Introduction to high-performance computing

Ask Hjorth Larsen

Nano-bio Spectroscopy Group and ETSF Scientific Development Centre,
Universidad del Pais Vasco UPV/EHU, San Sebastian, Spain

Nanoscience Summerschool at Yachay Tech NSSY2017,
August 31, 2017

Introduction
@0

The CPU
» The CPU reads instructions and inputs, then performs those
instructions on the inputs

» Instruction codes and inputs are processed in workspaces on
the CPU called registers

» Each cycle, the CPU can execute an instruction; different CPU
architectures support different instructions

Example

v

Retrieve number from address A, put it in register R

Add numbers from registers R and R’, store sum in R”

v

Write number from R” to address A’

» Etc.

v

Introduction
o]]

HPC basics

» Most time is probably spent with floating point operations

» Important: Retrieve data from memory efficiently

Some programming languages
> (Assembly language)
» Fortran (1957, 1977, 1995, 2003, ...)
» C/C++
» Python — C extensions, Numpy, Scipy, ...

Introduction Number crunchin

Pipelining

Floating point numbers

Computational physics mostly boils down to multiplying floating
point numbers.

IEEE 754 standard for floating point numbers
» Number is represented as M x 2"

» M is the significand or mantissa

> n is the exponent

Important types

» 32-bit single precision: 24 bit for M, 8 for n
» 64-bit double precision: 53 bit for M, 11 for n

Floating point operations are complex. Modern CPUs have one or
more floating point units (FPUs) that execute floating point
operations efficiently

Introduction Number crunchin

Pipelining

Pipelining
» Consider a 4-step operation where different “units” can process
different steps simultaneously

ul u2 u3 u4
Cyclel |Al ¢ ¢ ¢
Cycle2 | B! A2 g ¢
Cycle3 | C! B2 A% ¢
Cycle4 | D' C?2 B® At
Cycle5 | E! D? C* B
Cycle6 | F1' E2 D3 (4
Cycle7| ¢ F2 E3 D?
Cycle8 | ¢ g F> E*
Cycle9| ¢ ¢ ¢ F*

» Can execute up to one whole operation per cycle, but cycles
may be wasted flushing/filling the pipeline
» Next input element must be readily available

Number crunching
ooe

Pipelining

Branching and pipelining

» Jumping around in memory breaks the pipeline

» Avoid branching in high-performance loops: if statements,
function calls, goto, ...

» Jump can be eliminated by inlining — include the source of a
function “inline” in place of calling the function, e.g. using a
macro

» Also: inline double myfunction(...)

Introduction Number crunching

Caching

Memory and multilevel caching

Example: Intel i7-4770 Haswell architecture

Size Latency Total
L1 cache 64 KB/core 4-5 cycles 1.3 ns
L2 cache 256 KB/core 12 cycles 3.5ns
L3 cache 8 MB, shared 36 cycles 11 ns

Main memory 32 GB, shared 36 cycles+ 57 ns 68 ns
Source: http://wuw.7-cpu.com/cpu/Haswell .html

» When accessing memory, contiguous chunks of adjacent
memory will be copied into cache

» A failed cache lookup is called a “cache miss”

» Upon cache miss, element is looked up at next (slower) level

http://www.7-cpu.com/cpu/Haswell.html

Number crunching
(o] o}

Caching

Arrays and memory layout

» Standard mathematical matrix notation:

L1 1,2 1,3
2,1 2,2 2,3
3,1 3,2 3,3

» Elements of the array are stored in a contiguous chunk of
memory, but the ordering depends on language

» Fortran memory order is column-major:
[1,1]2,1]3,1[1,2]2,2(3,2[1,3[2,3]3,3]

» C memory order is row-major:
[1,1]1,2]1,3[2,1]2,2][23][3,1[3,2]3,3]

» Accessing elements in memory order is fast.

Number crunching
ooe

Caching

Optimizing cache use

» Work on contiguous chunks of memory

// fast
for(i=0; i < I; i++) {
for(j=0; j < J; j++) {
ali * J + j] =
}
}

// Slow
for(j=0; j < J; j++) {
for(i=0; i < I; i++) {
ali * J + j] =
}

Number crunching
(1o}

Matrix multiplication

Benchmark

Matrix multiplication ¢;; = Z by
k

void matmul_ikj(int I, int J, int K,
double *A, double *B, double *C)
{
int i, j, k;
for(i=0; i < I; i++) {
for(k=0; k < K; k++) {
for (j=0; j < J; j++) {
CLi * J + j] += A[i *» K + k] * B[k x J + jl;
}

}
Different permutations of {ikj} loops will perform differently

Number crunching
(o] J

Matrix multiplication

Multiplication time [s]

Matrix size & total memory allocation

Figure: Timings for matrix multiplication at -02 optimization level

Number crunching
(1o}

More optimizations

Loop unrolling

» Unrolling eliminates a fraction of loop bounds checks.

for(i=0; i < 4; i++) {
alil = b[i]l * c[i];
}

» Unrolled:

alil = b[i] * c[i];

ali + 1] = bl[i + 11 * c[i + 11;
ali + 2] bl[i + 2] * c[i + 2];
ali + 3] b[i + 3] * c[i + 3];

» Compiler may be able to unroll automatically
(e.g. -funroll-loops).

Introduction Number crunching >a izati Conclusions

More optimizations

Blocking
» Compute C = AB where each matrix is composed into blocks:
Ay o Ay
A= : :
Anl o Ann

v

Matrix product expressed with blocks:
Ci; = Z Ak By
k

Work on smaller blocks that fit into cache
Optimal blocksize depends on architecture (e.g. cache size)
Matrix product scales as O(N?)

Blocking improves O(N3) prefactor by working on chunks that
fit in cache

vV v v v

Number crunching

@00
BLAS and LAPACK

BLAS

Basic Linear Algebra Subprograms

» Standard interface for standard operations: Matrix
multiplication

» Highly optimized for different platforms individually

Some BLAS implementations

» RefBlas — reference implementation from Netlib
OpenBlas (based on older GotoBlas)

Atlas — automatically tuned linear algebra software
Intel MKL

AMD ACML

v

v

v

v

Introduction Number crunching a izati Conclusions

BLAS and LAPACK

Some BLAS functions

» dgemm: double-precision general matrix-matrix multiply

» dsymv: double-precision symmetric matrix—vector multiply
» daxpy: double-precision aX plus y

» zsyr2k: “complex double-precision (z) symmetric rank-2
update”, XYT +YX”

» Etc.

LAPACK: Linear Algebra PACKage

> Higher-level linear algebra operations

» LU-decomposition, eigenvalues, ...

» dsyev: double-precision symmetric eigenvalues
> Etc.

For best performance, use BLAS/LAPACK whenever possible

Number crunching

ooe
BLAS and LAPACK

Simple matrix multiplication vs BLAS

102 : — :
—e ikj —o jjk o—e jki

101 b

o—e Kij o—o jik o—o Kji

10° b

101 b

Multiplication time [s]

102 b

10-3 ! | ! | ! !
O QO Q Q Q O
PR R® OF LR SR JE S 0P
N N »? AP o o NN
~) © N

Matrix size & total memory allocation

Introduction

Parallel programs

Shared memory

» Multiple threads work simulaneously, access same variables

» Threads may read the same memory simultaneously, but
simultaneous writing leads to race condition

» Threads must therefore synchronize access to the memory
(e.g. synchronized methods and blocks in Java)

» Synchronize means: “Lock, run, unlock”

Distributed memory
» Each process has its own chunk of memory, probably on
different physical computers
» No problem with synchronizing memory (unless also threading)

» Must manually send/receive all data; much more difficult

Parallelization
o] e}

Parallel programs

Parallel pitfalls and deadlocks

Example 1

» Process 1 sends 5 numbers to process 2
> Process 1 expects something from process 2
» Process 2 expects 6 numbers from process 1, receives 5

» Both processes now wait forever

Parallelization
[e]e]]

Parallel programs

Parallel pitfalls and deadlocks

Example 2

v

Process A reserves Sala Capitular for this talk

v

Process B attempts to reserve Sala Capitular for this talk, but
Sala Capitular is already reserved for some talk

Process B schedules this talk for another lecture room

v

Introduction \ g Parallelization Conclusions

000000000000

Parallel programming

MPI — Message Passing Interface

» Programming interface specification for distributed-memory
parallelization

» Implementations: OpenMPI, MPICH, ...

» Communicator: Object which represents a group of processes
that may communicate amongst themselves

» MPI_COMM_WORLD — the communicator of all processes
» The size of a communicator is how many processes participate

» Each process has a rank within the communicator:
0,1, 2, ..., size—1.

» Run on 8 cores: mpirun -np 8 myprogram

tre tic r g Parallelization
0e000

Parallel programming

Parallel hello world

#include <stdio.h>
#include <mpi.h>

int main(int argc, char xx*xargv)
{
MPI_Init(&argc, &argv);
int rank, size;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Comm_rank(comm, &rank); // Ranks enumerate processes
MPI_Comm_size(comm, &size);

printf("hello world from process %d/%d\n", rank, size);
MPI_Barrier{(comm); // Wait for all processes to print

int ranksum;

MPI_Allreduce (&rank, &ranksum, 1, MPI_INTEGER, MPI_SUM, comm);
printf ("rank %d: I got %d\n", rank, ranksum);

MPI_Finalize ();

return 0;

Parallelization
[e]e] Tele]

Parallel programming

int main(int argc, char x*argv)

{

MPI_Init (&argc, &argv);

int rank, size;

MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);

double num;
MPI_Status status;
if(rank == 0) {
num = 42.0; // Pass number around to each process
printf ("rank O sends %f to rank 1\n", num);
MPI_Send (&num, 1, MPI_DOUBLE, 1, 0, comm);
MPI_Recv(&num, 1, MPI_DOUBLE, size - 1, 0, comm, &status);
printf ("rank 0 finally received %f\n", num);
} else {
MPI_Recv (&num, 1, MPI_DOUBLE, rank - 1, 0, comm, &status);
printf ("rank %d received %f from %d, sends to %d\n",
rank, num, rank - 1, (rank + 1) % size);
MPI_Send (&num, 1, MPI_DOUBLE, (rank + 1) % size, 0, comm);
}
MPI_Finalize ();
return 0;

Parallelization
00080

Parallel programming

BLACS/ScalLAPACK

v

BLACS: Basic Linear Algebra Communication Subprograms
ScalL APACK: Like LAPACK, but in parallel

BLACS uses “2D block-cyclic memory layout™ Processes are
arranged in a 2D grid, arrays are distributed in blocks

v

v

» Distribution of blocks among ranks:
012|012
3145|345
0(1(2(0(1]|2
3(4|5(3]415

> pdgemm, pdsyev, ...

Parallelization
Q000e

Parallel programming

Parallel scaling

GPAW/LCAO performance

» Time per iteration, 2500-10k atoms

> “Strong-scaling” test: Fixed problem
size, increase CPU count

» More processes increase speed, but also
overhead

» More processes may be necessary when
calculation does not fit into memory

104 g

103

Time [s]

102

B 1IN 2N
3N 4N
B8 SCF e-e diag

101

O S D> D L
,\>\ q}‘b bgb Q;,{b @cﬁo

Number of nodes/cores

Introduction ing Parallelization

Supercomputing

Conclusions

Quinde supercomputer at Yachay
» 84 compute nodes, dual Power-8 10-core CPUs (20
cores/node)
» Dual NVidia K-80 graphics cards, 8 tera-FLOPS
» 128 GB memory per node
» Interconnect: Mellanox 100 Gbit InfiniBand

Introduction

Supercomputing

Massively parallel architectures

» Hundreds of thousands of cores, very scalable
» High demands on interconnect: Network topology, locality

/

Figure: IBM BlueGene/P (Image source: Wikipedia)

Parallelization
00e0

Supercomputing

GPUs — graphics cards for computing

» A graphics card is a shared-memory processor running a very
large number of threads

» Graphics cards are the cheapest way of multiplying many
floating point numbers

» Special architecture: Code must be explicitly written for
graphics cards

Introduction \ ing Parallelization Conclusions

S’u’percomputing
GPU performance

» On a normal processor, each thread (a, b, c) should work on a
contiguous piece of data (1, 2, 3):

lal a2 a3[bl b2 b3|cl 2 3]

» On a graphics card, memory bandwidth (main memory to
graphics card memory) is critical

» Threads a, b, and ¢ can start quickly only with a strided
memory layout:

lal [bl|cl[a2|b2[c2|a3|b3]c3|

» Here, threads a, b, ¢ will all run once we have received three
chunks

» In the previous case, b and ¢ would still be idle after receiving
three chunks

Conclusions
[]

Summary & concluding remarks

» Pipelining, memory locality
» Parallelization: Threading, MPI
» HPC libraries: BLAS, LAPACK, ScaLAPACK

