Efficient electronic structure methods applied to metal nanoparticles

Ask Hjorth Larsen

Center for Atomic-scale Materials Design

December 9, 2011

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Overview

- This is a theoretical project based on computer calculations
- We develop an efficient method to calculate the properties of matter at the atomic scale
- Then we apply the method to understand the chemistry and other properties of metal nanoparticles or clusters

What are clusters?

- Particles with a few to a few thousand atoms
- "Typical" size 1–10 nanometres
- It turns out that small clusters may behave very differently from bulk materials
- This makes clusters interesting, for example in catalysis

Figure: Examples of possible cluster structures

Introduction 00●	Metal nanoparticles 00000000000	Conclusion
Clusters and catalysis		

Catalysis

- A catalyst increases the rate of a reaction without being consumed in it
- Example: 2 CO + O₂ \longrightarrow 2 CO + 2O \longrightarrow 2 CO₂

- In this example, the catalyst helps split O₂
- Design of better catalysts requires an understanding of matter at small scales

	Electronic structure methods		Conclusion
000	0000000	00000000000	
Computational methods			

Quantum mechanics

- Atomic-scale systems are described by quantum mechanics. In principle we could calculate all of chemistry by solving the Schrödinger equation
- These calculations are expensive and may take days. Therefore we use supercomputers

An electronic structure calculation

- 1. Define the locations of atoms
- 2. The computer solves the electronic problem, obtaining electron density, wavefunctions and electronic energies
- 3. The computer spits out energy, forces on atoms, ...

	Electronic structure methods 0000000	Metal nanoparticles 00000000000	Conclusion
Computational methods			

Density functional theory

An approach to first-principles electronic structure calculations based on the electron density as fundamental variable

ション ふゆ く 山 マ チャット しょうくしゃ

- Unique compromise between accuracy and performance
- Most of this work is based on DFT calculations

Iterative procedure

- Calculate electron density from wavefunctions
- Calculate potential from density
- Solve for wavefunctions given the potential

ヘロト 不得下 不同下 不同下

э

The quest for smooth wavefunctions

- Wavefunctions oscillate and are expensive to represent
- Remove core electrons, replace nuclei with pseudopotentials
- PAW: Extension to pseudopotentials. Avoids norm-conservation, and retains "all-electron" information

Metal nanoparticles

Localized basis sets

Localized basis sets in PAW As implemented in GPAW

Method

- Choose a basis of localized atomic orbitals $|\Phi_{\mu}\rangle$
- Expand wavefunctions as

$$|\tilde{\psi}_n\rangle = \sum_{\mu} |\Phi_{\mu}\rangle c_{\mu n}$$

 Results in generalized eigenvalue problem

$$\sum_{\nu} H_{\mu\nu} c_{\nu n} = \sum_{\nu} S_{\mu\nu} c_{\nu n} \epsilon_n$$

Pros

- Can use direct matrix diagonalization
- Localization improves scaling of many operations

Cons

 Less accurate than real-space or plane-wave representation, particularly for binding energies

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A quick review

- Localized basis sets: A cheap representation of wavefunctions
- Projector augmented wave method: Complicated but efficient approach to density functional theory
- Density functional theory: An efficient approach to computational quantum mechanics
- Quantum mechanics: Predicts the properties of matter at small scales.

Introduction

Electronic structure methods

Metal nanoparticles

イロト イポト イヨト イ

Conclusion

Localized basis sets

Atomization energies

A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen. Phys.Rev.B, vol. **80**, p. 195112, 2009.

900

	Electronic structure methods 000000●0	Metal nanoparticles 00000000000	Conclusion
Localized basis sets			

Lattice constants

A. H. Larsen, M. Vanin, J. J. Mortensen, K. S. Thygesen, and K. W. Jacobsen. Phys.Rev.B, vol. **80**, p. 195112, 2009.

Introduction

Electronic structure methods

Metal nanoparticle: 000000000000 Conclusion

Localized basis sets

Operation	Parallelization	Complexity
Multigrid Poisson	r	$\mathcal{O}(N)$
Density $\tilde{n}(\mathbf{r})$	${f r}$, σ	$\mathcal{O}(N)$
$XC \ ilde{v}_{\mathrm{xc}}(\mathbf{r})$	${f r}$, σ	$\mathcal{O}(N)$
Potential $V_{\mu u}$	$ u$, ${f r}$, σ , k	$\mathcal{O}(N)$
Diagonalize $H_{\mu\nu}$	μ , $ u$, σ , k	$\mathcal{O}(N^3)$
Density matrix $\rho_{\mu u}$	μ , $ u$, σ , k	$\mathcal{O}(N^3)$

= 990

Introduction Elec 000 000 Chemisorption on metal clusters

Electronic structure methods

Metal nanoparticles

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Part II

In which we perform a large number of calculations on clusters

Motivation

- Metal clusters are good catalysts
- Clusters are large and computationally expensive
- We study the reactivity of clusters by calculating adsorption energies of simple adsorbates using a combination of overwhelming computational power and cheap methods

Metal nanoparticles

Chemisorption on metal clusters

Large clusters: Atomic shells and packing

Figure: The first few cuboctahedra and icosahedra (N=13, 55, 147, ...)

- Cuboctahedra are consistent with FCC packing
- Icosahedra have more (111) surface, but are strained

A likely series of structural motifs as size increases is icosahedra \rightarrow decahedra \rightarrow truncated octahedra/cuboctahedra

Metal nanoparticles

Conclusion

Chemisorption on metal clusters

Towards the bulk limit

Figure: BlueGene/P supercomputer. Our largest calculations use 32768 or 65536 CPUs (Source: Flickr, by "Argonne National Laboratory").

Figure: Adsorption energy of oxygen on Au and Pt cuboctahedra

・ロッ ・雪 ・ ・ ヨ ・ ・

ъ

Studying quantum-size effects

- We want to study electronic size effects on chemisorption using simple model systems
- Plan: Build a large ensemble of clusters and run fast LCAO calculations

Construction of clusters

 Remove atoms one at a time from one cuboctahedron until a smaller cuboctahedron remains

Introduction

Electronic structure method: 00000000 Metal nanoparticles

Chemisorption on metal clusters

Size effects in transition metals

Figure: Adsorption energies of oxygen on different transition metals

Fe	Co	Ni	Cu	Zn
Ru	Rh	Pd	Ag	Cd
Os	lr	Pt	Au	Hg

- Smooth variations can be attributed to "geometric effects"
- Metals with full d-shell show strong oscillations

ntroduction DOO	Metal nanoparticles	Conclusion
Electronic shell effects		

Shell structure and magic numbers

- \blacktriangleright Consider N non-interacting electrons in a spherical well
- Solve analytically for electronic energies and degeneracies

Figure: Electronic states of "jellium" clusters showing shell structure. High stability at shell closings give rise to so-called magic numbers

Jellium shell structure well known from alkali metal clusters

・ロト ・ 戸 ・ ・ ヨ ・ ・

Introduction 000 Electronic structure methods

Metal nanoparticles

Electronic shell effects

Electronic structure of metal clusters

Figure: Energy distribution of electronic states for gold (left) and palladium (right) as a function of cluster size, showing electronic shell structure. The line indicates the Fermi level

Introduction 000 Electronic shell effects Electronic structure methods

Metal nanoparticles

Chemisorption on gold clusters

- Reactivity follows magic numbers
- Electronegative adsorbates (O, F) bind strongly to clusters just above magic numbers
- Electropositive ones
 (H, Li) do the opposite

(Actually, H would be expected to take, rather than give, an electron. But the explanation is too hairy for now)

< /₽ > < ∃ >

 $\mathcal{O} \land \mathcal{O}$

Global structure optimizations

- We can find the low-energy structures of gold clusters using molecular dynamics with simulated annealing
- Simulate movements of each atom at high temperature
- Slowly lower temperature until cluster freezes
- Expensive—requires thousands of calculations

Figure: Cluster at 750 K and 0 K

Metal nanoparticles

Electronic structure and geometry

Electronic versus geometric structure

- Right: Electronic structure of gold clusters from simulated annealing with DFT
- Below: Deformations calculated from moments of inertia
- Clusters deform to create electronic gaps well beyond 100 atoms

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Metal nanoparticles

Metal nanoparticles

(日) (同) (日) (日)

э

Electronic structure and geometry

Figure: Energy per atom of clusters, with structures determined using DFT vs EMT (ASAP).

ション ふゆ く 山 マ チャット しょうくしゃ

Conclusions

- Localized basis sets are very well suited for studying broad trends and large ensembles of systems
- The reactivity of noble-metal clusters with hundreds atoms in size is entirely dominated by global electronic shell effects
- The reactivity of non-noble transition metal clusters converges much faster with size, and follows variations of local geometry
- The structure of gold clusters well beyond 100 atoms is intricately dependent on electronic effects