Write a simple 1D DFT code in Python

Ask Hjorth Larsen, asklarsen@gmail.com
Keenan Lyon, 1yon.keenan@gmail.com

September 15, 2018

Overview

Our goal is to write our own Kohn-Sham (KS) density functional theory (DFT)
code.

A full-featured DFT code is very complex, so we limit our ambitions to
the simplest possible model that is still interesting: We will iteratively solve
the Kohn—Sham equations for a harmonic oscillator including electronic kinetic
energy, electrostatic repulsion between the electrons, and the local density ap-
proximation for electronic interactions, ignoring correlation.

This gives us the full Hamiltonian including the potential v(x) which we
write as

L N R S COR TN
=———+4v(2) = —-— +vga(x) +v x) +a”.

2 dx? 2 dx? H X

We must be able to calculate the KS wavefunctions, the density, and each of the
potentials required to represent the Hamiltonian. We must also represent the

Hamiltonian somehow, including the kinetic operator. But one thing at a time.

Python

Python is a dynamically typed language. Python programs are executed by
the Python interpreter. There are two main versions: python2 (also called just
python) and python3. Either is fine, but we use python3. Open a terminal and
run the interactive Python interpreter:

askhl®@hagen:~$ python3

Python 3.5.2 (default, Nov 17 2016, 17:05:23)

[GCC 5.4.0 20160609] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> print(’hello world!’)

hello world!

>>> 2+2

4

>>> items = [1, 2, 3, ’hello’]
>>> for obj in items:
print (obj)

1

2

3
hello
>>>

Note that the scope of the for loop is controlled by indentation. The loop ends
once the code is no longer indented. It is conventional to indent by 4 spaces in
Python.

Alternatively we can write a script, opening our favourite text editor (gedit
is the standard one in Ubuntu) and typing:

print()

Then save the script as hello.py and run it with python3 hello.py.

We always want to write scripts, but the interactive interpreter is an excellent
tool to play around and test things before adding them to the script.

Use help(obj) to see the documentation for any object (including functions
and modules).

If you are entirely unfamiliar with Python, be sure to have a look at the
official Python tutorial. You will need to know basic things like printing and
writing loops.

Grids

The simplest way to represent a real function f(z), with a < <'b, is to sample
it on a real-space grid of points {z;} from a to b with some uniform spacing h.
The function is then represented by the vector of values {f(z;)}.

We can use matplotlib to plot sin(z) on a suitable grid:

import numpy as np

import matplotlib.pyplot as plt

x = np.linspace(-5, 5, 200) # define grid
y = np.sin(x)

plt.plot(x, y)

plt.show ()

I. How would you approximate the first and second derivatives
of a function from its representation {f(x;)} on the grid using
finite differences? Calculate and verify using matplotlib that
your numerical derivatives are correct.

Hint: The derivatives may not be well defined at the ends of the grid; exclude
the first and/or last grid points to suit your needs.
Here are some examples of how to work with Numpy arrays:

import numpy as np

array = np.zeros (10) # new array with 10 =zeros
array[3] = 5 # Assign to an element

array[5:8] += 2 # In-place add to several elements
print (array[6]) # Print an element

array2 = 2 * array # Multiply by 2, creating new array
array *= 2 # Multiply all elements in-place

array2D = np.random.rand(4, 8) # 4 x 8 random numbers
print (array2D) # Print whole array

print (array2D[:, 0]) # Print first column

print (array2D[:, 7]) # Print last column

print (array2D[0, :]1) # Print first row

Free non-interacting electrons

To get the Kohn—Sham wavefunctions we must diagonalize the Hamiltonian,
i.e., calculate its eigenvectors. We will establish a matrix representation of the
Hamiltonian starting with the kinetic operator T.

If our grid has N points, then linear operators on that space are represented
by N x N matrices. An operator O is applied to a state 1(x) by left-multiplying
it onto the state: Opsi = np.dot(0, psi).

I1. How can we represent the kinetic operator (—1/2 times the
second derivative) as a matrix? Use the expression for the
second derivative derived earlier.

Now we have a matrix representation of the kinetic operator; this is the Hamil-
tonian of non-interacting free particles in a box given by the size of our grid:
1 d2
2 dz?

H=T= (2)
The Kohn—-Sham states and their energies are the eigenvectors and eigenvalues
of that matrix. The matrix is real and symmetric, so both eigenvalues and
eigenvectors are real and we can use np.linalg.eigh which is for Hermitian
matrices:

epsilon_n, psi_gn = np.linalg.eigh(T)

Above, we use _n as a hint that the array has an element for each state, and _gn
means a 2D array indexed first by grid point, then state. This tends to improve
readability of code with many arrays. Thus, psi_gn[:, 0] is the whole state

vector of the first state, and psi_gn[:, :5] is a 2D matrix including only the
first five.

ITI. Choose a grid and calculate the free-particle energies and
wavefunctions. What are the eigenvalues? Plot the wavefunc-
tions 1, (z) with the lowest 5 energies.

Harmonic oscillator

Now we include the external potential vex(z) = 22 in the Hamiltonian:

—5q2 T (3)

This is the harmonic oscillator for non-interacting particles. How can you rep-
resent 22 as a matrix?

IV. Calculate the Hamiltonian and plot the 5 states with lowest
energy, making sure that your grid is adequate.

Density

We will want to include both the Coulomb or Hartree interaction as well as LDA
exchange, both of which are density functionals. Hence we need to calculate the
electron density. Each state should be normalized so it integrates to one (having
the capacity to contain one electron):

/ () de = 1. (4)

The normalization from np.linalg.eigh will be different.

V. How do you calculate the integral of a function on the grid?
Normalize the states so they integrate to 1.

Then the electron density in DFT is given by
n(z) = an|1/1n(l‘)|27 (5)

where f, are the occupation numbers.

In DFT we calculate the ground state: The electrons will occupy the states
with lowest energy. Each state fits up to two electrons: one with spin up, and
one with spin down. A state can therfore be occupied by 0, 1, or 2 electrons.

Let us say that we have 6 electrons. Then the three lowest states will have
occupation number f = 2 and all others f = 0.

VI. Calculate and plot the electron density for 6 electrons in
the harmonic potential. Verify that the density integrates to
6 electrons.

Exchange energy

The exchange—correlation functional is a correction to the electronic energy that
approximates the effect of electron interactions.! To keep life simple, we ignore
correlation because its expression is more tedious than interesting to implement.
Consider therefore the exchange functional in the local density approximation

(LDA) which is
1/3
EXPAp) = —Z (i) /n4/3 dz (6)

In the derivation of the Kohn—Sham equations, the potential corresponding to
each energy term is defined as the derivative of the energy with respect to
the density. The exchange potential is therefore given by the derivative of the
exchange energy with respect to the density:

VEPA (1) — aE)IZDA[”} _ § e nt/3 (2
) = 2 - (2)) @

VII. Calculate the exchange potential and energy from the
previously calculated density.

It is useful to define a function to do this calculation:

def calculate_exchange (density):
energy = ... # Calculate
potential = ... # Calculate
return energy, potential

mydensity = np.random.rand (10)
energy, potential = calculate_exchange (mydensity)

VIII. Write the calculation of exchange as a function.

IThe Hartree interaction is the interaction between the electron density and itself. The
exchange interaction includes a correction to the Hartree interaction, so in a sense it is un-
physical to implement exchange before Hartree interaction. We do it anyway because the LDA
exchange expression is simpler than the Hartree interaction.

Coulomb potential

(If short of time, consider skipping this exercise for now and implement the
self-consistency loop first, ignoring the Coulomb potential)
The electrostatic energy or Hartree energy is given by

EP = %// n(:)_nir/‘l’) drdr’. (8)

This expression converges in 3D, but not in 1D. Hence we cheat and use a
modified, “softened” form:

dz da’. (9)

1 // n(x)n(z’)
EHa =3
2 Vi —2)2+1
Again, the potential is the derivative of the energy with respect to the density:

(10)

_ OFBm. n(x’) o
VHa(7) = on(z) /ﬁm P d

IX. Write a function to calculate the Coulomb energy and
potential, then plot the potential for the previous density.

Self-consistency loop

The self-consistency loop repeats the following steps, calculating:

e Exchange energy and potential from the density (you can start with a
constant density, e.g. 0)

e Coulomb energy and potential from the density.

Hamiltonian from kinetic operator and potentials

Wavefunctions and their energies from the Hamiltonian

Density from the normalized wavefunctions and occupations

X. Implement the self-consistency loop and iterate enough
times to converge and plot the density.

You may wish to print interesting quantities like the energy contributions from
within the self-consistency loop. When the density does not change anymore,
the calculated quantities are self-consistent, and the calculation is done.

Total energy

The kinetic energy is
d2
7= [0o) (~5402) W@ de = X fuea = [nlahoaan,)

where v(7) = vga(z) + vx + 22 is the total potential.

XI. Calculate the kinetic energy and each of the other energy
contributions to get the final total energy:

E = ;fnen - /n(x)v(sc) dz

+ Eua[n] + Ex([n] + /n(x)vexc(x) dz. (12)

The end

The DFT code is now complete! If you want, you can wrap it all in a single
function whose parameters are the grid, the external potential, and the number
of electrons. Then it can be easily called to perform different calculations.

