JWars - A Generic Strategy
Game 1n Java

Midterm Project at IMM

Michael Francker Christensen s031756
Ask Hjorth Larsen s021864

Supervisor: Paul Fischer
DTU - Technical University of Denmark

June 27, 2006

Front page: Soviet T-34 tanks supported by infantry advancing across the Rus-
sian steppes

Abstract

Contents

Abstract
1 Introduction
1.1 Acknowledgemento L
1.2 About the real-time strategy genre
1.3 Why JWars?
2 Features of JWars
2.1 Gamedynamics e e
2.2 Technical features,
3 Overview
3.1 Development plan
3.2 Modularoverview
4 Networking
4.1 Choosing a network model oL
4.2 Synchronization oo
4.3 The networking APT
5 Event handling
6 World of JWars
6.1 Coordinate systems Lo
6.2 Data management
6.3 Terrain.o
7 Collision detection
7.1 Introduction to collision detection
7.2 Design of the collision detector
7.3 Efficiency and optimization
7.4 Conclusion e e e
8 Pathfinding
81 Vision e e e e

ii

10

11
11
11
11

12
12
14
15
16

17

9 Unit organization

10 Unit AI

10.1 Hierarchical structure
10.2 Design considerationso
10.3 Overview of Al structure.

11 Combat

11.1 Analysis of combat dynamics
11.2 Weapons, armour and damage
11.3 Spotting and targetting L.

12 Control

13 Graphics

14 Conclusion

References

iii

22

23
23
24
25

26
26
26
26

27

28

29

iv

Chapter 1

Introduction

1.1 Acknowledgement

1.2 About the real-time strategy genre

When categorizing Jwars it should be specified as a Real-Time Tactical game.
This genre however belongs under the broader type of games called Real-Time
Strategy (RTS) which is normally used. The RTS genre came about in the
80’s only being fully developed and formally seen as a single genre 10 years later
with titles such as Dune II and later Blizzard’s titles Warcraft and Warcraft
II. For the casual gamer a RTS game can be recognized by using some simple
ground rules which have grown to distinct the genre:

e Warplanning is essential - strategy
e The player has no 'Next turn’ button - real-time

Other essential guidelines:

Resource gathering Building/unit locations are essential The manufactoring
of specific units The player has direct control of all his units/buildings

The RTS genre was developed from the turn-based strategy games genre.
One of the first RTS games, perhaps the most important one, is dune II for
which the developers was inspired by Sid Meiers Sim City. It should be noted
that while Sim City differs from the standard RTS game, it is also recognized
as a RTS game where the opponent is the game environment itself and not an
AT or another human player.

RTS games today is normally played ’player vs player’ either online or on
LAN connections. Most RTS games developed recently has focused mainly on
the gameplay in multiplayer form than the gameplay in single player form with
mission.

1.3 Why JWars?

Chapter 2

Features of JWars

2.1

Game dynamics

game design regarding hierarchy

2.2

Technical features

This section lists briefly the

World representation. JWars uses a number of abstract 2D coordinate
spaces and provides utilities for conversions between these. Specifically
many tile-based maps are required by the different components of JWars.

Collision detection. An efficient tile-based collision detector is capable of
detecting collisions between circular objects of arbitrary size.

Pathfinding. The pathfinder implements an A* algorithm which dynam-
ically expands the search area according to requirements. This approach
accomodates obstacles of arbitrary size and placement.

Spotting system. The spotting system uses a tile-based approach which is
particularly efficient if the map is large compared to the visibility radius.

Artificial intelligence. A simple but highly extensible

Event handling model. A queueing system provides efficient management
of timed execution of game events avoiding unnecessary countdown timers.

Data management. Script-like files can be used to store game data such
as unit and weapon statistics. These are loaded into categories which
represent the abstract concepts of those units or weapons. Finally entities
can - in turn - be instantiated from categories.

e Server-client based networking model. The TCP/IP based networking
model supports a customizable set of instructions and provides base server
and client classes for managing player connections. This model has very
low bandwidth requirements, but requires perfect synchronization of the
game states across the network.

e Multiplayer synchronization utilities. Synchronization on multiple clients
is done by means of a timer which assures that clients follow the server
temporally closely.

Chapter 3

Overview

For reasons of extensibility, JWars consists of several modules which can be used
separately or with a minimum of cross-package dependencies.

3.1 Development plan

3.2 Modular overview

Describe basic concepts such as units

Chapter 4

Networking

While real-time strategy games traditionally include single-player campaigns,
experiece shows that the success of a game is largely determined by its playability
in multiplayer. The online playability of a real-time strategy game is therefore
very important, and the networking implementation can have profound impact
on this'. This chapter will explore the options available to JWars and in turn
decide on a feasible design.

4.1 Choosing a network model

There are several different architectures and protocols used in multiplayer games,
and different genres have different requirements regarding efficiency and re-
sponse times. Fundamentally we shall discuss two variables in this entire prob-
lem. First there is the amount of game data which has to be synchronized across
the network, along with the and the response time, i.e. the ping or latency.

We can roughly categorize real-time computer games by their networking
requirements:

1. Small, fast-paced games such as first-person shooters. These games require
low ping but have small amounts of data to synchronize (e.g. the positions
and speeds of a few dozen game objects). For example the game Counter-
Strike is usually played by around 10-20 people who each controls one
person, and network latency can quickly cause deaths in the fast-paced
firefights.

2. Large, slow-paced games such as real-time strategy games. There are
very large amounts of data (hundreds or thousands of game objects), but
there are only lax requirements to response times since the player is not
concerned with such low-level control as above.

L Command € Conquer: Generals is regarded by the authors of this text as one of the
finest real-time strategy games ever conceived, and yet this game remains largely unplayed
online. Even on a high-speed LAN the game speed will almost grind to a halt with just four
players. Our conclusion: they chose the wrong network implementation.

3. Large, fast-paced games such as massively multiplayer online role-playing
games. These require both fast response and involve very large amounts
of data, and therefore demand very advanced networking code. It is well
known that this takes its toll even on modern games of the genre, but
luckily this is none of our concern.

We are obviously concerned only with the second category. We note two ways
to keep the game state identical across a network: either we can beam the
entire game state consisting of every logically significant game object across
the network with regular intervals. This approach obviously only accomodates
games of the first category because of sheer bandwidth requirements. Another
— and to us better — way is to let every computer simulate the entire game logic
in parallel, and only send across the network those instructions that are issued
by the players.

This approach is promising since it requires next to no bandwidth even
though thousands of units are on the battlefield. However it is strictly required
that all comptuers on the network are able to perform exactly the same simula-
tion given the player inputs received from the network, otherwise the game will
go ‘out of synch’ and never recover. The next section will describe this approach
in detail.

4.2 Synchronization

We shall now propose a complete solution to managing the flow of time (in the
game, that is). Suppose until further notice that the players have no control
of the game. We define that the game starts at frame 0, or ¢t = 0, in some
initial state which is identical on all those computers that partake in the game.
Now, all the partaking computers will perform a logical update (which will allow
entities to move or fire at each other automatically and deterministically, i.e.
without the player issuing instructions) at regular (and equal across the network)
intervals, and when such a logic update on some computer is completed we say
that the frame count ¢ is increased by one on that computer. Thus, as time
progresses every computer will execute further logic updates for ¢ = 1,2,3...
until the game is over, and if the logic update routine is consistent then the
computers will all be in the same state at all time.

There is no network activity yet since the logic update routine is determin-
istic and therefore requires only local information. Note that the computers do
not need to execute the same logic update at exactly the same physical time, the
only important thing is the relationship between frame count and game state.

Interactivity: player instructions

Suppose now that we will allow a player to affect the game state, which is hardly
a deterministic endeavour (except in Chartres’ philosophy; however we shall
here define deterministic as something which a computer can predict, seeing
as the deeper philosophical considerations go beyond the scope of this text).

We will need to send the particular instruction that this player has issued to
all computers in the game such that they can execute it. Furthermore it is
obviously vital that all computers execute this instruction while in the same
frame, otherwise they will go out of synch forever.

Let us say that some computer acts as a server which keeps track of the frame
count, while all players are clients connected to the server. The player who
wishes to execute an instruction then sends that instruction to the server. The
server receives this instruction while in frame number ¢y. Now, every computer
on the network must receive this instruction and execute it at the same time,
so the server echoes the instruction to all clients along with the requirement
that the instruction be executed at frame number ¢ty + L, assuming that the
instruction will arrive to the other computers before they have furhter executed
L updates (we shall refer to L as the latency, even though the physical ping
results in a slightly larger actual latency). Now, each client will receive the
instruction and can enqueue it for execution in the (9 + L)’th logic update.

Synchronization instructions

What happens if the instructions arrives late to one player, at time tq + L + 67
Then that computer will no longer be able to execute the instruction in time, and
the game is ruined forever. This must not happen, and we shall therefore require
that the server provides as a guarantee to each client that they are allowed to
execute updates until some frame count. If the server continously sends out
synch instructions to all clients stating that they may proceed the updating
procedure until frame ¢ where ¢t < to + L, then a client can halt the game flow
if it reaches time ¢ and not continue until receiving a new such instruction from
the server. In the meantime any instructions that arrive will be enqueued for
execution at times later than ¢, ensuring their eventual execution at the correct
time.

A game implementing the ideas presented here will not rely on a classical
game loop which performs updates at the highest possible speed, but instead
use a timer which updates only at regular intervals. It is still possible to render

at higher frequency than the logical update rate, using interpolation, see section
?29

Conclusion

We now have a completely synchronized model which supports any number
interacting players and requires a server. The network activity will be very low,
perhaps few instructions per second for synchronization and a term proportional
to the player activity. Since the server will have to send each instruction to n
players, and n players will send O(n) instructions, the bandwidth use will be
O(n?) unless special countermeasures are taken, but real-time strategy games
are traditionally played by no more than around 12 players, and with the low
per-player bandwidth requirement this remains acceptable.

4.3 The networking API

The objective of this section is to design a networking package adhering to
the requirements specified in the previous section. This will be done in an
event-driven way which exposes a continually updated instruction queue to the
programmer who can therefore integrate it asynchronously in any timer based
or game-loop based implementation.

The instructions considered in the previous sections, both synch instructions
and client instructions, obviously require guaranteed delivery in consistent order.
Both of these properties are ensured by the TCP/IP protocol, and along with
the lax latency requirements this shows beyond doubt that TCP/IP is better
than UDP for our purposes.

It is evident that we need a Server and a Client concept, along with the
concept of instructions. We shall further introduce the protocol which is simply
a collection of instructions.

The entire client-side networking model consists of a

Chapter 5

Event handling

10

Chapter 6

World of JWars

6.1 Coordinate systems
6.2 Data management

6.3 Terrain

11

Chapter 7

Collision detection

This chapter will after an introduction to collision detection describe the design
and capabilities of the JWars collision detector.

7.1 Introduction to collision detection

The most important objective of this section is to decide on an overall approach
to an efficient and reasonably simple collision detector bearing in mind the re-
quirents of real-time strategy games. There is by no means an optimal such
collision detector since requirements invariably will differ greatly with applica-
tions. Further shall restrict the discussion to two-dimensional collision detection
seeing as JWars does not need three dimensions.

In a real-time strategy game there is generally a large amount of units,
possible more than a thousand. It is therefore of the utmost importance that
the collision detector scales well with the number of units in the game.

Let n be the number of units present in some environment. In order to check
whether some of these overlap it is possible to check for each unit whether this
unit overlaps any of the other units, and we will assume the existence of some
arbitrary checking routine which can perform such a unit-to-unit comparison
to see whether they collide. While the amount of such checks can easily be
reduced, for example noting that the check of unit 7 against unit j will produce
the same result as the check of unit j against unit ¢, this method invariably
results in O(n?) checks being performed. This approach is fine if there are very
few units, but this is obviously

The amount of checks can, however, be reduced by registering units in lim-
ited subdomains of the world and only checking units in the same subdomain
aganst each other (for now assuming that units in different subdomains can-
not intersect). Suppose, for example, that the world is split into ¢ parts each
containing % units. Then the total amount of checks, being before n?, will be

12

only
o\ 2
number of checks ~ ¢ (E) =n?/q.

It is evident that within each subdomain the complexity is still O(n?), but
decreasing the size of the subdomains can easily eliminate by far the most
checks, particularly if the division is made so small that only few units can
physically fit into the domains. The applied approach thus employs principles of
a divide-and-conquer method[2, pp. 28-33], though it is not explicitly recursive.

This approach still needs some modifications in order to work. Specifically,
units may conceivably overlap multiple subdomains, necessitating checks of units
against other units in nearby subdomains. Assuming square subdomains will
prove both easy and efficient, and we shall therefore do so. Consider a grid
consisting of w x h elements, or tiles, defining these subdomains—see figure ?7.
We shall describe two ways to proceed.

1. Single-tile registration. Register each unit in the tile 7" which contains
its somehow-defined geometrical center. In order to check one unit it is
necessary to perform checks against every unit registered in either T' or
one of the adjacent tiles. Thus every unit must be checked against the
contents of nine tiles. This approach is simple because a unit only has to
be registered in one tile, yet much less efficient than the optimistic case
above and requires that the units span no more than one tile size (in which
case they could overlap units in tiles even farther away).

2. Multiple-tile registration. Register the unit in every tile which it touches
(in practice, every tile which its bounding box overlaps). Checking a unit
now involves checking it against every other unit registered in any one of
those tiles it touches. This means that a unit whose bounding box is no
larger than a tile can intersect a maximum of four tiles. Units of arbitrary
size can cover any amount of tiles and therefore degrade performance, but
the collision detection will obviously not fail-also in most real-time games
the units are of approximately equal size and for the vast majority this
approach will be .

For the JWars collision detector we have chosen the second approach, primarily
because it does not restrict unit size to any particular scale. This approach will
also likely be more efficient since it in most cases will require less than half the
number of tiles to be visited (as noted, 4 is a bad case in this model whereas the
former model consistently requires 9). However there is one possible problem
which is illustrated in figure ??, namely that two units which occupy two of the
same tiles will (unless carefully optimized out) be checked against each other in
each of those tiles!.

1The present implementation does not optimize this, since this can hardly degrade efficiency
considerably.

13

The best-case time of such a tiled collision detector is O(n) corresponding
to the case where all units are in separate tiles. The tiles should be sized such
that only a few units (of a size commonly found in the game) can fit into each,
but they should not be so small that every unit will invariably be registered in
multiple tiles. Every time a unit moves the tiles in which it is registered will
have to be updated, which becomes time consuming eventually.

As an example, this model should easily accommodate a battlefield with
many tanks (around 6m in size) and at the same time provide support for a few
warships (around 100 — 300 metres). If necessary, it is possible to improve the
model by allowing variably-sized tiles, such that the tiles are made larger at sea
than at land, for example. This approach will, however, not be implemented
since such extreme differences in scales are very uncommon in the genre.

Having covered the methods necessary to minimize the number of checks, it
is time to briefly mention the checking routine itself. It is obvious that a large-
scale game can not realistically provide collision detection between arbitrarily
complex shapes. In this genre units are commonly modelled as circular or
square, and we have therefore decided to provide only collision detection for
circular units. However the JWars collision detector does provide an escape
mechanism ensuring that units can implement a certain method to provide any
custom-shape collision detection. Using circular shapes provides the benefit of
simplicity and efficiency, and no custom shape handling will be discussed in this
text.

7.2 Design of the collision detector

The collision detector manages a basic kind of entity which we shall refer to
as a collider. The most basic properties of a collider are its location (z,y)
and the radius r of its bounding circle (it has a few more properties which are
irrelevant to this section but will be mentioned later). These properties are used
to determine which of the aforementioned tiles the collider overlaps.

In order to represent the collision grid, the collision detector uses the map
utility package which is described in section ??. It requires two coordinate
systems: a main coordinate system (the z,y and r properties of colliders are
presumed given in this system) and a more coarse collision grid. The latter
map is a tile map consisting of collision tiles, where a collision tile is capable of
storing a list of colliders.

Registration of a unit in the collision grid uses the coordinates and radius of
the collider to derive a bounding box, which is easily compared - through the
coordinate transform provided by the map package - to the grid elements of the
collision map. The checking routine described in the previous section is easily
implemented by traversing the tiles thus overlapped by the collider, then and
for each tile comparing the radii of present colliders.

The actual checking routine, check, takes a collider and a desired location
(z,y) as parameters and returns whether the specified location is legal (i.e. does
not overlap with any other collider registered in the collision grid).

14

The collision detector further has a move method which takes similar argu-
ments, and which will also move the specified entity instead of only performing
a check.

Further features

Finally a few utilities of the collision detector should be mentioned. Since it
is desirable to use the collision grid in order to localize units to be rendered,
a collider can also possess a sprite, see section ?7. The sprite is used to track
movements on the screen, such that redrawing can be skipped in regions where
no such movement takes place.

As another feature, some entities may naturally be able to move past another
while others are not. For example, infantry units consisting of multiple men
would be able to enter a building which would be impassable by larger objects
such as vehicles. Also infantry squads would be able to walk through each
other, whereas an infantry unit would not be able to move past a tank (which
is massive), and two tanks would not be able to drive through each other.
Therefore the collider should also specify a boolean which determines whether
the object is massive. If either of two colliding colliders is massive, then the
collision detectors check will return false. Thus infantry squads can easily be
made to pass through each other or buildings (all non-massive entities).

Finally it is sometimes desirable to “cheat”, i.e. not perform strict collision
detection in order to make the gameplay smoother. For example if it is desired
that a new unit should enter the map, but there is no space at the desired
location, it might be best to disable the collision detector and allow that unit
to overlap others until such time as the unit no longer overlaps them (when
they or the unit have moved). Colliders may therefore be declared as ghosts, in
which case the collision detector completely ignores them until they are declared
non-ghosts.

Regarding implementation, these two properties, whether colliders are mas-
sive or ghosts, are conveniently encapsulated in a set of collision properties
which every collider must have. The collision properties may be retrofitted in
later versions to support an abstract notion of height (cf. the “2.5 D” geometry,
section ??) or other concepts that can desirably be modified.

The concept of colliders is contained programmatically in the interface Collider,
such that any class can implement it.

7.3 Efficiency and optimization

At an update speed of 50 Hz, the present implementation of the JWars game
can on the authors’ test systems support approximately 1000 simultaneously
moving units before lagging behind in logical framerate. It is, however, possible
to run a logical framerate of e.g. 10 Hz and perform interpolation to ensure

15

graphical smoothness between logic updates? (thus using a higher graphical
than logical update rate). Using such an approach the performance could be
enhanced 10-fold. This is not quite necessary in the JWars application. The
collision detector therefore supports around 10,000 moving entities, but this
figure can be reduced if custom geometries are used or if other parts of the logic
are computationally heavy.

7.4 Conclusion

This chapter has introduced the JWars collision detector, and selected a tile-
based approach to ensure that the detector accomodates large amounts of enti-
ties efficiently.

It works by registering entities in appropriate tiles using axially aligned
bounding boxes. Collision checks are done using the radii of entities, meaning
that all units are considered circular. However an escape method is provided
that allows arbitrary geomtry.

Performance-wise

2Note that if the update rate is further reduced it will most likely become visible to the
human player even if graphical interpolation is performed, since the logical framerate governs
firing and other things that are directly visible to the player.

16

Chapter 8

Pathfinding

When moving units in the world of JWars a navigational problem arises when
trying to find the shortest paths between to points. There exists a range of
solutions when finding the shortest path between to points. These solutions
however have different requirements for the map in which to navigate and some
might be inconsistent in speed.

Most of todays RTS games solve this problem by using a tile system for the
map and designating tiles with either ‘used’ or ‘free’ as markers when scanning
through the map with an algoritm. This approach has several advantages,
like high and consistent speed, while it requires a predefined map-structure to
search in. A good example is the A* algorithm which is a shortest path graph
algorithm. For finding a shortesth path, using graphs for data representation
will be the best way. When finding a path on a map you will need fixed points
(reference points) designating where to turn and to make heuristic evaluations
during the search. A graph is normally represented like this:

G = (V,E).

// indseet illustrationer

V is a list or other representation of all the vertices in the graph, and F is a
representation of the edges in the graph. An edge is best seen as a link between
two vertices - meaning that you can go from vertex vl to vertex v2 using the
edge e(vl,v2). The weight of an edge, corresponding to the amount of time it
takes to traverse it, is given by a weight function w : E +— [0, oo] since a distance
already travelled can not be negative.

Given a graph with a chosen data structure there are multiple ways to solve
the single-source shortest path problem from vertex A to B. Most of these
algorithms are based on selective expansion of the search area since this type
has the best running times with the fewest vertices visited.

The pathfinding in our instance has some requirements to the algorithm
which we must take into account before implementing a final algorithm. The
most pressing issue is to ensure compatibility with the very general approach

17

taken in the JWars world representation (for example entities can be very dif-
ferently sized, and it is assumed that the world might be much larger than in
most contemporary real-time strategy games). We have thus chosen a very open
approach in the area of unit location and building placement.

It is possible to entirely define the physical constraints of an entity accord-
ing to tiles which it occupies instead of using a continuous system as we did in
chapter ?7?; however, as we have seen from the collision detector, we use greater
precision than a tile based approach offers. This approach introduces one signif-
icant problem to a tile-based pathfinder, namely that tiles will frequenty neither
be completely occupied by entities nor completely free. This purely tile-based
collision system seems! to be implemented in some games and works well - in
these games however the placement of objects suffers from the above mentioned
limitations.

A tile system is incapable of handling the pathfinding in JWars - the aspect
of pathfinding on graphs is however still viable and the most efficient method.
The implementation we have chosen for the pathfinding is to transform the
dynamic/open implementation of the JWars-world to a graph-system on which
we can perform a search algorithm. For accomplishing this we have implemented
a dynamic graph system explained in the next chapter.

For every path needing to be found we start with the given graph for the
current map G = (V, E). V consist of all corners on static objects convex hulls
on the map. This data is stored in the collion map. F starts of as an empty
list. 2

The start and goal location are added to the program as Sloc and Gloc -
these are considered vertices which is set for each running of the algoritm. In
general pathfinding A* is considered the most effective search algorithm on the
single source shortest path problem. In effect this means that the algorithm
will terminate as soon as the shortest path has been found to the given goal
vertice. There exist a number of algorithms to solve the problem but the A*
algorithm has the shortest running time and fits or problem profile well in the
almost greedy expansion of the search tree.

In theory all edges can be represented in E' - but not active until discovered
by the algorithm. Using this approach we expand the graph according to A*
and evaluate it as such. The operation that makes this algorithm stand out
is the shoot-to function which activates vertices/edges while searching for the
path. FIXME?

The important aspect of the chosen solution is that it is not affected by
any other part of the game implementation except the collision detector. If a
developer wants to use this pathfinder it is fairly easy to convert to a completely
different setup - all that is needed is a function that can detect a collision on a line

In Starcraft, for example, buildings can only be placed at discrete intervals, and equally
sized units tend to line up in grid-like formations.

2If it were to be a pre-defined list it should consist of all possible routes between any
vertices on the map. This amount of data would be hard to handle and if the amount of static
objects were large enough it would require alot of memory space.

3fixme: So how does it ‘activate’ vertices/edges?

18

between two coordinates (which will automatically be traversed by the shoot-to
function). This makes the final pathfinding solution as flexible as possible and
not letting it have any depencies as collision grids or even a grid based movement
systemFIXME?*. The pathfinder does, however, have some limitations. The
pathfinder will be able to fall short if objects are not given as either circles
or convex polygons. FIXME’This small bug only arises when a player gives
a move order inside an objects convex hull. Here is a quick overview of the
different methods and the relations described.

pre-settings:
all vertices/pathfindingnodes have been initialized with h = infinity
C is the list of vertices to expand - the openlist.

FindPath(Sloc, Gloc)

openlist.add(Sloc);
current = openlist.pop();

do{

if (current = Gloc){
backtrack();

}

shoot (current, Gloc);
openlist.sort();
current = openlist.pop();

}

while(openlist.empty() != false)
clear();

failed();

end

Shoot (From-Node, To-Node)

expandl
expand?2

null;
null;

collider = walk(From.coord, To.coord)

4fixme: But how can it not depend on a grid when it has a shoot-to function?
5fixme: Why would this be? There is no description of this.

19

if(collider != To){
collider.expand();

if(collider.size !'= small){
shoot (From, expandl);

shoot (From, expand2);

}

else{
openlist.add(expandl) ;
openlist.add(expand?) ;

}

elseq{
To.update (From) ;
openlist.add(To);

}

end

Backtrack

S := empty sequence
u:=t

while defined previous[ul
insert u to the beginning of S
u := previous[u]

end

FIXME® The main methods are quite simple, though not all aspects have
been included here. We start the pathfinder by calling the FindPath function
with the given start and goal coordinates. The openlist is used for expanding
the algorithm and will contain all nodes which are marked for further expansion.

The actual algorithm takes part in the shoot-function which will try to ex-
pand the search area by either calling itself recursively or simply adding the
found corners to the openlist. When all the relevant object corners have been
found, updated and added to the list, the algorithm will sort the list and select a
new node for expansion until the goal has been reached. When updating a node
we call a method within the PathFindingNode class. This method will update
three values which is needed for sorting and evaluating nodes in the list. This
is done so the search area can be expanded further according to the heuristic
evaluation. Finally the method will set the ancestor of the given node to the
node from which we came to make backtracking possible when a path has been
found. FIXME"We use values f,g and h. f for the travelled distance to this

6fixme: Separate interface and implementation. Don’t mention openlist (invisible to the
user) while describing how the pathfinder is used.
7fixme: f,g,h: they denote the values regarding ‘this’ node, huh? So each node has an

20

node, g for the heuristic evaluation to the goal and h as a representation for the
combined values.

The heuristic evaluation is based on an evaluation in a 2D environment for
pathfinding. Taking into account that all distances travelled are straight lines,
we can always be sure that we have the shortest possible path to any given node
if the ‘Relax’ FIXME®method is used. This is described in [?] when describing
Dijkstra’s algorithm. The g-score for a node is simply calculated by taking the
distance from the current node to the goal location. The g-potential will ensure
that a node having travelled less than others and having the possibility to result
in getting directly to the node will be the next expanded. This approach mean
we can safely terminate the algorithm upon reaching the goal location because
the given path will be shortest path possible. Any further expansion of the
algorithm will not be neccesary.

The algorithm is not very efficient since it has to double check some values.
To somewhat eliminate this problem a minor fix has been implemented. All
buildings have a boolean, ‘small’, attached to them (the default setting is false
since it is only a help for a developer). When constructing a building by chosing
a blueprint the developer can choose to make it a category small object if he
see fit. This is meant for creating objects which a unit colliding with should not
deviate noticeably from its original course to get around - thus saving the time
for checking the routes to the corners of the object in the shoot function. If the
object is small enough a shoot function very similar to the the original would be
called two extra times. If the small boolean is set true on large objects it would
still not make the algorithm fail, though the given path might not be as optimal
as original thought it should still give a viable path due to the implementation
of the walkAround method.

Some pathfinders have been expanded to foresee other units walk patterns
and to take these into their own calculations when finding a route. This pos-
sibility do not arise in a world which is not grid-based since the possibilty to
‘rent’ map space is not available. Unfortunately this option will not be avail-
able to a pathfinder not based on the map structuring (ie. grids or another
format). In the real world it makes sense not to let all allies know where you
are all the time. Implementing a system for units to communicate and plan
their movements optimally can be implemented given more time. Currently
the walkAround method in the MoveableAl class makes up for collisions. This
method should be extended to take unit-to-unit communication into account for
smarter move patterns.

8.1 Vision

f,g,h? (Be more clear)
8fixme: “The’ relax method? Which one?

21

Chapter 9

Unit organization

22

Chapter 10

Unit Al

10.1 Hierarchical structure

Most realtime strategy games include two kinds of AI: first there is a simple
AT which controls the low-level behaviour of the individual units. This AT is
responsible for automatically doing tasks which are trivial, such as firing at
enemies within range or, if the unit is a resource gatherer, gather resources
from the next adjacent patch if the current patch is depleted such that the
player needs not bother keeping track of this. The other kind of AT is the
separate Al player which controls an entire army, and which is incompatible
with the interference of a human player. This Al is responsible for larger tactical
operations such as massing an army or responding to an attack.

In JWars, as we shall see, there is no such clear distinction between different
kinds of AI. Because of the hierarchical organization it is possible to assign an
AT to each node in the unit tree, meaning that while every single unit does have
an AT of limited complexity to control its trivial actions, like in the above case,
the platoon leader has another AT which is responsible for issuing orders to each
of the three or four squads simultaneously, and the company leader similarly is
responsible for controlling the three or four platoons. It is evident that this
model can in principle be extended to arbitrarily high levels of organization,
meaning that it will easily be equivalent to the second variety of ATl mentioned
above. The entire army could efficiently be controlled by AI provided that the
AT elements in the hierarchy are capable of performing their tasks individually.

There are numerous benefits of such a model, the most important of which
we shall list here.

e Tactically, if one unit is attacked the entire platoon or company will be
able to respond. In classical realtime strategy games this would result in
a few units attacking while the rest were standing behind doing nothing.
Thus, this promotes sensible group behaviour which has been lacking in
this genre since its birth.

e It is easy for a human player to cooperate with the AI. For example it is

23

sensible to let the AT manage all activity on platoon and single-unit level
while the player takes care of company- and battalion-level operations.
This will relieve the player of the heavy burden of micromanagement which
frequently decides the game otherwise (as asserted in section ??). Thus,
more focus can be directed on strategy and tactics instead of managing
the controls.

e The controls may, as we shall see below, be structured in such a way
as to abstract the control from the concrete level in the hierarchy. This
means the player needs not bother whether controlling an entire company
or a single squad: dispatch of orders to an entire company will invoke the
company AT to interpret these orders in terms of platoon operations. Each
platoon AI will further interpret these orders and have the individual units
carry out the instructions.

e A formation-level AI can choose how to interpret an order to improve effi-
ciency. For example the player might order a platoon to attack an enemy
tank, but the platoon AI might know that rifles are not efficient against
the tank armour. Therefore it might conceivably choose to employ only
the platoon anti-tank section against the tank while the remaining platoon
members continue suppressing enemy infantry. These considerations are
easy for a human player, but cannot be employed on a large scale since
the human cannot see the entire battlefield simultaneously. Once again
this eases micromanagement.

There are, however, possible drawbacks of the system.

The worst danger of employing such an AT structure is probably that the AT
might do things that are unpredictable to or conflicting with the human player.
Care must be taken to ensure that human orders are not interfered with, and
that the behaviour is predictable to humans!.

From a game design perspective it might also be boring if the automatization
is too efficient, leaving the player with nothing to do. This problem, of course,
can be eliminated simply by disabling certain levels of automatization.

10.2 Design considerations

It was stated above that the control of single entities versus large formations
could be abstracted such that the player did not need to bother about the scale
of operations. If this principle is to be honoured, the user interface must allow
similar controls at every level of organization. At the software designing level
this may be parallelled by providing a common interface to be implemented by
different AT classes. It should be possible to give move orders, attack orders and

IClassical examples of this problem are when resource gatherers deplete resources and
automatically start harvesting from patches too close to the enemy, or when the player issues a
movement order and the unit moves the ‘wrong’ way into the line of fire because the pathfinder
has determined that this longer way is nonetheless faster.

24

so on, and each of these should have its implementation changed depending on
the context, i.e. whether the order is issued to a formation or a single entity.
It is also not entirely clear at this point which operations should be sup-
ported. If
interfaces and such

10.3 Overview of Al structure

list different AI interfaces

25

Chapter 11

Combat

11.1 Analysis of combat dynamics
11.2 Weapons, armour and damage

11.3 Spotting and targetting

26

Chapter 12

Control

27

Chapter 13

Graphics

28

Chapter 14

Conclusion

29

Bibliography

[1] Sean Riley, Game Programming with Python (Charles River Media, 2004.
ISBN 1-58450-258-4)

[2] T.H. Cormen et al., Introduction to Algorithms, 2nd Edition (McGraw-Hill
Book Company, 2001. ISBN 0-262-03293-7)

30

