Efficient electronic structure methods applied to metal nanoparticles

Ask Hjorth Larsen

Center for Atomic-scale Materials Design

December 9, 2011

K ロ ▶ K 레 ▶ K 호 ▶ K 호 ▶ 『 호 │ ⊙ ٩. ①

Overview

- \blacktriangleright This is a theoretical project based on computer calculations
- \triangleright We develop an efficient method to calculate the properties of matter at the atomic scale
- \blacktriangleright Then we apply the method to understand the chemistry and other properties of metal nanoparticles or clusters

KORK STRAIN ABY COMPARI

What are clusters?

- \triangleright Particles with a few to a few thousand atoms
- \blacktriangleright "Typical" size 1-10 nanometres
- \blacktriangleright It turns out that small clusters may behave very differently from bulk materials
- \blacktriangleright This makes clusters interesting, for example in catalysis

Figure: Examples of possible cluster structures

Catalysis

- \triangleright A catalyst increases the rate of a reaction without being consumed in it
- ► Example: $2 CO + O_2 \longrightarrow 2 CO + 2O \longrightarrow 2 CO_2$

- In this example, the catalyst helps split O_2
- \triangleright Design of better catalysts requires an understanding of matter at small scales

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Quantum mechanics

- \triangleright Atomic-scale systems are described by quantum mechanics. In principle we could calculate all of chemistry by solving the Schrödinger equation
- \blacktriangleright These calculations are expensive and may take days. Therefore we use supercomputers

An electronic structure calculation

- 1. Define the locations of atoms
- 2. The computer solves the electronic problem, obtaining electron density, wavefunctions and electronic energies
- 3. The computer spits out energy, forces on atoms, ...

Density functional theory

 \triangleright An approach to first-principles electronic structure calculations based on the electron density as fundamental variable

KORKA SERKER SHORA

- \triangleright Unique compromise between accuracy and performance
- \triangleright Most of this work is based on DFT calculations

Iterative procedure

- \blacktriangleright Calculate electron density from wavefunctions
- \blacktriangleright Calculate potential from density
- \triangleright Solve for wavefunctions given the potential

The quest for smooth wavefunctions

- \blacktriangleright Wavefunctions oscillate and are expensive to represent
- Remove core electrons, replace nuclei with pseudopotentials

おす者 おくぼう

同

Þ

 QQ

▶ PAW: Extension to pseudopotentials. Avoids norm-conservation, and retains "all-electron" information

 $2Q$

Localized basis sets in PAW

As implemented in GPAW

Method

- \blacktriangleright Choose a basis of localized atomic orbitals $|\Phi_{\mu}\rangle$
- \blacktriangleright Expand wavefunctions as

$$
|\tilde{\psi}_n\rangle = \sum_\mu |\Phi_\mu\rangle c_{\mu n}
$$

 \blacktriangleright Results in generalized eigenvalue problem

$$
\sum_{\nu} H_{\mu\nu} c_{\nu n} = \sum_{\nu} S_{\mu\nu} c_{\nu n} \epsilon_n
$$

Pros

- \blacktriangleright Can use direct matrix diagonalization
- \blacktriangleright Localization improves scaling of many operations

Cons

 \blacktriangleright Less accurate than real-space or plane-wave representation, particularly for binding energies

 $\mathbf{1} \oplus \mathbf{1} \oplus \mathbf{$

A quick review

- \triangleright Localized basis sets: A cheap representation of wavefunctions
- \triangleright Projector augmented wave method: Complicated but efficient approach to density functional theory
- \triangleright Density functional theory: An efficient approach to computational quantum mechanics
- \triangleright Quantum mechanics: Predicts the properties of matter at small scales.

K ロ ▶ K 레 ▶ K 레 ▶ K 레 ≯ K 게 회 게 이 및 사 이 의 O

[Introduction](#page-1-0) [Electronic structure methods](#page-4-0) [Metal nanoparticles](#page-12-0) [Conclusion](#page-24-0)

K ロ ト K 何 ト K ヨ ト

Localized basis sets

Atomization energies

A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen. Phys.Rev.B, vol. 80, p. 195112, 2009[.](#page-8-0)

 299

 \Rightarrow

Lattice constants

A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen. Phys.Rev.B, vol. 80, p. 195112, 2009.

 4 ロ } 4 6 } 4 3 } 4

 \Rightarrow

 QQ

[Introduction](#page-1-0) [Electronic structure methods](#page-4-0) [Metal nanoparticles](#page-12-0) [Conclusion](#page-24-0)

Localized basis sets

 290

È

Part II

In which we perform a large number of calculations on clusters

Motivation

- ▶ Metal clusters are good catalysts
- \blacktriangleright Clusters are large and computationally expensive
- \triangleright We study the reactivity of clusters by calculating adsorption energies of simple adsorbates using a combination of overwhelming computational power and cheap methods

KORK STRAIN ABY COMPARI

[Introduction](#page-1-0) [Electronic structure methods](#page-4-0) [Metal nanoparticles](#page-12-0) [Conclusion](#page-24-0)

Large clusters: Atomic shells and packing

Figure: The first few cuboctahedra and icosahedra ($N=13, 55, 147, ...)$

- \triangleright Cuboctahedra are consistent with FCC packing
- \blacktriangleright Icosahedra have more (111) surface, but are strained

A likely series of structural motifs as size increases is i cosahedra \rightarrow decahedra \rightarrow truncated octahedra/cuboctahedra

Towards the bulk limit

Figure: BlueGene/P supercomputer. Our largest calculations use 32768 or 65536 CPUs (Source: Flickr, by "Argonne National Laboratory").

Figure: Adsorption energy of oxygen on Au and Pt cuboctahedra

Studying quantum-size effects

- \triangleright We want to study electronic size effects on chemisorption using simple model systems
- ▶ Plan: Build a large ensemble of clusters and run fast LCAO calculations

Construction of clusters

 \triangleright Remove atoms one at a time from one cuboctahedron until a smaller cuboctahedron remains

Size effects in transition metals

Figure: Adsorption energies of oxygen on different transition metals

- \blacktriangleright Smooth variations can be attributed to "geometric effects"
- \triangleright Metals with full d-shell show strong oscillations

Shell structure and magic numbers

- \blacktriangleright Consider N non-interacting electrons in a spherical well
- \triangleright Solve analytically for electronic energies and degeneracies

Figure: Electronic states of "jellium" clusters showing shell structure. High stability at shell closings give rise to so-called magic numbers

^I Jellium shell structure well known from alkali metal clusters

←ロト イ押ト イヨト イヨト

 QQ

Electronic shell effects

[Introduction](#page-1-0) [Electronic structure methods](#page-4-0) [Metal nanoparticles](#page-12-0) [Conclusion](#page-24-0)

Electronic structure of metal clusters

Figure: Energy distribution of electronic states for gold (left) and palladium (right) as a function of cluster size, showing electronic shell structure. The line indicates the Fermi level

Chemisorption on gold clusters

- \blacktriangleright Reactivity follows magic numbers
- \blacktriangleright Electronegative adsorbates (O, F) bind strongly to clusters just above magic numbers
- \blacktriangleright Electropositive ones (H, Li) do the opposite

(Actually, H would be expected to take, rather than give, an electron. But the explanation is too hairy for now)

Global structure optimizations

- \triangleright We can find the low-energy structures of gold clusters using molecular dynamics with simulated annealing
- \triangleright Simulate movements of each atom at high temperature
- **> Slowly lower temperature until cluster freezes**
- \blacktriangleright Expensive-requires thousands of calculations

Figure: Cluster at 750 K and 0 K

KORK STRAIN A BY A GRAY

 299

Electronic structure and geometry

Electronic versus geometric structure

- \blacktriangleright Right: Electronic structure of gold clusters from simulated annealing with DFT
- \blacktriangleright Below: Deformations calculated from moments of inertia
- \blacktriangleright Clusters deform to create electronic gaps well beyond 100 atoms

 4 ロ) 4 何) 4 ヨ) 4 コ)

Shapes and deformations

メロト メタト メモト \Rightarrow $2Q$ ×.

[Introduction](#page-1-0) [Electronic structure methods](#page-4-0) [Metal nanoparticles](#page-12-0) [Conclusion](#page-24-0)

メロト メタト メモト メモト

Ğ,

 2990

Electronic structure and geometry

Figure: Energy per atom of clusters, with structures determined using DFT vs EMT (ASAP).

KORK STRAIN A BY A GRAY

Conclusions

- \blacktriangleright Localized basis sets are very well suited for studying broad trends and large ensembles of systems
- \blacktriangleright The reactivity of noble-metal clusters with hundreds atoms in size is entirely dominated by global electronic shell effects
- \blacktriangleright The reactivity of non-noble transition metal clusters converges much faster with size, and follows variations of local geometry
- \blacktriangleright The structure of gold clusters well beyond 100 atoms is intricately dependent on electronic effects