PySoldier - A 2D Shooter in
Python

Computer Game Prototyping

Michael Francker Christensen s031756
Ask Hjorth Larsen s021864

Supervisor: Michael Rose
DTU - Technical University of Denmark

10 November 2005

This space intentionally left blank

Table of contents

1 PySoldier - A Realtime 2D Shooter 4
1.1 What is PySoldier? 4
1.2 Rules. e 4
1.3 Primary evaluation o L 6
1.4 Overview of PySoldier 6

2 Architecture and Design 8
2.1 Overall architecture 8

2.1.1 Imitialization 8
2.1.2 Player management 8
2.1.3 Mainloop 9
2.2 Physical simulation oL 9
2.2.1 Collision detection L 10
2.2.2 Collision handling o 10
2.2.3 Newtonian movement - sprite dynamics 10
224 Moreon sprites 11
225 Firing oL 12
2.3 Map and level building o o 12
2.3.1 Imtroduction 12
2.3.2 Level problems 13
24 Interface 13
2.4.1 Imn-game graphicso L Lo 13
2.4.2 Peripherals - mouse and key input Lo 13
2.5 Network architecture 14
2.5.1 Client/Server model 14
2.5.2 Approaches to client-side interpolation 14
2.5.3 Client limitation 15
2.5.4 Game protocol 15
2.5.5 Consistency e 16
2.5.6 Conclusion 16

3 Implementation 17

3.1 TImplementation of physical simulation 17
3.1.1 Movement 17
3.1.2 Collision handling Lo 18
3.1.3 Implementation problems of sloped curves 18

3.2 Level implementation Lo 18

3.3 Network implementationo 20
331 Thedient class 20

3.3.2 The Server class 20

3.4 Userinterface 21
3.5 Additional game content: sound 22
Testing and gameplay experience 23
4.1 Testing 23
4.2 Gameplay experience 24
4.3 Further development 24
Conclusion 25
References 25

Chapter 1

PySoldier - A Realtime 2D
Shooter

1.1 What is PySoldier?

PySoldier is a 2D sideways-scrolling shooter written in the Python programming language.
The player controls a soldier by means of mouse and keyboard, and the view is centered
on that soldier during normal gameplay. The player can walk around in a world consisting
mainly of rectangular platforms, and the objective is to kill the opposing soldier, which is
controlled by another human player across a network.

This document describes in detail the development of PySoldier into a reasonable com-
puter game prototype. In other words, the game is not intended to be complete as such, yet
our development has of course attempted to provide reasonable playability and eliminate
any serious bugs, such that the feasibility of the game’s ideas can be proven.

The immediately following section will define the rules and goals of PySoldier precisely.
The general game architecture is treated in chapter 2, while chapter 3 will go into further
detail with some of the more important or difficult implementation issues. The experiences
gathered during our own playtesting are discussed in chapter 4, which will also state some
of the future features planned or wished for. This chapter will also list all presently known
bugs. Last, chapter 5 will conclude on the project as a whole.

A screenshot of PySoldier can be seen on figure 1.1.

1.2 Rules

PySoldier is a lonl basic shooter in 2D mode. The player will see the world from the
classic platform game perspective. For the game to be a serious prototype we have several
modules that must be implemented in order to consider the task complete. First of all we
need a physical world in which objects can move around under a newtonian system, this
means implementation of gravity, mass for moving objects and forces working in both game
dimensions. The rules of the game is quite simple from a player aspekt of the game.

Network is essential since it can only be played using UDP You need a mouse and
keyboard for playing the game Python needs to be installed with following packages in the
most recent versions:

e hoop

Figure 1.1: Screen shot of PySoldier. One player is firing into the air while a grenade
explodes. Note that the background colour has been changed to white from black to ease
printing.

PyOpenGL

e pygame
PyUI

e twisted
e GLUT

When playing the game the player should move his/her horisontally avatar around in
the world using the arrow keys on the keyboard. The game will not allow normal illegal
actions as moving up a vertical wall. For movement in vertical dimension the up arrow is the
jump button which allow the player to jump a certain height - thus degrading the control
in the horisontal line. For actual combat the mouse buttons will be considered the primary
input. The game will support a simple point and click interface with a shot being fire in
the direction of the mouse cursor from the avatars position. All shots fired will either be
removed from the game hitting game obstacles or hitting a player thus causing damage. On
death the avatar will momentarily be removed from the game until respawning, and a frag
is awarded to the opposing player. A simple indicator will display the frag count for both
players. A more formal list of rules:

e Two players each control one soldier by means of the controls below
e Soldiers may move in horizontal line by left, right arrow
e Jumping by up arrow

e Left mouse button will fire shot in the direction of the mouse pointer

e Right mouse button will throw a grenade in the direction of the mouse pointer
e Grenades explode after some time

e Soldiers will take damage from hits by shots or nearby explosions

e Soldiers may pass through other soldiers

e Soldiers may not pass through terrain objects

e Bullets and grenades will pass through other bullets or grenades

e Bullets will be removed from the game upon collision

e Grenades bounce off solid surfaces

e Soldiers, bullets and explosions adhere to Newtonian physics

e A frag is scored upon death of the opposing soldier

e At any time, the player with the highest score is considered winning

1.3 Primary evaluation

For the game to work as intended several problems needs to be solved. The manner of the
implementation is, as previously mentioned, a game prototype. This means that most of
the single modules of the game may not be particularly well optimized, but should function
qualitatively as if in the final implementation. It is easily predicted that the most important
overall aspects and hardest to implement will be, in order of implementation time:

1. Creation of a functional physical representation.
2. UDP networking - client/server modes with synchronization.
3. Designing levels and additional game content

For the physical world implementation, the SimObjects of the hoop library will be used and
each update method will make sure physical laws are upheld. The use of SimObjects will be
extended to the level design as a level will be made from impenetrable, stationary objects.
Networking will be based on the twisted datagram protocol, and the goal for the network
code is to achieve smooth gameplay and responsiveness on clients by means of a sufficiently
high frequency of network updates. Finally, most rendering managed again by hoop, which
works on top of PyUI and pygame.

1.4 Overview of PySoldier

When launching PySoldier, first pyui is initialized and an Appl i cati on is constructed
which uses a pyui Frane to display a menu. The main game loop is the r un method of
Appl i cat i on, which repeatedly invokes the dr awand updat e methods of pyui along with
a custom method which will be specified later, depending on whether the running session of
PySoldier is a client or server. Initially this method does nothing.

If the user enters an IP address and selects the join option from the menu, PySoldier will
attempt to connect to the specified IP address. If connection is successful, the game will be

set to run client mode. If the user presses the create button, the game will run in server
mode.

In client mode, all user input from the mouse or keyboard which correspond to game
controls will be sent by UDP to the server which handles it. The client will constantly
update the world with information received from the server.

In server mode, UDP datagrams containing game updates will be sent across the network
very frequently, and each such update contains all relevant information in the game. The
notion of relevance is clarified in section 2.5. For every frame, the client will read any
information received from the network

Chapter 2

Architecture and Design

2.1 Overall architecture

As mentioned in the previous chapter, PySoldier consists of several separate components
providing different functionality, particularly network client behaviour, server behaviour,
physical simulation and graphics. The design of these different components will be shortly
summarized below for a quick overview, and ultimately in greater detail in the then re-
maining sections of this chapter. Figure 2.1 contains a schematic of the complete game
structure.

2.1.1 Initialization

During startup, PySoldier loads the setup of the physical simulation and creates a map, as
described in section 2.3.Then PySoldier initializes a windowed display and presents a menu
to the player, the details of which are described in section 3.4. At this stage, the game enters
the main loop, which runs while the player considers the menu options. The player can now
either create a game, enter an IP to a textfield in order to join a game, or quit.

Creating or joining a game will result in the game entering server or client mode, re-
spectively, and the game will from this point continue running until the player quits. The
game loop will behave differently depending on the mode.

If the user wants to join a game created on his own computer, which is highly useful
for debugging when only one computer is available, he should join the 127.0.0.1 IP address,
which is for the same reason the default value. Simultaneously hosting and joining a game
is equivalent to running two sessions on different computers.

2.1.2 Player management

Upon creation of the world it becomes necessary to track the players in the game and control
the interaction between players and avatars. The total state of the game is encapsulated
within an environment, which thus contains references to physical game world and manages
the states of players, in particular their scores. Immediately two players are initialized,
and each receives a soldier along with a controller. The controller is responsible for passing
control input to the soldiers, whether this input comes from keyboard and mouse input or
network. The controller will be examined closer in section 2.4.2.

Main
T

o
| Application ——+cun5tant
Environment
|populate ‘
| world |
‘Spawn | Lokl
T T
I Y
: Server
T 1
Client
I
v
players
Network -
Lan-Inet
Sprites Control

Figure 2.1: This schematic shows the overall structure of PySoldier. All modules are listed
except certain trivial classes e.g. containing sprite data. The PySoldier structure attempts
to delegate as much functionality as possible to different modules in order to keep different
parts of the game mechanics separate.

2.1.3 Main loop

The main loop will repeatedly perform a number of updates, each to be described now. First
the display is updated, see section 2.4.1. Second the physical simulation will be updated,
using a timer to measure the elapsed time between frames. This is described in section 2.2.
Next, a custom update is performed which initially does nothing. When a mode is selected,
however, this step will update server or client, along with polling for mouse and keyboard
input. The effect of mouse and key input differs, depending on whether the game is in client
or server mode. In client mode, input will be relayed to the server, while in server mode it
will be applied directly to the avatar of the local player - this is described in 2.5.

2.2 Physical simulation

The Hoop library provides most of the functionality needed in PySoldier. This includes
collision detection and some actual mechanical simulation. While these things will take care
of many details, there are a few flaws or needs in the Hoop library that complicate the design

quite formidably.

2.2.1 Collision detection

When designing a collision grid, the basics of which are not to be discussed here(see [1]),
there are two different approaches which have each their merits and disadvantages. The
simplest approach, which is used in Hoop, is to register each sprite in exactly one square
of the collision grid. In case the sprite overlaps other squares, we have to check for actual
collision against all the sprites resident in all adjacent squares, totalling 9 squares. Suppose
now that there exists a kind of sprite which is larger than a collision square. If two of these
sprites meet, they may easily overlap physically, but the collision detector will not detect
this if their overlap occurs outside the squares adjacent to those in which they are centered.
Thus, no sprite may be larger than the square of the collision grid.

The other approach avoids this problem by registering a sprite in all those collision
squares which overlap with a bounding box of the sprite. Checking for collision in this case
requires only consideration of those squares which the sprite overlaps. Needless to say, when
sprites overlap several squares in the grid, it can be rather computationally costly to move
them, but in most cases, particularly for small sprites, the amount of checking of adjacent
squares will be smaller than in the above approach. More importantly, there is no longer
any restriction to the size of sprites.

The ulterior motive of this discussion in terms of PySoldier is that the Hoop approach
does not support sufficiently large colliding sprites to properly include terrain in the simula-
tion. While PySoldier wishes to use large blocks of terrain in the simulation. Since in most
cases, only relatively few sprites are moving around at a time, some reverse engineering of
the Hoop classes may solve this problem. However such reimplementation is hardly within
the scope of this project, and instead all terrain modelling has been done by means of smaller
chunks. The complete procedure is described in detail in section 2.3.

2.2.2 Collision handling

The hoop library has a default collision handling behaviour which can easily be overridden to
support more complex interactions. In PySoldier, when a soldier hits an obstacle, the sprite
should not bounce off, but instead stay in contact with that surface. For example, the sprite
should rest on a horizontal surface while sliding off vertical ones. While the implementation
of sloped surfaces would certainly be beneficial for game play, the hoop library cannot deal
with these easily, and we have therefore decided to use only axially aligned terrain. The
precise details of this problem are elaborated in section 3.1.

2.2.3 Newtonian movement - sprite dynamics

PySoldier attempts to model newtonian movement of soldiers and bullets. The fact that
neither is susceptible to rotation (since the PySoldier perspective is not top-down) simplifies
matters quite a lot.

The most important single sprite is the soldier. Affected by gravity and friction, soldiers
behave differently when they are in the air or on the ground. Friction in the air is quite
small and laminar (i.e. proportional to the velocity of the soldier). Friction on the ground
is physically the basis for movement, of course, but the question of how to deal with actual
soldier movement remains biological. Our approach is to simply apply a constant force, let’s
call it the motor force T, which is responsible for propulsion, and a force proportional to the
soldier speed’s speed v (equivalent to friction again), meaning that a soldier will accelerate
with a constant rate at first, then exponentially approach the maximum speed depending

10

on the particular constants chosen in the simulation. In other words, Newton’s second law
is

M— =T — uv, (2.1)

where M is the soldier’s mass and p the friction constant. Note that the linearity of this
equation, which in different forms governs movement both while the soldier is in the air and
on the ground, ensures that the description remains physically correct when extended to
two-dimensional movement. It is easily shown that the maximum speed obtained in such a
system is exactly

T
Voo o (2.2)
When a soldier jumps, which is possible only while on the ground, he is simply assigned a
specific vertical speed. While in the air, the soldier can still be controlled slightly (this helps
climb obstacles), but this extra control must not allow the soldier to obtain superhuman
speeds because of the low friction. Thus, the air control factor « is introduced, and the
motor force is proportional multiplied by this when the soldier is in the air. These conditions

are all satisfied by this formula:

a_e<1— >_e(1—%D. (2.3)

The variable € is chosen to make gameplay good (it is 0.4 presently). This choice of air
control function will completely eliminate the air control when the speed is near maximum
walking speed, while air control is quite high when the speed is low (which is usually the
case when a player tries to jump around between obstacles). Of course, the concept of air
control has no physical meaning and is only introduced to improve game play. This is done
in most games which rely heavily on jumping.

v

Voo

2.2.4 More on sprites
Five other mobile sprites exist, which will now be described briefly:

e Bullet. Spawned at the end of a gunbarrel when the gun is fired. Will continue
moving in the gun barrel’s direction, but is slowly deflected by gravity and a slight air
resistance! (future implementations could include wind resistance, which is quite easy
to add). Bullets cannot collide with each other, yet on any other collision they will
cease to exist. If a Bullet collides with a Soldier, it will deal damage proportional to
its kinetic energy %Mv2. When the game runs in client mode, however, bullets deal
no damage since this is managed through the network.

e Grenade. These objects are spawned similarly to bullets and obey the same physics
although a lot heavier. They generally have lower velocities and do not cease to exist
upon collision. Instead they bounce off surfaces realistically, until they reach their
preset time limit at which point they spawn an Explosion object at their location and
disappear.

e Explosion. This object exists for less than one second, and while it exists, any soldiers
inside its collision radius will be propelled away violently while receiving high damage.
Remember: grenades don’t kill people, explosions kill people.

I Physically, the air resistance should be proportional to the square of the magnitude of the bullet’s speed,
since the flow of air would be highly turbulent, but this approach generally makes trajectories more boring.

11

e Gun. Purely graphical effect, except for the direction in which it points, which deter-
mines the firing angle. Each soldier is equipped with a Gun sprite. Generally the gun
points in the direction of the mouse cursor.

e Angel. Upon death of a soldier, an angel is spawned. The most prominent feature of
the Angel is that unlike most other physical objects, it curiously accelerates upward
under the gravitational influence. Angels move through any obstacle and cannot be
controlled. After a few moments they disappear, spawning the soldier whose life was
previously cut short, thus completing the cycle of life.

Further there is a number of terrain sprites, an approach necessitated by the matters dis-
cussed in the previous section. These will be described in section 2.3.

2.2.5 Firing

When a soldier fires, bullet objects should be created at the location of the soldier’s gun’s
muzzle. If this location resides within the bounds of the soldier sprite, that soldier will
immediately hit himself with tragic consequences, unless something is done to prevent it. A
reasonable way is to simply define the muzzle point as the closest possible point such that
soldier and bullet sprites cannot overlap. Bullets in PySoldier are therefore made to spawn
around the soldier on a circle, the radius of which is slightly greater than the sum of the
radii of the soldier and bullet objects.

This opens the possibility of bullets spawning on the other side of thin objects, if the
muzzle radius is too large. In the current release, the radius fits rather tightly around the
soldier sprite, and this problem is not observed in practice for bullets. Grenades, however,
are large enough exhibit this problem under some circumstances.

Once the bullet is spawned, it is possible that the soldier is updated before the bullet,
moving into his own projectile and taking damage. A simple way to fix this bugs would be to
register the spawned bullet with the firing soldier as an argument and make him invulnerable
to his own shots. This has not been implemented since we believe that a player shooting
wildly into the air - then getting hit by his own bullets, should be severely punished! The
present version of PySoldier does not exhibit this problem unless the game stutters (perhaps
due to external processes straining the computer), in which case the time interval between
updates can become arbitrarily large, so soldier move steps can have any size. This means
the problem fundamentally cannot be removed in this way - it is only possible to minimize
it by changing the muzzle radius.

2.3 Map and level building

2.3.1 Introduction

The world of PySoldier consists of moving objects, most importantly soldiers, and the terrain
itself. The level is a representation of physical world in which the battle is fought. As such
all current level objects consists of stationary objects which can not be penetrated by other
physical objects and therefore restricts movement and lines of fire.

We do not consider extensive level designs an important requirement, but we do imple-
ment a default level in order to complete the gameplay. Proper level designs are obviously
an important area of any future development.

12

2.3.2 Level problems

When making a level there are some issues which need to be adressed before the manufac-
toring of a level can begin:

e Levels need to have a logical build-up to make the gameplay fair for all sides.

e The level buildup must be compatible with the collision detection.

The game world is a coordinate system with a width of 1200 and a height of 600. The 2
spawn points is placed in each side of the world to ensure a certain time before the players
start blasting. In this way most combat will take place around the center of the world.
A good level builder will make sure that the spawn points is somewhat isolated from the
combat center to ensure that a player can not be killed within the first couple of seconds in
a fight.

The collision detection in pygame is using a collisiongrid. Each collisiontile has a defined
witdh and height (w — worldwidth / 20, h — worldheight / 20). This makes a total of 400
collision tiles in the world. When an object is added to the world it is registered in the tile
in which its center is located. In order to validate collision detection, the size of colliding
objects in the game must be restricted by the size of the world.

2.4 Interface

2.4.1 In-game graphics

Most of the graphical details in PySoldier are delegated either to PyUI or Hoop. The Hoop
library allows sprites to be equipped with images, and the Hoop engine can render these to
the screen. Each sprite in PySoldier uses a category class, which points to an image file.
Rotation and translation will be taken care of by Hoop itself, depending on the locations of
the sprites in the physical simulation. Graphics in general is not a focal point of the PySoldier
development, and only few different sprites are therefore available. More graphical content
could be added in later versions, along with e.g. a background image. Remember that a
screenshot can be seen on figure 1.1 in the introduction to this document.

2.4.2 Peripherals - mouse and key input

During each game update, we can poll mouse and keyboard for input and apply it to the
game state. If the game is running in client mode, however, it should not be directly applied
to the game state, yet instead forwarded across the network to the server.

Also, soldiers may receive instructions on what to do in two different ways, namely from
the peripherals directly or through the network. In order to transparently accomodate these
differences, we have decided to split the peripheral updates in separate steps: first, the input
is read using the PyUI and pygame frameworks, then handled in different updating methods
depending on whether the game is in client or server state. In client mode, this consists
merely of sending the data across the network as described in section 2.5. In server mode,
the method which polls for input will apply the input data to the local soldier’s controller, an
object associated with each soldier which keeps track of what keys are currently considered
to be pressed by that soldier. The trick is that the data of the controller can be manipulated
in any way, either through actual key presses (as in the server case) or by reading input from
the network. Thus, for the programmer writing the behaviour of soldiers when reacting to
control input may poll the controller object and blindly obey its data, regardless of whether

13

this data originates from the network or the local player, and regardless of whether the game
is in server or client mode. Effectively, the input handling has been split into two steps.

2.5 Network architecture

Since PySoldier is a realtime game where players each control one avatar directly, it is quite
important for the playability to ensure low latencies. This immediately suggests use of the
UDP protocol for the majority of the network traffic. Selection of the protocol is quite
important early on, since the entire network code will ultimately depend on this choice.
While the UDP protocol is quite fast, however, it is unreliable. Certain one-time events,
such as the death of a player, cannot be simply handled by, for example, sending a player
death event. If the responsible package is lost, the game will be out of synch immediately.
Handshaking and distribution of information such as nicknames would further require some
kind of guarantee of delivery. This means a TCP/IP protocol might be considered for this
kind of events. In PySoldier there is one important detail: since each player only controls
a single person, only relatively small amounts of bandwidth will be necessary to even send
the complete state of the game. Our initial approach would be to rely solely on UDP, and
send (possibly redundant) information for every game update. This initial approach allows
for two later optimizations:

e Use of rare large and frequent small network updates, so less bandwidth is used to
send information which is unlikely to have changed, or changes so slowly that strict
synchronization across the network is unnecessary

e Introduction of TCP/IP to manage one-time events, thus eliminating most redundant
data transmission

While these optimizations are valid, we do not plan to implement either unless bandwidth
becomes a problem (presently no such problems have been observed during LAN or internet

play).

2.5.1 Client/Server model

PySoldier uses a client/server model, where one player creates a server session and runs
the game locally. This session runs the complete physical simulation, and the observations
of the server session are final (i.e. a person dies if the server thinks this is the case, even
though clients may not have seen this).

A number of clients may connect to the server, spawning client sessions which listen for
and handle input from the server. In return clients will send data such as keyboard and
mouse input to the server, which the server will parse and apply to the simulation. The
server returns game states, i.e. player positions and other data. The exact nature of this
data transmission will be discussed in section 2.5.4.

2.5.2 Approaches to client-side interpolation

As mentioned earlier, because of the unreliability of the UDP protocol, we cannot hope
to ensure that an exact simulation takes place on the clients. The server will issue game
updates with a certain frequency, but in practice, sprites on the clients will only be close to
their server-side positions.

Apart from sending game data with a high frequency, it is also customary to help the
clients preserve a reasonable representation of the server game state by means of guesses or

14

interpolation. For example, if server sends only the positions of sprites (which completely
determines the game state), the game play might be seen to stutter on the clients. If the
server sends the sprite velocities as well, clients may linearize and simulate player movement
which will not only make the game play look more smooth, it will actually - on average -
constitute a better approximation to the server representation.

In other words, the advantages of partial client-side physical simulation are two-fold: the
simulation will appear more smooth on the client, and will stay closer to the server’s repre-
sentation. PySoldier clients will therefore run a full-featured simulation of sprite movements,
only neglecting to apply damage and so on, which will be managed through the network.
On reception of an update from the server, a client will in the present version of PySoldier
immediately overwrite its physical data with the newly available. It might be reasonable
to smooth out this correction by adjusting the client’s physical data over a few frames, but
this feature remains as yet unimplemented since gameplay progresses reasonably smoothly
without. Also, this particular approach can be dangerous - for example if the client misses
a few packages and the sprite hits a corner which blocks its movement, the sprite might get
stuck while it should actually proceed around the corner. Some games will also, in order
to further improve the perceived responsiveness on clients, make the client move slightly
as soon as controls are pressed, then silently apply corrections afterwards when response is
returned from the server. This is mostly useful in 1st person perspective games when the
player is, so to speak, closer to his avatar, and we have chosen not to implement this.

2.5.3 Client limitation

The present state of the PySoldier does not allow more than one client to connect. This de-
cision was made because only a quite limited amount of computers with appropriate Python
software installations were available during development, and the two-player approach eased
testing considerably. Care has been taken to ensure that this does not significantly impede
the later implementation of multiple players. Basically, the server spawns two players on
start-up, the local player immediately taking control of the first one and starting the simula-
tion. The connecting client will take control of the second, but the game may run indefinitely
without any clients connecting. Further development of the game would do well to stay with
this approach for as long time as possible due to the value of single-player testing.

2.5.4 Game protocol

This section will finally state exactly which information will be sent between client and
server. The client will send only input from the peripherals, i.e. mouse and keyboard.
Each update consists of a series of 1’s and 0’s, each indicating whether a certain button is
presently pressed. These buttons are: arrow keys up, down, left and right (for movement),
and the left mouse button (firing). Finally, instead of sending the two coordinates of the
mouse cursor, from which the server would be able to infer the angle in which the client’s
avatar’s gun should point, this angle itself is sent.

The packages sent by the server to the client consists of both soldiers in the game (easily
generalized to n players). Sending a soldier means sending position, velocity, angle of aim
and health. Also this update would include the frag counts of each player, and the client
may infer from the changing of these values that someone has been killed (this may seem
inconvenient, but it solves the problem of one-time updates over UDP connections quite
splendidly). The server will also send whether or not it is firing, making it customary for
the client to simulate the actual bullets.

15

2.5.5 Consistency

As stated in the previous section, neither client nor server sends the actual positions of
bullets. This is partly because the task of keeping track of every bullet created and destroyed
would inflate bandwidth requirements significantly. Bullets also move quite quickly, and such
information would not travel well across the network. In the selected approach the server
will, obviously, simply apply the client’s control input to its own model and thus create
bullets where appropriate in the simulation. The client has to do exactly the same thing,
but it is not in charge of the simulation. The client therefore simply creates the bullets
where it thinks they should be, but does not allow these bullets to deal damage to players.
The question remains of how consistent the client’s representation is. Since bullets move
quickly, it can be difficult for the human client player to see whether bullets actually hit,
and small inconsistencies will therefore be virtually invisible. For large latencies, however,
the game play will be seriously degraded.

One alternative approach would be to send information about the creation of bullets only
once. This would leave open the possibility for bullets not appearing due to packet loss, but
since the server will consistently manage the damaging and killing of players, this would not
seriously affect game play. The possibility this remains of reverting to this approach, should
the currently selected approach be unsatisfactory.

2.5.6 Conclusion

The PySoldier network model relies on a UDP client/server structure where the server runs
the final physical simulation, while clients run a similar simulation yet apply corrections
received from the server with high frequency. Presently only one client is allowed. The client
sends almost only mouse and key input to the server, which applies this to the simulation.

16

Chapter 3

Implementation

The last chapter dealt with the overall design of the PySoldier components. This chapter
will go into detail with the major implementation issues of each component of PySoldier.
The immediately following section deals with the physical simulation, which, as shall be
seen, presented some serious unexpected problems. Afterwards the map implementation
is discussed, followed by the networking modules, which are described in particular detail.
Last, the relatively small areas of user interface and inclusion of sound effects in PySoldier
will be briefly treated.

3.1 Implementation of physical simulation

All sprites in PySoldier extend the hoop-class Si nObj ect . The hoop library manages most
of the simple sprite movement and collision detection. The particular parts of the PySoldier
simulation that have to be implemented manually are therefore movement behaviour and col-
lision handling. These things are generally implemented by overriding the updat e and hi t
methods of Si mObj ect. Actually, Sol di er is derived from a subclass | npr Si nObj ect
of Si nbj ect which had its updat € method slightly changed to support a richer collision
handling behaviour.

3.1.1 Movement

The Newtonian movement of Sol di er objects is implemented by adding three attributes,
xFor ce, yFor ce and mass. For every frame, during the updat e method of Sol di er,
the two former values are calculated by adding contributions from physical interactions and
user input. When no more forces work on the Sol di er, the total force is divided by the
mass, multiplied by the time interval supplied as argument to the updat e method by hoop,
then added to the components of the sprite velocity, vel oci t yX and vel oci tyY. The
Updat e method of the superclass is then invoked to finish the updating operations.

One last technicality in the movement code is the necessity to distinguish between when a
soldier is on the ground and in the air. Simply letting a collision with the ground occur each
frame does not work well with hoop, because sprites will generally remain stationary if they
collide, and redirection of movement on collision is difficult as the next section will show.
The easiest test is simply to check whether placing the soldier a certain distance below
the current position would result in a collision with a stationary object. Thus, standing
on the ground equates to being sufficiently close to it. One problem may rise with this
implementation: if the player hits the ground and is stopped by the collision detector, but

17

this distance is larger than the threshold defining whether the soldier is on the earth, then
the soldier will not hit the earth. However, if the collision resets the soldier’s speed to 0
(which is the correct behaviour as specified in the game rules) on the collision, gravitation
make the soldier slowly approach the surface, eventually descending below the threshold in
a matter of very short time.

One minor hindrance with the hoop hi t method is that it does not distinguish between
probing a location for obstacles to test whether a unit fits in a certain location, or actually
trying to move the object to that location - any collision check will result in hi t methods
being called if other objects overlap with the desired placement. However, by returning 0
from the hit method, one can suppress collisions. When performing checks for whether a
soldier is in the ground, therefore, are forced to use a somewhat unappealing approach of
setting a flag, then checking that flag in the hi t method to see if we are actually colliding
or just testing.

Bullets and grenades move under the effect of gravity and air resistance. The implemen-
tation is identical to that of the Sol di er.

3.1.2 Collision handling

Next, the hit method is implemented. The particular desired behaviour is to determine
the direction of the surface with which the soldier collides, then slide along that direction
without bouncing off or standing still. A simple implementation would be as follows:

1. Try to move toward the desired location.

2. If a collision is detected, try moving in the z direction only.
3. If this too fails, try moving only in the y direction.

4. If all this fails, do nothing.

However, hoop allows ouly one such try (technically, one invocation of checkCol | i de
from the updat e method), and if this fails the object will have its hit method called,
but won’t move in this frame. The obvious behaviour of letting a soldier on the ground
collide with the ground once per frame is thus not a possibility, because the soldier would
simply get stuck. Recursively retrying move commands as suggested above from the hi t
method is unappealing, since it would require keeping track of what options had already
been tried. To overcome this problem we have decided to create the aforementioned subclass
of Si nhj ect , called | npr Si nObj ect , which simply overrides the updat e method with

an almost identical one, trying in turn the three different directions if movement fails.

3.1.3 Implementation problems of sloped curves

It should be noted that the approach which tries moving along each axis is rather crude,
seeing as it supports curved surfaces quite poorly. Presently the fi ndHi t Di recti ons
method inherited from Si mMObj ect is used to elegantly treat collisions with axially aligned
objects, but this method would have to be rewritten if generalizing to arbitrary surfaces. In
conclusion, implementing arbitrary curve alignment into the collision detection is a noble
cause, yet highly time consuming since a lot of hoop code would have to be generalized.

3.2 Level implementation

We have chosen to build the present level around a building block structure. The designer
has 5 different kinds of block to put anywhere in the world. A dirtblock is a Si mObj ect

18

which is immobile, is equipped with a hit method returning 0 to ensure they can overlap
mutually, and is generally immutable.

The current game version includes only one level design.

When building the world a list of tuples is loaded for each type of dirtblock with each
element of the form (X, y, di rt Type). The total Terrain list is then created adding
all terrainlists together and the method popul at e(X, y, di rt Type) generates the whole
level. Each block has a width and height value stated in the blocks source. For simplic-
ity, the center of each image is set to coincide with center locations of the corresponding
sprites. This is ensured with the code in the source-files as follows (this is an excerpt from
Sour ceTerrai nl. py):

from OpenG. inport GL

nane = "quad"

i mage = "texturel. png"
centerX = 0

centerY =0

nunfFranmes = 1

w = 10

h = 10

points = ((-w,h), (wh), (w-h), (-w,-h))
primtives = [(G.. GL_QUADS, (0,1,2,3))]

While it may seem intuitive to change the shape of objects by using irregular polygons
in the poi nt s list, this is not supported by hoop and will break the consistency of collision
profiles with graphical appearance.

The width and height of the object then totals in (2w, 2h). Each dirtType has its own
source file containing the characteristics of the specified object. For illustration in game the
different dirt Types have unique color codes so the user can see the current level buildup.

The dirtblocks have the possibility of overlapping each other to make more complex
shapes, much unlike normal bricks. The process of building a level is hard this way since
each block needs to be put in place by the designer manually. Given more time an easier and
more compact way to store level data should be implemented, for example random content
generation, automatic generation from a table or from raw pixel data.

In order to avoid collision detection errors the size of the level objects has a restriction
as mentioned in section 2.3. The collision tiles have the (w,h) = (60,30). Each object is only
registrered for collision in the one tile containing its center - and collision detection traverses
only adjacent squares. This means that the combined width or height of 2 colliding objects
can’t be greater than the width or height of a tile times 2. This restricts our maximum
width of 2 objects to 120 and the height to 60. Since we dont have to worry about non-
moving objects in this equation, we can make dirtobjects as large as (120 - soldier.width,
60 - soldier.height), since soldiers are the largest moving objects. For a better collision
detector allowing larger objects, the hoop classes may be extended or modified, but these
considerations are not within the scope of this project. Given a soldier’s charateristics we
get the largest allowable size of colliding objects (120 - 16, 60 - 20) = (104, 40), therefore
our largest dirtobject have a width of 60 and a height of 40 which borders the maximum
given our world size (note that we only take this approach because of the hoop limitations;
ordinarily it would be inappropriate to rely on these details).

19

3.3 Network implementation

PySoldier uses the Twisted network framework for both client and server implementations.
Basically, the Server and Cl i ent classes extend the Dat agr anPr ot ocol class of the
Twisted framework. Both classes have an updat e method which is polled from the main
loop of PySoldier, and which will check the Twisted r eact or for network input, then (if
enough time has elapsed since last time) send an update data to the counterpart.

Two ports are used for communication in PySoldier: 8004 and 8005. All traffic from
client to server uses the former, while the latter is used for all data going the opposite way.
Presently, all data is sent to a specific IP (i.e. not broadcast) since the test computers could
not always be made to connect while using broadcast. In other words, this approach is more
likely to function well with firewalls.

The d i ent and Server classes have constructors which receive the following param-
eters: an object representing the game world, and the two port numbers used for reading
and writing. Data will be read or written to and from the world object when updates are
received or sent. Furthermore, the Cl i ent constructor takes an IP address, which it will
connect to.

The behaviour of both these classes is determined by only few methods, which will be
described in turn.

3.3.1 The Client class

The updat e method, which is invoked from the PySoldier main loop, will check all pending
datagrams using r eact or. runUnti | Current and react or. doSel ect (0), then check
with the pyui timer if it is time to write an update to the server. If it is (presently, if more
than 0.05 seconds have elapsed since last time), the wri t eUpdat e method is invoked.

When updating through the r eact or object, the dat agr amRecei ved method is in-
voked for each datagram arrived since last time. This method first checks whether the IP is
equal to the server IP, then forwards to the par seDat agr ammethod, which will create an
Unpacker object from xdrl i b. The Unpacker is used to unpack two Sol di er objects
by means of the unpackSol di er method, then the number of frags of each player is un-
packed and applied to the game model. If these frag counts increase, the appropriate soldier
will be killed by setting the simulation object’s al i ve flag to 0.

The unpackSol di er method simply reads the position 2 and y components, the veloc-
ity components, aiming direction and health of the soldier, then loads those values into the
world simulation. The position components are, importantly, sent as floating point numbers,
since otherwise precision loss may result in the soldier colliding with other objects of the
simulation. The other values are not as important, and are packed as integers.

Last, the wr i t eUpdat e method simply polls the pyganme mouse and keyboard states,
then checks which of the PySoldier control keys are down. Each of these will be packed,
by means of an xdr | i b Packer, and sent, using the t ransport object on the Packer ’s
buffer.

3.3.2 The Server class

The updat e method of this class performs quite similarly to that of class Cl i ent. First
it updates the world state using input from r eact or, then it invokes the wri t eUpdat e
method if sufficiently long time has elapsed since last invocation.

wri t eUpdat e will like before create a Packer. It will pack the information of two
Sol di er objects by means of the packSol di er method which is analogous in type and
order of packing operations to the previously discussed unpackSol di er, only it packs

20

Enemy ;0

Figure 3.1: The PySoldier menu. The option selected by the user in this menu determines
the mode in which the game will run.

numbers instead of unpacking them. Last, the frag counts of each player is packed, and the
buffer of the Packer object is sent through the t ransport object to all connected clients
(the number of which is, as stated previously, limited to one).

3.4 User interface

When PySol di er is started the application launches a LobbyFr anme. The LobbyFr ane
is implemented as a normal frame from pyui . w dgets, and three buttons and plus a
textfield are created and added to it. Each button is assigned a method to call upon
activation. The three buttons are named "Create game", "Join game" and "Exit". When
using the "Create game" button, the onCr eat € method is invoked, the game enters server
mode as previously explained, and the player takes control of one of the soldiers, who has
already been spawned. Thus, a game will immediately start with the creator controlling one
soldier without an opponent present in the game. The application will now start the server
and listen for a client to join the running game.

Figure 3.1 shows the PySoldier menu.

In order to join a server which is already running, a client needs to know the IP address
of the server he wishes to connect to. Entering an IP address in the textfield and pressing the
"Join game" button will invoke the onJoi n method, making the game connect to a game on
the given IP address. If a game is not found, simulation will run in client mode, but the client
will not receive any updates from the non-existent server. If a server is at some later time
spawned at that IP address, the game will commence appropriately (this indefinite waiting
scheme is still used only because it eases debugging). This is because creating and joining
servers is less of a hassle without having to retry repeatedly if connection fails initially. Until
then the player will not be able to move. If and when, however, a game server exists on the
IP address, the client will join the game while taking control of the soldier not controlled by
the server.

21

3.5 Additional game content: sound

In PySoldier 4 different sounds have been implemented. The implementation of these was
not planned - more an impulsive move. The sounds are:

e luger.wav - the sound heard when firing

e meinLeben.wav - the sound of a dying man

e theme.wav - the intro music played only once

e explosion.wav - the sound heard when a grenade explodes

The sound files are located in the PySoldier /Sound library. The files are loaded upon starting
the game in constants.py using the pygame mixer:

fileNane = pygane. m xer. Sound(’ sound/fil eNane. wav’')

Each of the sounds is triggered upon an event in the game. The theme song of Monty
Python will be played upon creation of the lobbyframe to greet players, while the others are
in-game sounds. The luger file is played for every fire command in the game, the meinLeben
for every death in the game and the explosion for every grenade. This makes it possible for
players to fire shots outside their viewing range and still know if they manage to kill the
opponent. The Sound object created by the mixer can be played throughout the program
using the code:

constants. fileNane. play()

This makes the wave file play once for each method call.

22

Chapter 4

Testing and gameplay experience

4.1 Testing

Throughout the project development we have used extensive functional testing. Most of
this have been done using ”pri nt ' what ever you want’” when testing network or col-
lisions. The use of functional tests paid off mostly in testing collision handling on server
and client. For a time we had problem with the clients avatar getting stuck on level ob-
jects. This proved to be caused by rounding errors, because we only sent soldier positions
across the network as integers - not floats. The integers were then rounded down, and once
received on the client, accidently causing the avatar to collide with objects. Simply using
print (soldier.posX, soldier.posY) wefound the avatar to be inside a dirtBlock.
Once overlapping the dirtBlock, the avatar’s hit method prohibited all moving - thus getting
stuck. Most types of debugging have been done on problems like this example.

The game code does not rely on excessive number crunching or complicated loops, and
most of the functionality has direct impact on the graphical representation of the game state.
The network and collision detection code which would ordinarily require the highest level
of testing, is mostly located within third party libraries, and therefore structural testing is
not considered necessary. We assume that the collision detection and other modules have
been tested thoroughly by their developers. The network is implemented with no degree of
freedom whatsoever. Every package sent has a preset length and size. The unpacker upon
receiving unpacks the package to the same preset length and size; should an error occur the
game would shut down immediatly and the appropriate error message and stack trace would
be printed by twisted. Therefore we believe that the performed functional tests still ensure
the stability of our project within reasonable margins.

Here is a list of the known bugs:

e Grenades fail to explode if the collision profile of the explosion will exceed the bound-
aries of the world.

e Grenades can under rare circumstances get stuck in the corners of terrain objects.
Some slight corrections in the hi t method should fix this.

e Grenades can spawn so far in front of soldiers that they may pass through thin mem-
branes which should otherwise block the way. A properly designed level would not
allow objects near the edge of the world, thus avoiding this otherwise unfixable issue.

23

4.2 Gameplay experience

In its present state, PySoldier can be played indefinitely by two players. The basic dynamics
of the game work quite well in general with only a few easily fixed known bugs. The network
also operates without any serious issues. On the client side simulation, however, game play
can suffer especially if the connection is bad. This is and inevitability and no different
from other games in the genre. No actual bugs have yet been recorded here either. Thus,
physical simulation and networking both seem quite complete. The game, however, lacks
some diversity in terms of different levels, more weapons and so on which ensures playability
in the long run.

4.3 Further development

Having implemented the game with as many assets as possible in the given time a few of
our favourites have been left out in the current version of PySoldier. The most pressing
matter would be a working updated physical simulation allowing objects of non- rectangular
shape. Rounded curves and triangular shapes would be preferred in the actual game as it
would make the game more natural. Sloped curves that could be climbed by the player
without jumping can help remove some of the platform game atmosphere, making the game
feel more modern and smooth. In the game’s current state, game play can feel slow due to
the possibly excessive jumping around on rectangular boxes.

Other features yet to be implemented include new classes for the players to select. This
feature is quite easily implemented, seeing as graphics and numerical data (such as walking
speed or jump height) can easily be changed, adding only the complexity of sending the
soldier type information across the network as well. Implementation of different kinds of
bullets and gun types would be similarly quite easy.

Last, allowing any number of clients to connect at the same time would require some
expansion of the networking classes, but it is a reasonably simple task. Note that we prefer
at this stage, not to allow this because it complicates play testing.

24

Chapter 5

Conclusion

In this chapter we will write about the final program, our expectations, further plans for
PySoldier and our project development.

The final state of the project is in our minds both lacking and satisfying. The game as
first seen in our minds has been realized but still not to its full potential. The game play
was intended from the beginning to be fast paced and dynamical, and this has certainly
been achieved satisfactorily. We are somewhat disappointed that we could not find time
to implement non-rectangular terrain objects, but these difficulties arise from limitations in
hoop. This feature along with a deeper physical implementation to allow soldiers to move
up and down hills was the next item on the todo-list. Adding different types of soldiers and
weaponry, along with enabling a free-for-all mode for more players would be most desirable.
Unfortunately much of our time has been spent on studying hoop and twisted libraries
to support the current state of the game. The third-party libraries aid the development
speed but also somewhat restricts your freedom, at least in the case of the hoop physical
simulation.

In these last stages of the development the use of python has been somewhat more
clearsighted. Producing games using pygame and other libraries makes development faster
as our experience and understanding of python has increased. The one thing which we
still find lacking in python is the amount of available documentation. This was particularly
problematic for PyUI and certain parts of twisted. Overall we can conclude that the final
product is satisfying for a first time experience in python and given more dedication and
time it would become a great game. Already at this stage it can be fulfilling enough to jump
around shooting.

25

References

[1] Game programming with Python (Game Development Series), Sean Riley, CHARLES
RIVER MEDIA, INC. 2004. ISBN 1-58450-258-4

26

