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Initial remarks

Overview

I This is a theoretical project based on computer calculations

I We develop an e�cient method to calculate the properties of
matter at the atomic scale

I Then we apply the method to understand the chemistry and
other properties of metal nanoparticles or clusters
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Clusters and catalysis

What are clusters?

I Particles with a few to a few thousand atoms
I �Typical� size 1�10 nanometres
I It turns out that small clusters may behave very di�erently

from bulk materials
I This makes clusters interesting, for example in catalysis

Figure: Examples of possible cluster structures
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Clusters and catalysis

Catalysis

I A catalyst increases the rate of a reaction without being
consumed in it

I Example: 2 CO + O2 −→ 2 CO + 2O −→ 2 CO2

1 2 3

I In this example, the catalyst helps split O2

I Design of better catalysts requires an understanding of matter
at small scales
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Computational methods

Quantum mechanics

I Atomic-scale systems are described by quantum mechanics. In
principle we could calculate all of chemistry by solving the
Schrödinger equation

I These calculations are expensive and may take days.
Therefore we use supercomputers

An electronic structure calculation

1. De�ne the locations of atoms

2. The computer solves the electronic problem, obtaining electron
density, wavefunctions and electronic energies

3. The computer spits out energy, forces on atoms, ...
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Computational methods

Density functional theory

I An approach to �rst-principles electronic structure calculations
based on the electron density as fundamental variable

I Unique compromise between accuracy and performance

I Most of this work is based on DFT calculations

Iterative procedure

I Calculate electron density from wavefunctions

I Calculate potential from density

I Solve for wavefunctions given the potential



Introduction Electronic structure methods Metal nanoparticles Conclusion

Computational methods

The quest for smooth wavefunctions
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I Wavefunctions oscillate and are expensive to represent

I Remove core electrons, replace nuclei with pseudopotentials

I PAW: Extension to pseudopotentials. Avoids
norm-conservation, and retains �all-electron� information
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Localized basis sets

Localized basis sets in PAW
As implemented in GPAW

Method

I Choose a basis of localized
atomic orbitals |Φµ〉

I Expand wavefunctions as

|ψ̃n〉 =
∑

µ

|Φµ〉cµn

I Results in generalized
eigenvalue problem

∑

ν

Hµνcνn =
∑

ν

Sµνcνnεn

Pros

I Can use direct matrix
diagonalization

I Localization improves scaling
of many operations

Cons

I Less accurate than
real-space or plane-wave
representation, particularly
for binding energies
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Localized basis sets

A quick review

I Localized basis sets: A cheap representation of wavefunctions

I Projector augmented wave method: Complicated but e�cient
approach to density functional theory

I Density functional theory: An e�cient approach to
computational quantum mechanics

I Quantum mechanics: Predicts the properties of matter at
small scales.
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Localized basis sets

Atomization energies
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Localized basis sets

Lattice constants
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Localized basis sets

Operation Parallelization Complexity

Multigrid Poisson r O(N)
Density ñ(r) r, σ O(N)

XC ṽxc(r) r, σ O(N)
Potential Vµν ν, r, σ, k O(N)

Diagonalize Hµν µ, ν, σ, k O(N3)
Density matrix ρµν µ, ν, σ, k O(N3)
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[1.26] Vµν , ñ(r)

[0.71] xc
[0.92] poisson
[2.80] serial diag
[2.56] parallel diag
[2.75] ρµν
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Chemisorption on metal clusters

Part II
In which we perform a large number of calculations on clusters

Motivation

I Metal clusters are good catalysts

I Clusters are large and computationally expensive

I We study the reactivity of clusters by calculating adsorption
energies of simple adsorbates using a combination of
overwhelming computational power and cheap methods
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Chemisorption on metal clusters

Large clusters: Atomic shells and packing

Figure: The �rst few cuboctahedra and icosahedra (N=13, 55, 147, ...)

I Cuboctahedra are consistent with FCC packing

I Icosahedra have more (111) surface, but are strained

A likely series of structural motifs as size increases is
icosahedra→ decahedra→ truncated octahedra/cuboctahedra
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Chemisorption on metal clusters

Towards the bulk limit

Figure: BlueGene/P supercomputer.
Our largest calculations use 32768
or 65536 CPUs (Source: Flickr, by
�Argonne National Laboratory�).
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Figure: Adsorption energy of oxygen
on Au and Pt cuboctahedra



Introduction Electronic structure methods Metal nanoparticles Conclusion

Chemisorption on metal clusters

Studying quantum-size e�ects

I We want to study electronic size e�ects on chemisorption
using simple model systems

I Plan: Build a large ensemble of clusters and run fast LCAO
calculations

Construction of clusters

I Remove atoms one at a time from one cuboctahedron until a
smaller cuboctahedron remains
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Chemisorption on metal clusters

Size e�ects in transition metals
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di�erent transition metals
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I Smooth variations can
be attributed to
�geometric e�ects�

I Metals with full
d-shell show strong
oscillations



Introduction Electronic structure methods Metal nanoparticles Conclusion

Electronic shell e�ects

Shell structure and magic numbers

I Consider N non-interacting electrons in a spherical well

I Solve analytically for electronic energies and degeneracies
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Figure: Electronic states of �jellium� clusters showing shell structure.
High stability at shell closings give rise to so-called magic numbers

I Jellium shell structure well known from alkali metal clusters
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Electronic shell e�ects

Electronic structure of metal clusters
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palladium (right) as a function of cluster size, showing electronic shell
structure. The line indicates the Fermi level
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Electronic shell e�ects

Chemisorption on gold clusters

I Reactivity follows magic
numbers

I Electronegative adsorbates
(O, F) bind strongly to
clusters just above magic
numbers

I Electropositive ones
(H, Li) do the opposite

(Actually, H would be expected to take,
rather than give, an electron. But the
explanation is too hairy for now)
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Electronic structure and geometry

Global structure optimizations

I We can �nd the low-energy structures of gold clusters using
molecular dynamics with simulated annealing

I Simulate movements of each atom at high temperature

I Slowly lower temperature until cluster freezes

I Expensive�requires thousands of calculations

Figure: Cluster at 750K and 0K
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Electronic structure and geometry

Electronic versus geometric structure

I Right: Electronic
structure of gold clusters
from simulated annealing
with DFT

I Below: Deformations
calculated from moments
of inertia

I Clusters deform to create
electronic gaps well
beyond 100 atoms

12

10

8

6

4

2

0

En
er

gy
 [e

V]

20 40 60 80 100 120 140
Number of atoms

0.80

0.85

0.90

0.95

1.00

√
I
/I

m
a
x



Introduction Electronic structure methods Metal nanoparticles Conclusion

Electronic structure and geometry

Shapes and deformations
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Electronic structure and geometry
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Figure: Energy per atom of clusters, with structures determined using
DFT vs EMT (ASAP).
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Conclusions

I Localized basis sets are very well suited for studying broad
trends and large ensembles of systems

I The reactivity of noble-metal clusters with hundreds atoms in
size is entirely dominated by global electronic shell e�ects

I The reactivity of non-noble transition metal clusters converges
much faster with size, and follows variations of local geometry

I The structure of gold clusters well beyond 100 atoms is
intricately dependent on electronic e�ects
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