
Introduction Number crunching Parallelization Conclusions

Introduction to high-performance computing

Ask Hjorth Larsen

Nano-bio Spectroscopy Group and ETSF Scienti�c Development Centre,
Universidad del País Vasco UPV/EHU, San Sebastián, Spain

Nanoscience Summerschool at Yachay Tech NSSY2017,
August 31, 2017



Introduction Number crunching Parallelization Conclusions

The CPU

I The CPU reads instructions and inputs, then performs those
instructions on the inputs

I Instruction codes and inputs are processed in workspaces on
the CPU called registers

I Each cycle, the CPU can execute an instruction; di�erent CPU
architectures support di�erent instructions

Example

I Retrieve number from address A, put it in register R

I Add numbers from registers R and R', store sum in R�

I Write number from R� to address A'

I Etc.



Introduction Number crunching Parallelization Conclusions

HPC basics

I Most time is probably spent with �oating point operations

I Important: Retrieve data from memory e�ciently

Some programming languages

I (Assembly language)

I Fortran (1957, 1977, 1995, 2003, . . . )

I C/C++

I Python � C extensions, Numpy, Scipy, . . .



Introduction Number crunching Parallelization Conclusions

Pipelining

Floating point numbers
Computational physics mostly boils down to multiplying �oating
point numbers.

IEEE 754 standard for �oating point numbers

I Number is represented as M × 2n

I M is the signi�cand or mantissa

I n is the exponent

Important types

I 32-bit single precision: 24 bit for M , 8 for n

I 64-bit double precision: 53 bit for M , 11 for n

Floating point operations are complex. Modern CPUs have one or
more �oating point units (FPUs) that execute �oating point
operations e�ciently



Introduction Number crunching Parallelization Conclusions

Pipelining

Pipelining
I Consider a 4-step operation where di�erent �units� can process

di�erent steps simultaneously

u1 u2 u3 u4

Cycle 1 A1 ø ø ø
Cycle 2 B1 A2 ø ø
Cycle 3 C1 B2 A3 ø
Cycle 4 D1 C2 B3 A4

Cycle 5 E1 D2 C3 B4

Cycle 6 F1 E2 D3 C4

Cycle 7 ø F2 E3 D4

Cycle 8 ø ø F3 E4

Cycle 9 ø ø ø F4

I Can execute up to one whole operation per cycle, but cycles
may be wasted �ushing/�lling the pipeline

I Next input element must be readily available



Introduction Number crunching Parallelization Conclusions

Pipelining

Branching and pipelining

I Jumping around in memory breaks the pipeline

I Avoid branching in high-performance loops: if statements,
function calls, goto, . . .

I Jump can be eliminated by inlining � include the source of a
function �inline� in place of calling the function, e.g. using a
macro

I Also: inline double myfunction(...)



Introduction Number crunching Parallelization Conclusions

Caching

Memory and multilevel caching

Example: Intel i7-4770 Haswell architecture

Size Latency Total

L1 cache 64 KB/core 4�5 cycles 1.3 ns
L2 cache 256 KB/core 12 cycles 3.5 ns
L3 cache 8 MB, shared 36 cycles 11 ns
Main memory 32 GB, shared 36 cycles+ 57 ns 68 ns

Source: http://www.7-cpu.com/cpu/Haswell.html

I When accessing memory, contiguous chunks of adjacent
memory will be copied into cache

I A failed cache lookup is called a �cache miss�

I Upon cache miss, element is looked up at next (slower) level

http://www.7-cpu.com/cpu/Haswell.html


Introduction Number crunching Parallelization Conclusions

Caching

Arrays and memory layout

I Standard mathematical matrix notation:1, 1 1, 2 1, 3
2, 1 2, 2 2, 3
3, 1 3, 2 3, 3


I Elements of the array are stored in a contiguous chunk of

memory, but the ordering depends on language

I Fortran memory order is column-major:
1, 1 2, 1 3, 1 1, 2 2, 2 3, 2 1, 3 2, 3 3, 3

I C memory order is row-major:
1, 1 1, 2 1, 3 2, 1 2, 2 2, 3 3, 1 3, 2 3, 3

I Accessing elements in memory order is fast.



Introduction Number crunching Parallelization Conclusions

Caching

Optimizing cache use

I Work on contiguous chunks of memory

// fast

for(i=0; i < I; i++) {

for(j=0; j < J; j++) {

a[i * J + j] = ...

}

}

// Slow

for(j=0; j < J; j++) {

for(i=0; i < I; i++) {

a[i * J + j] = ...

}

}



Introduction Number crunching Parallelization Conclusions

Matrix multiplication

Benchmark

Matrix multiplication cij =
∑
k

aikbkj

void matmul_ikj(int I, int J, int K,

double *A, double *B, double *C)

{

int i, j, k;

for(i=0; i < I; i++) {

for(k=0; k < K; k++) {

for(j=0; j < J; j++) {

C[i * J + j] += A[i * K + k] * B[k * J + j];

}

}

}

}

Di�erent permutations of {ikj} loops will perform di�erently



Introduction Number crunching Parallelization Conclusions

Matrix multiplication

20
0

1.
0 

M
B

28
0

1.
9 

M
B

40
0

3.
8 

M
B

56
0

7.
5 

M
B

80
0

15
.4

 M
B

11
20

30
.1

 M
B

16
00

61
.4

 M
B

22
40

12
0.

4 
M
B

Matrix size & total memory allocation

10-2

10-1

100

101

102

M
u
lt

ip
lic

a
ti

o
n
 t

im
e
 [

s]

L2

ikj
kij

ijk
jik

jki
kji

Figure: Timings for matrix multiplication at -O2 optimization level



Introduction Number crunching Parallelization Conclusions

More optimizations

Loop unrolling

I Unrolling eliminates a fraction of loop bounds checks.

for(i=0; i < 4; i++) {

a[i] = b[i] * c[i];

}

I Unrolled:

a[i] = b[i] * c[i];

a[i + 1] = b[i + 1] * c[i + 1];

a[i + 2] = b[i + 2] * c[i + 2];

a[i + 3] = b[i + 3] * c[i + 3];

I Compiler may be able to unroll automatically
(e.g. -funroll-loops).



Introduction Number crunching Parallelization Conclusions

More optimizations

Blocking

I Compute C = AB where each matrix is composed into blocks:

A =

A11 · · · A1n
...

...
An1 · · · Ann


I Matrix product expressed with blocks:

Cij =
∑
k

AikBkj

I Work on smaller blocks that �t into cache

I Optimal blocksize depends on architecture (e.g. cache size)

I Matrix product scales as O(N3)

I Blocking improves O(N3) prefactor by working on chunks that
�t in cache



Introduction Number crunching Parallelization Conclusions

BLAS and LAPACK

BLAS

Basic Linear Algebra Subprograms

I Standard interface for standard operations: Matrix
multiplication

I Highly optimized for di�erent platforms individually

Some BLAS implementations

I RefBlas � reference implementation from Netlib

I OpenBlas (based on older GotoBlas)

I Atlas � automatically tuned linear algebra software

I Intel MKL

I AMD ACML



Introduction Number crunching Parallelization Conclusions

BLAS and LAPACK

Some BLAS functions

I dgemm: double-precision general matrix�matrix multiply

I dsymv: double-precision symmetric matrix�vector multiply

I daxpy: double-precision aX plus y

I zsyr2k: �complex double-precision (z) symmetric rank-2
update�, XYT +YXT

I Etc.

LAPACK: Linear Algebra PACKage

I Higher-level linear algebra operations

I LU-decomposition, eigenvalues, . . .

I dsyev: double-precision symmetric eigenvalues

I Etc.

For best performance, use BLAS/LAPACK whenever possible



Introduction Number crunching Parallelization Conclusions

BLAS and LAPACK

Simple matrix multiplication vs BLAS

20
0

1.
0 

M
B

28
0

1.
9 

M
B

40
0

3.
8 

M
B

56
0

7.
5 

M
B

80
0

15
.4

 M
B

11
20

30
.1

 M
B

16
00

61
.4

 M
B

22
40

12
0.

4 
M
B

Matrix size & total memory allocation

10-3

10-2

10-1

100

101

102
M

u
lt

ip
lic

a
ti

o
n
 t

im
e
 [

s]

L2

dgemm fro
m OpenBLAS

ikj
kij

ijk
jik

jki
kji



Introduction Number crunching Parallelization Conclusions

Parallel programs

Shared memory

I Multiple threads work simulaneously, access same variables

I Threads may read the same memory simultaneously, but
simultaneous writing leads to race condition

I Threads must therefore synchronize access to the memory
(e.g. synchronized methods and blocks in Java)

I Synchronize means: �Lock, run, unlock�

Distributed memory

I Each process has its own chunk of memory, probably on
di�erent physical computers

I No problem with synchronizing memory (unless also threading)

I Must manually send/receive all data; much more di�cult



Introduction Number crunching Parallelization Conclusions

Parallel programs

Parallel pitfalls and deadlocks

Example 1

I Process 1 sends 5 numbers to process 2

I Process 1 expects something from process 2

I Process 2 expects 6 numbers from process 1, receives 5

I Both processes now wait forever



Introduction Number crunching Parallelization Conclusions

Parallel programs

Parallel pitfalls and deadlocks

Example 2

I Process A reserves Sala Capitular for this talk

I Process B attempts to reserve Sala Capitular for this talk, but
Sala Capitular is already reserved for some talk

I Process B schedules this talk for another lecture room

I . . .



Introduction Number crunching Parallelization Conclusions

Parallel programming

MPI � Message Passing Interface

I Programming interface speci�cation for distributed-memory
parallelization

I Implementations: OpenMPI, MPICH, . . .

I Communicator: Object which represents a group of processes
that may communicate amongst themselves

I MPI_COMM_WORLD � the communicator of all processes

I The size of a communicator is how many processes participate

I Each process has a rank within the communicator:
0, 1, 2, . . . , size−1.

I Run on 8 cores: mpirun -np 8 myprogram



Introduction Number crunching Parallelization Conclusions

Parallel programming

Parallel hello world

#include <stdio.h>

#include <mpi.h>

int main(int argc , char **argv)

{

MPI_Init (&argc , &argv);

int rank , size;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm , &rank); // Ranks enumerate processes

MPI_Comm_size(comm , &size);

printf("hello world from process %d/%d\n", rank , size);

MPI_Barrier(comm); // Wait for all processes to print

int ranksum;

MPI_Allreduce (&rank , &ranksum , 1, MPI_INTEGER , MPI_SUM , comm);

printf("rank %d: I got %d\n", rank , ranksum );

MPI_Finalize ();

return 0;

}



Introduction Number crunching Parallelization Conclusions

Parallel programming

int main(int argc , char **argv)

{

MPI_Init (&argc , &argv);

int rank , size;

MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm , &rank);

MPI_Comm_size(comm , &size);

double num;

MPI_Status status;

if(rank == 0) {

num = 42.0; // Pass number around to each process

printf("rank 0 sends %f to rank 1\n", num);

MPI_Send (&num , 1, MPI_DOUBLE , 1, 0, comm);

MPI_Recv (&num , 1, MPI_DOUBLE , size - 1, 0, comm , &status );

printf("rank 0 finally received %f\n", num);

} else {

MPI_Recv (&num , 1, MPI_DOUBLE , rank - 1, 0, comm , &status );

printf("rank %d received %f from %d, sends to %d\n",

rank , num , rank - 1, (rank + 1) % size);

MPI_Send (&num , 1, MPI_DOUBLE , (rank + 1) % size , 0, comm);

}

MPI_Finalize ();

return 0;

}



Introduction Number crunching Parallelization Conclusions

Parallel programming

BLACS/ScaLAPACK

I BLACS: Basic Linear Algebra Communication Subprograms

I ScaLAPACK: Like LAPACK, but in parallel

I BLACS uses �2D block-cyclic memory layout�: Processes are
arranged in a 2D grid, arrays are distributed in blocks

I Distribution of blocks among ranks:

0 1 2 0 1 2

3 4 5 3 4 5

0 1 2 0 1 2

3 4 5 3 4 5

I pdgemm, pdsyev, . . .



Introduction Number crunching Parallelization Conclusions

Parallel programming

Parallel scaling

GPAW/LCAO performance

I Time per iteration, 2500�10k atoms

I �Strong-scaling� test: Fixed problem
size, increase CPU count

I More processes increase speed, but also
overhead

I More processes may be necessary when
calculation does not �t into memory

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

101

102

103

104

T
im

e
[s

]

1N
3N
SCF

2N
4N
diag

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

100

101

102

103

total xc
libvdwxc

1/1
6

2/3
2

4/6
4

8/1
28

16
/25

6

Number of nodes/cores

10−1

100

101

102

total
FFTW
convolution



Introduction Number crunching Parallelization Conclusions

Supercomputing

Quinde supercomputer at Yachay

I 84 compute nodes, dual Power-8 10-core CPUs (20
cores/node)

I Dual NVidia K-80 graphics cards, 8 tera-FLOPS

I 128 GB memory per node

I Interconnect: Mellanox 100 Gbit In�niBand



Introduction Number crunching Parallelization Conclusions

Supercomputing

Massively parallel architectures
I Hundreds of thousands of cores, very scalable
I High demands on interconnect: Network topology, locality

Figure: IBM BlueGene/P (Image source: Wikipedia)



Introduction Number crunching Parallelization Conclusions

Supercomputing

GPUs � graphics cards for computing

I A graphics card is a shared-memory processor running a very
large number of threads

I Graphics cards are the cheapest way of multiplying many
�oating point numbers

I Special architecture: Code must be explicitly written for
graphics cards



Introduction Number crunching Parallelization Conclusions

Supercomputing

GPU performance

I On a normal processor, each thread (a, b, c) should work on a
contiguous piece of data (1, 2, 3):

a1 a2 a3 b1 b2 b3 c1 c2 c3

I On a graphics card, memory bandwidth (main memory to
graphics card memory) is critical

I Threads a, b, and c can start quickly only with a strided
memory layout:

a1 b1 c1 a2 b2 c2 a3 b3 c3

I Here, threads a, b, c will all run once we have received three
chunks

I In the previous case, b and c would still be idle after receiving
three chunks



Introduction Number crunching Parallelization Conclusions

Summary & concluding remarks

I Pipelining, memory locality

I Parallelization: Threading, MPI

I HPC libraries: BLAS, LAPACK, ScaLAPACK


