Introduction to high-performance computing

Ask Hjorth Larsen

Nano-bio Spectroscopy Group and ETSF Scientic Development Centre, Universidad del País Vasco UPV/EHU, San Sebastián, Spain

Nanoscience Summerschool at Yachay Tech NSSY2017, August 31, 2017

KORK STRATER STRAKES

The CPU

- \blacktriangleright The CPU reads instructions and inputs, then performs those instructions on the inputs
- Instruction codes and inputs are processed in workspaces on the CPU called registers
- \blacktriangleright Each cycle, the CPU can execute an instruction; different CPU architectures support different instructions

KORK STRAIN ABY COMPARI

Example

- \triangleright Retrieve number from address A, put it in register R
- \blacktriangleright Add numbers from registers R and R', store sum in R"
- \triangleright Write number from R" to address A'
- \blacktriangleright Etc.

HPC basics

 \triangleright Most time is probably spent with floating point operations

KORK STRAIN ABY COMPARI

 \blacktriangleright Important: Retrieve data from memory efficiently

Some programming languages

- \blacktriangleright (Assembly language)
- ▶ Fortran (1957, 1977, 1995, 2003, ...)
- \triangleright C/C++
- \blacktriangleright Python \blacktriangleright C extensions, Numpy, Scipy, ...

Floating point numbers

Computational physics mostly boils down to multiplying floating point numbers.

IEEE 754 standard for floating point numbers

- \blacktriangleright Number is represented as $M \times 2^n$
- \blacktriangleright M is the significand or mantissa
- \blacktriangleright n is the exponent

Important types

- \blacktriangleright 32-bit single precision: 24 bit for M, 8 for n
- \blacktriangleright 64-bit double precision: 53 bit for M , 11 for n

Floating point operations are complex. Modern CPUs have one or more floating point units (FPUs) that execute floating point operations efficiently

Pipelining

▶ Consider a 4-step operation where different "units" can process different steps simultaneously

- \triangleright Can execute up to one whole operation per cycle, but cycles may be wasted flushing/filling the pipeline
- I Next input element must be readily av[aila](#page-3-0)[ble](#page-5-0)

Branching and pipelining

- \blacktriangleright Jumping around in memory breaks the pipeline
- \triangleright Avoid branching in high-performance loops: if statements, function calls, goto, ...
- I Jump can be eliminated by inlining $-$ include the source of a function "inline" in place of calling the function, e.g. using a macro

KORK STRAIN ABY COMPARI

 \blacktriangleright Also inline double myfunction(...)

Memory and multilevel caching

Example: Intel i7-4770 Haswell architecture

Source: <http://www.7-cpu.com/cpu/Haswell.html>

- \triangleright When accessing memory, contiguous chunks of adjacent memory will be copied into cache
- \triangleright A failed cache lookup is called a "cache miss"
- \triangleright Upon cache miss, element is looked up at next (slower) level

A DIA K PIA A BIA A BIA A Q A CA

Arrays and memory layout

 \triangleright Standard mathematical matrix notation:

$$
\begin{bmatrix} 1,1 & 1,2 & 1,3 \\ 2,1 & 2,2 & 2,3 \\ 3,1 & 3,2 & 3,3 \end{bmatrix}
$$

 \blacktriangleright Elements of the array are stored in a contiguous chunk of memory, but the ordering depends on language

Fortran memory order is column-major: $1, 1 \mid 2, 1 \mid 3, 1 \mid 1, 2 \mid 2, 2 \mid 3, 2 \mid 1, 3 \mid 2, 3 \mid 3, 3$

 \triangleright C memory order is row-major:

 $1, 1 \mid 1, 2 \mid 1, 3 \mid 2, 1 \mid 2, 2 \mid 2, 3 \mid 3, 1 \mid 3, 2 \mid 3, 3$

 \triangleright Accessing elements in memory order is fast.

KORK (FRAGE) KERK EL POLO

Optimizing cache use

 \triangleright Work on contiguous chunks of memory

```
// fast
for(i=0; i < I; i++) {
  for(i=0; i < J; i++) {
    a[i * J + j] = ...}
}
// Slow
for(j=0; j < J; j++) {
  for(i=0; i < I; i++) {
    a[i * J + j] = ...}
}
```


Benchmark

```
Matrix multiplication c_{ij} = \sumk
                                  a_{ik}b_{kj}void matmul_ikj (int I, int J, int K,
                  double *A, double *B, double *C)
{
  int i, j, k;
  for(i=0; i < I; i++) {
    for(k=0; k < K; k++) {
      for(i=0; i < J; i++) {
        C[i * J + j] + A[i * K + k] * B[k * J + j];}
    }
  }
}
```
Different per[m](#page-8-0)utat[i](#page-10-0)o[n](#page-11-0)s of $\{ikj\}$ loops will p[erf](#page-8-0)[or](#page-10-0)m [d](#page-9-0)iff[e](#page-10-0)[r](#page-9-0)en[tl](#page-2-0)[y](#page-3-0) **Contract** OQ [Introduction](#page-1-0) [Number crunching](#page-3-0) [Parallelization](#page-16-0) [Conclusions](#page-28-0) [Matrix multiplication](#page-9-0)

È

 2990

Matrix size & total memory allocation

Figure: Timings f[o](#page-11-0)r matrix multi[p](#page-9-0)lication at -02 op[tim](#page-10-0)[i](#page-11-0)[z](#page-8-0)[a](#page-9-0)[ti](#page-10-0)o[n](#page-2-0) [l](#page-3-0)[ev](#page-15-0)[e](#page-16-0)[l](#page-0-0)
All \mathbb{R}^n

Loop unrolling

 \triangleright Unrolling eliminates a fraction of loop bounds checks.

```
for(i=0; i < 4; i++) {
    a[i] = b[i] * c[i];}
```
 \blacktriangleright Unrolled:

 $a[i] = b[i] * c[i];$ $a[i + 1] = b[i + 1] * c[i + 1];$ $a[i + 2] = b[i + 2] * c[i + 2];$ $a[i + 3] = b[i + 3] * c[i + 3];$

 \triangleright Compiler may be able to unroll automatically (e.g. -funroll-loops).

KORK STRAIN ABY COMPARI

Blocking

 \triangleright Compute $\mathbf{C} = \mathbf{AB}$ where each matrix is composed into blocks:

$$
\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \cdots & \mathbf{A}_{1n} \\ \vdots & & \vdots \\ \mathbf{A}_{n1} & \cdots & \mathbf{A}_{nn} \end{bmatrix}
$$

 \blacktriangleright Matrix product expressed with blocks:

$$
\mathbf{C}_{ij}=\sum_k \mathbf{A}_{ik}\mathbf{B}_{kj}
$$

- \triangleright Work on smaller blocks that fit into cache
- ▶ Optimal blocksize depends on architecture (e.g. cache size)
- \blacktriangleright Matrix product scales as $\mathcal{O}(N^3)$
- \blacktriangleright Blocking improves $\mathcal{O}(N^3)$ prefactor by working on chunks that fit in cache **A DIA K PIA A BIA A BIA A Q A CA**

BLAS

Basic Linear Algebra Subprograms

- \triangleright Standard interface for standard operations: Matrix multiplication
- \blacktriangleright Highly optimized for different platforms individually

Some BLAS implementations

- \triangleright RefBlas reference implementation from Netlib
- ▶ OpenBlas (based on older GotoBlas)
- \triangleright Atlas \perp automatically tuned linear algebra software

- \blacktriangleright Intel MKL
- \triangleright AMD ACML

Some BLAS functions

- \triangleright dgemm: double-precision general matrix-matrix multiply
- \triangleright dsymv: double-precision symmetric matrix-vector multiply
- \triangleright daxpy: double-precision aX plus y
- \triangleright zsyr2k: "complex double-precision (z) symmetric rank-2 update", $\mathbf{X}\mathbf{Y}^T + \mathbf{Y}\mathbf{X}^T$
- \blacktriangleright Etc.

LAPACK: Linear Algebra PACKage

- ▶ Higher-level linear algebra operations
- \blacktriangleright LU-decomposition, eigenvalues, ...
- asyev: double-precision symmetric eigenvalues
- \blacktriangleright Etc.

For best performance, use BLAS/LAPACK [wh](#page-13-0)e[ne](#page-15-0)[v](#page-13-0)[er](#page-14-0)[po](#page-12-0)[s](#page-13-0)[s](#page-15-0)[i](#page-16-0)[bl](#page-2-0)[e](#page-3-0)

 Ω

Simple matrix multiplication vs BLAS

イロト イ部 トイモト イモト 重 299

Shared memory

- \blacktriangleright Multiple threads work simulaneously, access same variables
- \blacktriangleright Threads may read the same memory simultaneously, but simultaneous writing leads to race condition
- \blacktriangleright Threads must therefore synchronize access to the memory (e.g. synchronized methods and blocks in Java)
- ▶ Synchronize means: "Lock, run, unlock"

Distributed memory

- \blacktriangleright Each process has its own chunk of memory, probably on different physical computers
- \triangleright No problem with synchronizing memory (unless also threading)
- \blacktriangleright Must manually send/receive all data; much more difficult

Parallel pitfalls and deadlocks

Example 1

- Process 1 sends 5 numbers to process 2
- \triangleright Process 1 expects something from process 2
- Process 2 expects 6 numbers from process 1, receives 5

KORK (FRAGE) KERK EL POLO

 \blacktriangleright Both processes now wait forever

Parallel pitfalls and deadlocks

Example 2

^I . . .

- ▶ Process A reserves Sala Capitular for this talk
- \triangleright Process B attempts to reserve Sala Capitular for this talk, but Sala Capitular is already reserved for some talk

KORK STRAIN ABY COMPARI

 \triangleright Process B schedules this talk for another lecture room

MPI – Message Passing Interface

- \blacktriangleright Programming interface specification for distributed-memory parallelization
- Implementations: OpenMPI, MPICH, ...
- \triangleright Communicator: Object which represents a group of processes that may communicate amongst themselves
- \triangleright MPI_COMM_WORLD $-$ the communicator of all processes
- \triangleright The size of a communicator is how many processes participate

KORK STRATER STRAKES

- \blacktriangleright Each process has a rank within the communicator: $0, 1, 2, \ldots, size-1.$
- ► Run on 8 cores: mpirun -np 8 myprogram

```
Introduction Number crunchingParallelizationConclusions
Parallel programming
Parallel hello world
    #include <stdio.h>
    #include <mpi.h>
    int main (int argc, char ** argv)
    {
        MPI_Init (&argc, &argv);
        int rank, size ;
        MPI_Comm comm = MPI_COMM_WORLD ;
        MPI_Comm_rank (comm , & rank ); // Ranks enumerate processes
        MPI Comm size (comm , & size );
        printf ("hello world from process \lambda d/\lambda d \n\pi", rank, size);
        MPI_Barrier ( comm ); // Wait for all processes to print
        int ranksum ;
        MPI_Allreduce (& rank , & ranksum , 1 , MPI_INTEGER , MPI_SUM , comm );
        printf ("rank %d: I got %d\n", rank, ranksum);
        MPI Finalize ():
        return 0;
    }
```
KORK (FRAGE) KEY GE YOUR

```
Introduction Number crunchingParallelizationConclusions
Parallel programming
  int main (int argc, char ** argv)
  {
       MPI_Init (& argc, & argy);
       int rank , size ;
       MPI_Comm comm = MPI_COMM_WORLD ;
       MPI Comm rank (comm, & rank);
       MPI Comm size (comm, & size);
       double num ;
      MPI_Status status ;
       if(rank == 0)num = 42.0; // Pass number around to each process
           printf ("rank 0 sends \frac{1}{n} to rank 1 \n\cdot \n\cdot num);
           MPI_Send (& num, 1, MPI_DOUBLE, 1, 0, comm);
           MPI_Recv (&num, 1, MPI_DOUBLE, size - 1, 0, comm, & status);
           printf ("rank 0 finally received %f\n", num);
      } else {
           MPI_Recv (& num , 1, MPI_DOUBLE , rank - 1 , 0, comm , & status );
           printf ("rank %d received %f from %d, sends to %d\n",
                  rank num rank - 1, (rank + 1) % size);
           MPI_Send (& num , 1, MPI_DOUBLE , ( rank + 1) % size , 0, comm );
      }
      MPI Finalize ():
      return 0;
  }KORK (FRAGE) KEY GE YOUR
```


BLACS/ScaLAPACK

- ▶ BLACS: Basic Linear Algebra Communication Subprograms
- ► ScaLAPACK: Like LAPACK, but in parallel
- ▶ BLACS uses "2D block-cyclic memory layout": Processes are arranged in a 2D grid, arrays are distributed in blocks
- \triangleright Distribution of blocks among ranks:

KORKA REPARATION ADD

b pdgemm, pdsyev, ...

Parallel scaling

GPAW/LCAO performance

- \blacktriangleright Time per iteration, 2500-10k atoms
- \blacktriangleright "Strong-scaling" test: Fixed problem size, increase CPU count
- \blacktriangleright More processes increase speed, but also overhead
- \blacktriangleright More processes may be necessary when calculation does not fit into memory

Quinde supercomputer at Yachay

- ▶ 84 compute nodes, dual Power-8 10-core CPUs (20 cores/node)
- ▶ Dual NVidia K-80 graphics cards, 8 tera-FLOPS
- \blacktriangleright 128 GB memory per node
- \blacktriangleright Interconnect: Mellanox 100 Gbit InfiniBand

Massively parallel architectures

- \blacktriangleright Hundreds of thousands of cores, very scalable
- \blacktriangleright High demands on interconnect: Network topology, locality

Figure: IBM BlueGene/P (Image source: Wikipedia)K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

$GPUs$ - graphics cards for computing

- \triangleright A graphics card is a shared-memory processor running a very large number of threads
- \triangleright Graphics cards are the cheapest way of multiplying many floating point numbers
- ▶ Special architecture: Code must be explicitly written for graphics cards

KORK STRAIN A BY A GRAY

GPU performance

 \triangleright On a normal processor, each thread (a, b, c) should work on a contiguous piece of data (1, 2, 3):

$$
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline \text{a1} & \text{a2} & \text{a3} & \text{b1} & \text{b2} & \text{b3} & \text{c1} & \text{c2} & \text{c3} \\\hline \end{array}
$$

- \triangleright On a graphics card, memory bandwidth (main memory to graphics card memory) is critical
- \blacktriangleright Threads a, b, and c can start quickly only with a strided memory layout:

a1 b1 c1 a2 b2 c2 a3 b3 c3

- \blacktriangleright Here, threads a, b, c will all run once we have received three chunks
- \blacktriangleright In the previous case, b and c would still be idle after receiving three chunks

KORK STRAIN ABY COMPARI

KORK STRAIN A BY A GRAY

Summary & concluding remarks

- \blacktriangleright Pipelining, memory locality
- **Parallelization: Threading, MPI**
- ▶ HPC libraries: BLAS, LAPACK, ScaLAPACK