print*, rank , pi

44

45 sendbuf (1) = pi

46

47 call MPI_Reduce(&

48 sendbuf , recvbuf , 1, &
49 MPI_REAL , MPI_SUM , 0, MPI_COMM_WORLD , err)
50

51 if (rank.eq.0) then
52 print*, ’Total ’, recvbuf (1) / size

19

53 endif
54

55 call MPI_Finalize(err)
56

57 end program montecarlo

20

