
PySoldier - A 2D Shooter inPython
Computer Game PrototypingMi
hael Fran
ker Christensen s031756Ask Hjorth Larsen s021864Supervisor: Mi
hael RoseDTU - Te
hni
al University of Denmark10 November 2005

This spa
e intentionally left blank

1

Table of
ontents
1 PySoldier - A Realtime 2D Shooter 41.1 What is PySoldier? . 41.2 Rules . 41.3 Primary evaluation . 61.4 Overview of PySoldier . 62 Ar
hite
ture and Design 82.1 Overall ar
hite
ture . 82.1.1 Initialization . 82.1.2 Player management . 82.1.3 Main loop . 92.2 Physi
al simulation . 92.2.1 Collision dete
tion . 102.2.2 Collision handling . 102.2.3 Newtonian movement - sprite dynami
s 102.2.4 More on sprites . 112.2.5 Firing . 122.3 Map and level building . 122.3.1 Introdu
tion . 122.3.2 Level problems . 132.4 Interfa
e . 132.4.1 In-game graphi
s . 132.4.2 Peripherals - mouse and key input . 132.5 Network ar
hite
ture . 142.5.1 Client/Server model . 142.5.2 Approa
hes to
lient-side interpolation 142.5.3 Client limitation . 152.5.4 Game proto
ol . 152.5.5 Consisten
y . 162.5.6 Con
lusion . 163 Implementation 173.1 Implementation of physi
al simulation . 173.1.1 Movement . 173.1.2 Collision handling . 183.1.3 Implementation problems of sloped
urves 183.2 Level implementation . 183.3 Network implementation . 203.3.1 The Client
lass . 202

3.3.2 The Server
lass . 203.4 User interfa
e . 213.5 Additional game
ontent: sound . 224 Testing and gameplay experien
e 234.1 Testing . 234.2 Gameplay experien
e . 244.3 Further development . 245 Con
lusion 25Referen
es . 25

3

Chapter 1PySoldier - A Realtime 2DShooter1.1 What is PySoldier?PySoldier is a 2D sideways-s
rolling shooter written in the Python programming language.The player
ontrols a soldier by means of mouse and keyboard, and the view is
enteredon that soldier during normal gameplay. The player
an walk around in a world
onsistingmainly of re
tangular platforms, and the obje
tive is to kill the opposing soldier, whi
h is
ontrolled by another human player a
ross a network.This do
ument des
ribes in detail the development of PySoldier into a reasonable
om-puter game prototype. In other words, the game is not intended to be
omplete as su
h, yetour development has of
ourse attempted to provide reasonable playability and eliminateany serious bugs, su
h that the feasibility of the game's ideas
an be proven.The immediately following se
tion will de�ne the rules and goals of PySoldier pre
isely.The general game ar
hite
ture is treated in
hapter 2, while
hapter 3 will go into furtherdetail with some of the more important or di�
ult implementation issues. The experien
esgathered during our own playtesting are dis
ussed in
hapter 4, whi
h will also state someof the future features planned or wished for. This
hapter will also list all presently knownbugs. Last,
hapter 5 will
on
lude on the proje
t as a whole.A s
reenshot of PySoldier
an be seen on �gure 1.1.1.2 RulesPySoldier is a 1on1 basi
 shooter in 2D mode. The player will see the world from the
lassi
 platform game perspe
tive. For the game to be a serious prototype we have severalmodules that must be implemented in order to
onsider the task
omplete. First of all weneed a physi
al world in whi
h obje
ts
an move around under a newtonian system, thismeans implementation of gravity, mass for moving obje
ts and for
es working in both gamedimensions. The rules of the game is quite simple from a player aspekt of the game.Network is essential sin
e it
an only be played using UDP You need a mouse andkeyboard for playing the game Python needs to be installed with following pa
kages in themost re
ent versions:
• hoop 4

Figure 1.1: S
reen shot of PySoldier. One player is �ring into the air while a grenadeexplodes. Note that the ba
kground
olour has been
hanged to white from bla
k to easeprinting.
• PyOpenGL
• pygame
• PyUI
• twisted
• GLUTWhen playing the game the player should move his/her horisontally avatar around inthe world using the arrow keys on the keyboard. The game will not allow normal illegala
tions as moving up a verti
al wall. For movement in verti
al dimension the up arrow is thejump button whi
h allow the player to jump a
ertain height - thus degrading the
ontrolin the horisontal line. For a
tual
ombat the mouse buttons will be
onsidered the primaryinput. The game will support a simple point and
li
k interfa
e with a shot being �re inthe dire
tion of the mouse
ursor from the avatars position. All shots �red will either beremoved from the game hitting game obsta
les or hitting a player thus
ausing damage. Ondeath the avatar will momentarily be removed from the game until respawning, and a fragis awarded to the opposing player. A simple indi
ator will display the frag
ount for bothplayers. A more formal list of rules:
• Two players ea
h
ontrol one soldier by means of the
ontrols below
• Soldiers may move in horizontal line by left, right arrow
• Jumping by up arrow
• Left mouse button will �re shot in the dire
tion of the mouse pointer5

• Right mouse button will throw a grenade in the dire
tion of the mouse pointer
• Grenades explode after some time
• Soldiers will take damage from hits by shots or nearby explosions
• Soldiers may pass through other soldiers
• Soldiers may not pass through terrain obje
ts
• Bullets and grenades will pass through other bullets or grenades
• Bullets will be removed from the game upon
ollision
• Grenades boun
e o� solid surfa
es
• Soldiers, bullets and explosions adhere to Newtonian physi
s
• A frag is s
ored upon death of the opposing soldier
• At any time, the player with the highest s
ore is
onsidered winning1.3 Primary evaluationFor the game to work as intended several problems needs to be solved. The manner of theimplementation is, as previously mentioned, a game prototype. This means that most ofthe single modules of the game may not be parti
ularly well optimized, but should fun
tionqualitatively as if in the �nal implementation. It is easily predi
ted that the most importantoverall aspe
ts and hardest to implement will be, in order of implementation time:1. Creation of a fun
tional physi
al representation.2. UDP networking -
lient/server modes with syn
hronization.3. Designing levels and additional game
ontentFor the physi
al world implementation, the SimObje
ts of the hoop library will be used andea
h update method will make sure physi
al laws are upheld. The use of SimObje
ts will beextended to the level design as a level will be made from impenetrable, stationary obje
ts.Networking will be based on the twisted datagram proto
ol, and the goal for the network
ode is to a
hieve smooth gameplay and responsiveness on
lients by means of a su�
ientlyhigh frequen
y of network updates. Finally, most rendering managed again by hoop, whi
hworks on top of PyUI and pygame.1.4 Overview of PySoldierWhen laun
hing PySoldier, �rst pyui is initialized and an Application is
onstru
tedwhi
h uses a pyui Frame to display a menu. The main game loop is the run method of

Application, whi
h repeatedly invokes the draw and updatemethods of pyui along witha
ustom method whi
h will be spe
i�ed later, depending on whether the running session ofPySoldier is a
lient or server. Initially this method does nothing.If the user enters an IP address and sele
ts the join option from the menu, PySoldier willattempt to
onne
t to the spe
i�ed IP address. If
onne
tion is su

essful, the game will be6

set to run
lient mode. If the user presses the
reate button, the game will run in servermode.In
lient mode, all user input from the mouse or keyboard whi
h
orrespond to game
ontrols will be sent by UDP to the server whi
h handles it. The
lient will
onstantlyupdate the world with information re
eived from the server.In server mode, UDP datagrams
ontaining game updates will be sent a
ross the networkvery frequently, and ea
h su
h update
ontains all relevant information in the game. Thenotion of relevan
e is
lari�ed in se
tion 2.5. For every frame, the
lient will read anyinformation re
eived from the network

7

Chapter 2Ar
hite
ture and Design2.1 Overall ar
hite
tureAs mentioned in the previous
hapter, PySoldier
onsists of several separate
omponentsproviding di�erent fun
tionality, parti
ularly network
lient behaviour, server behaviour,physi
al simulation and graphi
s. The design of these di�erent
omponents will be shortlysummarized below for a qui
k overview, and ultimately in greater detail in the then re-maining se
tions of this
hapter. Figure 2.1
ontains a s
hemati
 of the
omplete gamestru
ture.2.1.1 InitializationDuring startup, PySoldier loads the setup of the physi
al simulation and
reates a map, asdes
ribed in se
tion 2.3.Then PySoldier initializes a windowed display and presents a menuto the player, the details of whi
h are des
ribed in se
tion 3.4. At this stage, the game entersthe main loop, whi
h runs while the player
onsiders the menu options. The player
an noweither
reate a game, enter an IP to a text�eld in order to join a game, or quit.Creating or joining a game will result in the game entering server or
lient mode, re-spe
tively, and the game will from this point
ontinue running until the player quits. Thegame loop will behave di�erently depending on the mode.If the user wants to join a game
reated on his own
omputer, whi
h is highly usefulfor debugging when only one
omputer is available, he should join the 127.0.0.1 IP address,whi
h is for the same reason the default value. Simultaneously hosting and joining a gameis equivalent to running two sessions on di�erent
omputers.2.1.2 Player managementUpon
reation of the world it be
omes ne
essary to tra
k the players in the game and
ontrolthe intera
tion between players and avatars. The total state of the game is en
apsulatedwithin an environment, whi
h thus
ontains referen
es to physi
al game world and managesthe states of players, in parti
ular their s
ores. Immediately two players are initialized,and ea
h re
eives a soldier along with a
ontroller. The
ontroller is responsible for passing
ontrol input to the soldiers, whether this input
omes from keyboard and mouse input ornetwork. The
ontroller will be examined
loser in se
tion 2.4.2.
8

Figure 2.1: This s
hemati
 shows the overall stru
ture of PySoldier. All modules are listedex
ept
ertain trivial
lasses e.g.
ontaining sprite data. The PySoldier stru
ture attemptsto delegate as mu
h fun
tionality as possible to di�erent modules in order to keep di�erentparts of the game me
hani
s separate.2.1.3 Main loopThe main loop will repeatedly perform a number of updates, ea
h to be des
ribed now. Firstthe display is updated, see se
tion 2.4.1. Se
ond the physi
al simulation will be updated,using a timer to measure the elapsed time between frames. This is des
ribed in se
tion 2.2.Next, a
ustom update is performed whi
h initially does nothing. When a mode is sele
ted,however, this step will update server or
lient, along with polling for mouse and keyboardinput. The e�e
t of mouse and key input di�ers, depending on whether the game is in
lientor server mode. In
lient mode, input will be relayed to the server, while in server mode itwill be applied dire
tly to the avatar of the lo
al player - this is des
ribed in 2.5.2.2 Physi
al simulationThe Hoop library provides most of the fun
tionality needed in PySoldier. This in
ludes
ollision dete
tion and some a
tual me
hani
al simulation. While these things will take
areof many details, there are a few �aws or needs in the Hoop library that
ompli
ate the design9

quite formidably.2.2.1 Collision dete
tionWhen designing a
ollision grid, the basi
s of whi
h are not to be dis
ussed here(see [1℄),there are two di�erent approa
hes whi
h have ea
h their merits and disadvantages. Thesimplest approa
h, whi
h is used in Hoop, is to register ea
h sprite in exa
tly one squareof the
ollision grid. In
ase the sprite overlaps other squares, we have to
he
k for a
tual
ollision against all the sprites resident in all adja
ent squares, totalling 9 squares. Supposenow that there exists a kind of sprite whi
h is larger than a
ollision square. If two of thesesprites meet, they may easily overlap physi
ally, but the
ollision dete
tor will not dete
tthis if their overlap o

urs outside the squares adja
ent to those in whi
h they are
entered.Thus, no sprite may be larger than the square of the
ollision grid.The other approa
h avoids this problem by registering a sprite in all those
ollisionsquares whi
h overlap with a bounding box of the sprite. Che
king for
ollision in this
aserequires only
onsideration of those squares whi
h the sprite overlaps. Needless to say, whensprites overlap several squares in the grid, it
an be rather
omputationally
ostly to movethem, but in most
ases, parti
ularly for small sprites, the amount of
he
king of adja
entsquares will be smaller than in the above approa
h. More importantly, there is no longerany restri
tion to the size of sprites.The ulterior motive of this dis
ussion in terms of PySoldier is that the Hoop approa
hdoes not support su�
iently large
olliding sprites to properly in
lude terrain in the simula-tion. While PySoldier wishes to use large blo
ks of terrain in the simulation. Sin
e in most
ases, only relatively few sprites are moving around at a time, some reverse engineering ofthe Hoop
lasses may solve this problem. However su
h reimplementation is hardly withinthe s
ope of this proje
t, and instead all terrain modelling has been done by means of smaller
hunks. The
omplete pro
edure is des
ribed in detail in se
tion 2.3.2.2.2 Collision handlingThe hoop library has a default
ollision handling behaviour whi
h
an easily be overridden tosupport more
omplex intera
tions. In PySoldier, when a soldier hits an obsta
le, the spriteshould not boun
e o�, but instead stay in
onta
t with that surfa
e. For example, the spriteshould rest on a horizontal surfa
e while sliding o� verti
al ones. While the implementationof sloped surfa
es would
ertainly be bene�
ial for game play, the hoop library
annot dealwith these easily, and we have therefore de
ided to use only axially aligned terrain. Thepre
ise details of this problem are elaborated in se
tion 3.1.2.2.3 Newtonian movement - sprite dynami
sPySoldier attempts to model newtonian movement of soldiers and bullets. The fa
t thatneither is sus
eptible to rotation (sin
e the PySoldier perspe
tive is not top-down) simpli�esmatters quite a lot.The most important single sprite is the soldier. A�e
ted by gravity and fri
tion, soldiersbehave di�erently when they are in the air or on the ground. Fri
tion in the air is quitesmall and laminar (i.e. proportional to the velo
ity of the soldier). Fri
tion on the groundis physi
ally the basis for movement, of
ourse, but the question of how to deal with a
tualsoldier movement remains biologi
al. Our approa
h is to simply apply a
onstant for
e, let's
all it the motor for
e T , whi
h is responsible for propulsion, and a for
e proportional to thesoldier speed's speed v (equivalent to fri
tion again), meaning that a soldier will a

eleratewith a
onstant rate at �rst, then exponentially approa
h the maximum speed depending10

on the parti
ular
onstants
hosen in the simulation. In other words, Newton's se
ond lawis
M

dvdt
= T − µv, (2.1)where M is the soldier's mass and µ the fri
tion
onstant. Note that the linearity of thisequation, whi
h in di�erent forms governs movement both while the soldier is in the air andon the ground, ensures that the des
ription remains physi
ally
orre
t when extended totwo-dimensional movement. It is easily shown that the maximum speed obtained in su
h asystem is exa
tly

v∞ =
T

µ
. (2.2)When a soldier jumps, whi
h is possible only while on the ground, he is simply assigned aspe
i�
 verti
al speed. While in the air, the soldier
an still be
ontrolled slightly (this helps
limb obsta
les), but this extra
ontrol must not allow the soldier to obtain superhumanspeeds be
ause of the low fri
tion. Thus, the air
ontrol fa
tor α is introdu
ed, and themotor for
e is proportional multiplied by this when the soldier is in the air. These
onditionsare all satis�ed by this formula:

α = ǫ

(

1 −

∣

∣

∣

∣

v

v∞

∣

∣

∣

∣

)

= ǫ
(

1 −

∣

∣

∣

vµ

T

∣

∣

∣

)

. (2.3)The variable ǫ is
hosen to make gameplay good (it is 0.4 presently). This
hoi
e of air
ontrol fun
tion will
ompletely eliminate the air
ontrol when the speed is near maximumwalking speed, while air
ontrol is quite high when the speed is low (whi
h is usually the
ase when a player tries to jump around between obsta
les). Of
ourse, the
on
ept of air
ontrol has no physi
al meaning and is only introdu
ed to improve game play. This is donein most games whi
h rely heavily on jumping.2.2.4 More on spritesFive other mobile sprites exist, whi
h will now be des
ribed brie�y:
• Bullet. Spawned at the end of a gunbarrel when the gun is �red. Will
ontinuemoving in the gun barrel's dire
tion, but is slowly de�e
ted by gravity and a slight airresistan
e1 (future implementations
ould in
lude wind resistan
e, whi
h is quite easyto add). Bullets
annot
ollide with ea
h other, yet on any other
ollision they will
ease to exist. If a Bullet
ollides with a Soldier, it will deal damage proportional toits kineti
 energy 1

2
Mv2. When the game runs in
lient mode, however, bullets dealno damage sin
e this is managed through the network.

• Grenade. These obje
ts are spawned similarly to bullets and obey the same physi
salthough a lot heavier. They generally have lower velo
ities and do not
ease to existupon
ollision. Instead they boun
e o� surfa
es realisti
ally, until they rea
h theirpreset time limit at whi
h point they spawn an Explosion obje
t at their lo
ation anddisappear.
• Explosion. This obje
t exists for less than one se
ond, and while it exists, any soldiersinside its
ollision radius will be propelled away violently while re
eiving high damage.Remember: grenades don't kill people, explosions kill people.1Physi
ally, the air resistan
e should be proportional to the square of the magnitude of the bullet's speed,sin
e the �ow of air would be highly turbulent, but this approa
h generally makes traje
tories more boring.11

• Gun. Purely graphi
al e�e
t, ex
ept for the dire
tion in whi
h it points, whi
h deter-mines the �ring angle. Ea
h soldier is equipped with a Gun sprite. Generally the gunpoints in the dire
tion of the mouse
ursor.
• Angel. Upon death of a soldier, an angel is spawned. The most prominent feature ofthe Angel is that unlike most other physi
al obje
ts, it
uriously a

elerates upwardunder the gravitational in�uen
e. Angels move through any obsta
le and
annot be
ontrolled. After a few moments they disappear, spawning the soldier whose life waspreviously
ut short, thus
ompleting the
y
le of life.Further there is a number of terrain sprites, an approa
h ne
essitated by the matters dis-
ussed in the previous se
tion. These will be des
ribed in se
tion 2.3.2.2.5 FiringWhen a soldier �res, bullet obje
ts should be
reated at the lo
ation of the soldier's gun'smuzzle. If this lo
ation resides within the bounds of the soldier sprite, that soldier willimmediately hit himself with tragi

onsequen
es, unless something is done to prevent it. Areasonable way is to simply de�ne the muzzle point as the
losest possible point su
h thatsoldier and bullet sprites
annot overlap. Bullets in PySoldier are therefore made to spawnaround the soldier on a
ir
le, the radius of whi
h is slightly greater than the sum of theradii of the soldier and bullet obje
ts.This opens the possibility of bullets spawning on the other side of thin obje
ts, if themuzzle radius is too large. In the
urrent release, the radius �ts rather tightly around thesoldier sprite, and this problem is not observed in pra
ti
e for bullets. Grenades, however,are large enough exhibit this problem under some
ir
umstan
es.On
e the bullet is spawned, it is possible that the soldier is updated before the bullet,moving into his own proje
tile and taking damage. A simple way to �x this bugs would be toregister the spawned bullet with the �ring soldier as an argument and make him invulnerableto his own shots. This has not been implemented sin
e we believe that a player shootingwildly into the air - then getting hit by his own bullets, should be severely punished! Thepresent version of PySoldier does not exhibit this problem unless the game stutters (perhapsdue to external pro
esses straining the
omputer), in whi
h
ase the time interval betweenupdates
an be
ome arbitrarily large, so soldier move steps
an have any size. This meansthe problem fundamentally
annot be removed in this way - it is only possible to minimizeit by
hanging the muzzle radius.2.3 Map and level building2.3.1 Introdu
tionThe world of PySoldier
onsists of moving obje
ts, most importantly soldiers, and the terrainitself. The level is a representation of physi
al world in whi
h the battle is fought. As su
hall
urrent level obje
ts
onsists of stationary obje
ts whi
h
an not be penetrated by otherphysi
al obje
ts and therefore restri
ts movement and lines of �re.We do not
onsider extensive level designs an important requirement, but we do imple-ment a default level in order to
omplete the gameplay. Proper level designs are obviouslyan important area of any future development.

12

2.3.2 Level problemsWhen making a level there are some issues whi
h need to be adressed before the manufa
-toring of a level
an begin:
• Levels need to have a logi
al build-up to make the gameplay fair for all sides.
• The level buildup must be
ompatible with the
ollision dete
tion.The game world is a
oordinate system with a width of 1200 and a height of 600. The 2spawn points is pla
ed in ea
h side of the world to ensure a
ertain time before the playersstart blasting. In this way most
ombat will take pla
e around the
enter of the world.A good level builder will make sure that the spawn points is somewhat isolated from the
ombat
enter to ensure that a player
an not be killed within the �rst
ouple of se
onds ina �ght.The
ollision dete
tion in pygame is using a
ollisiongrid. Ea
h
ollisiontile has a de�nedwitdh and height (w = worldwidth / 20, h = worldheight / 20). This makes a total of 400
ollision tiles in the world. When an obje
t is added to the world it is registered in the tilein whi
h its
enter is lo
ated. In order to validate
ollision dete
tion, the size of
ollidingobje
ts in the game must be restri
ted by the size of the world.2.4 Interfa
e2.4.1 In-game graphi
sMost of the graphi
al details in PySoldier are delegated either to PyUI or Hoop. The Hooplibrary allows sprites to be equipped with images, and the Hoop engine
an render these tothe s
reen. Ea
h sprite in PySoldier uses a
ategory
lass, whi
h points to an image �le.Rotation and translation will be taken
are of by Hoop itself, depending on the lo
ations ofthe sprites in the physi
al simulation. Graphi
s in general is not a fo
al point of the PySoldierdevelopment, and only few di�erent sprites are therefore available. More graphi
al
ontent
ould be added in later versions, along with e.g. a ba
kground image. Remember that as
reenshot
an be seen on �gure 1.1 in the introdu
tion to this do
ument.2.4.2 Peripherals - mouse and key inputDuring ea
h game update, we
an poll mouse and keyboard for input and apply it to thegame state. If the game is running in
lient mode, however, it should not be dire
tly appliedto the game state, yet instead forwarded a
ross the network to the server.Also, soldiers may re
eive instru
tions on what to do in two di�erent ways, namely fromthe peripherals dire
tly or through the network. In order to transparently a

omodate thesedi�eren
es, we have de
ided to split the peripheral updates in separate steps: �rst, the inputis read using the PyUI and pygame frameworks, then handled in di�erent updating methodsdepending on whether the game is in
lient or server state. In
lient mode, this
onsistsmerely of sending the data a
ross the network as des
ribed in se
tion 2.5. In server mode,the method whi
h polls for input will apply the input data to the lo
al soldier's
ontroller, anobje
t asso
iated with ea
h soldier whi
h keeps tra
k of what keys are
urrently
onsideredto be pressed by that soldier. The tri
k is that the data of the
ontroller
an be manipulatedin any way, either through a
tual key presses (as in the server
ase) or by reading input fromthe network. Thus, for the programmer writing the behaviour of soldiers when rea
ting to
ontrol input may poll the
ontroller obje
t and blindly obey its data, regardless of whether13

this data originates from the network or the lo
al player, and regardless of whether the gameis in server or
lient mode. E�e
tively, the input handling has been split into two steps.2.5 Network ar
hite
tureSin
e PySoldier is a realtime game where players ea
h
ontrol one avatar dire
tly, it is quiteimportant for the playability to ensure low laten
ies. This immediately suggests use of theUDP proto
ol for the majority of the network tra�
. Sele
tion of the proto
ol is quiteimportant early on, sin
e the entire network
ode will ultimately depend on this
hoi
e.While the UDP proto
ol is quite fast, however, it is unreliable. Certain one-time events,su
h as the death of a player,
annot be simply handled by, for example, sending a playerdeath event. If the responsible pa
kage is lost, the game will be out of syn
h immediately.Handshaking and distribution of information su
h as ni
knames would further require somekind of guarantee of delivery. This means a TCP/IP proto
ol might be
onsidered for thiskind of events. In PySoldier there is one important detail: sin
e ea
h player only
ontrolsa single person, only relatively small amounts of bandwidth will be ne
essary to even sendthe
omplete state of the game. Our initial approa
h would be to rely solely on UDP, andsend (possibly redundant) information for every game update. This initial approa
h allowsfor two later optimizations:
• Use of rare large and frequent small network updates, so less bandwidth is used tosend information whi
h is unlikely to have
hanged, or
hanges so slowly that stri
tsyn
hronization a
ross the network is unne
essary
• Introdu
tion of TCP/IP to manage one-time events, thus eliminating most redundantdata transmissionWhile these optimizations are valid, we do not plan to implement either unless bandwidthbe
omes a problem (presently no su
h problems have been observed during LAN or internetplay).2.5.1 Client/Server modelPySoldier uses a
lient/server model, where one player
reates a server session and runsthe game lo
ally. This session runs the
omplete physi
al simulation, and the observationsof the server session are �nal (i.e. a person dies if the server thinks this is the
ase, eventhough
lients may not have seen this).A number of
lients may
onne
t to the server, spawning
lient sessions whi
h listen forand handle input from the server. In return
lients will send data su
h as keyboard andmouse input to the server, whi
h the server will parse and apply to the simulation. Theserver returns game states, i.e. player positions and other data. The exa
t nature of thisdata transmission will be dis
ussed in se
tion 2.5.4.2.5.2 Approa
hes to
lient-side interpolationAs mentioned earlier, be
ause of the unreliability of the UDP proto
ol, we
annot hopeto ensure that an exa
t simulation takes pla
e on the
lients. The server will issue gameupdates with a
ertain frequen
y, but in pra
ti
e, sprites on the
lients will only be
lose totheir server-side positions.Apart from sending game data with a high frequen
y, it is also
ustomary to help the
lients preserve a reasonable representation of the server game state by means of guesses or14

interpolation. For example, if server sends only the positions of sprites (whi
h
ompletelydetermines the game state), the game play might be seen to stutter on the
lients. If theserver sends the sprite velo
ities as well,
lients may linearize and simulate player movementwhi
h will not only make the game play look more smooth, it will a
tually - on average -
onstitute a better approximation to the server representation.In other words, the advantages of partial
lient-side physi
al simulation are two-fold: thesimulation will appear more smooth on the
lient, and will stay
loser to the server's repre-sentation. PySoldier
lients will therefore run a full-featured simulation of sprite movements,only negle
ting to apply damage and so on, whi
h will be managed through the network.On re
eption of an update from the server, a
lient will in the present version of PySoldierimmediately overwrite its physi
al data with the newly available. It might be reasonableto smooth out this
orre
tion by adjusting the
lient's physi
al data over a few frames, butthis feature remains as yet unimplemented sin
e gameplay progresses reasonably smoothlywithout. Also, this parti
ular approa
h
an be dangerous - for example if the
lient missesa few pa
kages and the sprite hits a
orner whi
h blo
ks its movement, the sprite might getstu
k while it should a
tually pro
eed around the
orner. Some games will also, in orderto further improve the per
eived responsiveness on
lients, make the
lient move slightlyas soon as
ontrols are pressed, then silently apply
orre
tions afterwards when response isreturned from the server. This is mostly useful in 1st person perspe
tive games when theplayer is, so to speak,
loser to his avatar, and we have
hosen not to implement this.2.5.3 Client limitationThe present state of the PySoldier does not allow more than one
lient to
onne
t. This de-
ision was made be
ause only a quite limited amount of
omputers with appropriate Pythonsoftware installations were available during development, and the two-player approa
h easedtesting
onsiderably. Care has been taken to ensure that this does not signi�
antly impedethe later implementation of multiple players. Basi
ally, the server spawns two players onstart-up, the lo
al player immediately taking
ontrol of the �rst one and starting the simula-tion. The
onne
ting
lient will take
ontrol of the se
ond, but the game may run inde�nitelywithout any
lients
onne
ting. Further development of the game would do well to stay withthis approa
h for as long time as possible due to the value of single-player testing.2.5.4 Game proto
olThis se
tion will �nally state exa
tly whi
h information will be sent between
lient andserver. The
lient will send only input from the peripherals, i.e. mouse and keyboard.Ea
h update
onsists of a series of 1's and 0's, ea
h indi
ating whether a
ertain button ispresently pressed. These buttons are: arrow keys up, down, left and right (for movement),and the left mouse button (�ring). Finally, instead of sending the two
oordinates of themouse
ursor, from whi
h the server would be able to infer the angle in whi
h the
lient'savatar's gun should point, this angle itself is sent.The pa
kages sent by the server to the
lient
onsists of both soldiers in the game (easilygeneralized to n players). Sending a soldier means sending position, velo
ity, angle of aimand health. Also this update would in
lude the frag
ounts of ea
h player, and the
lientmay infer from the
hanging of these values that someone has been killed (this may seemin
onvenient, but it solves the problem of one-time updates over UDP
onne
tions quitesplendidly). The server will also send whether or not it is �ring, making it
ustomary forthe
lient to simulate the a
tual bullets. 15

2.5.5 Consisten
yAs stated in the previous se
tion, neither
lient nor server sends the a
tual positions ofbullets. This is partly be
ause the task of keeping tra
k of every bullet
reated and destroyedwould in�ate bandwidth requirements signi�
antly. Bullets also move quite qui
kly, and su
hinformation would not travel well a
ross the network. In the sele
ted approa
h the serverwill, obviously, simply apply the
lient's
ontrol input to its own model and thus
reatebullets where appropriate in the simulation. The
lient has to do exa
tly the same thing,but it is not in
harge of the simulation. The
lient therefore simply
reates the bulletswhere it thinks they should be, but does not allow these bullets to deal damage to players.The question remains of how
onsistent the
lient's representation is. Sin
e bullets movequi
kly, it
an be di�
ult for the human
lient player to see whether bullets a
tually hit,and small in
onsisten
ies will therefore be virtually invisible. For large laten
ies, however,the game play will be seriously degraded.One alternative approa
h would be to send information about the
reation of bullets onlyon
e. This would leave open the possibility for bullets not appearing due to pa
ket loss, butsin
e the server will
onsistently manage the damaging and killing of players, this would notseriously a�e
t game play. The possibility this remains of reverting to this approa
h, shouldthe
urrently sele
ted approa
h be unsatisfa
tory.2.5.6 Con
lusionThe PySoldier network model relies on a UDP
lient/server stru
ture where the server runsthe �nal physi
al simulation, while
lients run a similar simulation yet apply
orre
tionsre
eived from the server with high frequen
y. Presently only one
lient is allowed. The
lientsends almost only mouse and key input to the server, whi
h applies this to the simulation.

16

Chapter 3ImplementationThe last
hapter dealt with the overall design of the PySoldier
omponents. This
hapterwill go into detail with the major implementation issues of ea
h
omponent of PySoldier.The immediately following se
tion deals with the physi
al simulation, whi
h, as shall beseen, presented some serious unexpe
ted problems. Afterwards the map implementationis dis
ussed, followed by the networking modules, whi
h are des
ribed in parti
ular detail.Last, the relatively small areas of user interfa
e and in
lusion of sound e�e
ts in PySoldierwill be brie�y treated.3.1 Implementation of physi
al simulationAll sprites in PySoldier extend the hoop-
lass SimObject. The hoop library manages mostof the simple sprite movement and
ollision dete
tion. The parti
ular parts of the PySoldiersimulation that have to be implemented manually are therefore movement behaviour and
ol-lision handling. These things are generally implemented by overriding the update and hitmethods of SimObject. A
tually, Soldier is derived from a sub
lass ImprSimObjectof SimObject whi
h had its update method slightly
hanged to support a ri
her
ollisionhandling behaviour.3.1.1 MovementThe Newtonian movement of Soldier obje
ts is implemented by adding three attributes,
xForce, yForce and mass. For every frame, during the update method of Soldier,the two former values are
al
ulated by adding
ontributions from physi
al intera
tions anduser input. When no more for
es work on the Soldier, the total for
e is divided by the
mass, multiplied by the time interval supplied as argument to the update method by hoop,then added to the
omponents of the sprite velo
ity, velocityX and velocityY. The
Update method of the super
lass is then invoked to �nish the updating operations.One last te
hni
ality in the movement
ode is the ne
essity to distinguish between when asoldier is on the ground and in the air. Simply letting a
ollision with the ground o

ur ea
hframe does not work well with hoop, be
ause sprites will generally remain stationary if they
ollide, and redire
tion of movement on
ollision is di�
ult as the next se
tion will show.The easiest test is simply to
he
k whether pla
ing the soldier a
ertain distan
e belowthe
urrent position would result in a
ollision with a stationary obje
t. Thus, standingon the ground equates to being su�
iently
lose to it. One problem may rise with thisimplementation: if the player hits the ground and is stopped by the
ollision dete
tor, but17

this distan
e is larger than the threshold de�ning whether the soldier is on the earth, thenthe soldier will not hit the earth. However, if the
ollision resets the soldier's speed to 0(whi
h is the
orre
t behaviour as spe
i�ed in the game rules) on the
ollision, gravitationmake the soldier slowly approa
h the surfa
e, eventually des
ending below the threshold ina matter of very short time.One minor hindran
e with the hoop hit method is that it does not distinguish betweenprobing a lo
ation for obsta
les to test whether a unit �ts in a
ertain lo
ation, or a
tuallytrying to move the obje
t to that lo
ation - any
ollision
he
k will result in hit methodsbeing
alled if other obje
ts overlap with the desired pla
ement. However, by returning 0from the hit method, one
an suppress
ollisions. When performing
he
ks for whether asoldier is in the ground, therefore, are for
ed to use a somewhat unappealing approa
h ofsetting a �ag, then
he
king that �ag in the hit method to see if we are a
tually
ollidingor just testing.Bullets and grenades move under the e�e
t of gravity and air resistan
e. The implemen-tation is identi
al to that of the Soldier.3.1.2 Collision handlingNext, the hit method is implemented. The parti
ular desired behaviour is to determinethe dire
tion of the surfa
e with whi
h the soldier
ollides, then slide along that dire
tionwithout boun
ing o� or standing still. A simple implementation would be as follows:1. Try to move toward the desired lo
ation.2. If a
ollision is dete
ted, try moving in the x dire
tion only.3. If this too fails, try moving only in the y dire
tion.4. If all this fails, do nothing.However, hoop allows only one su
h try (te
hni
ally, one invo
ation of checkCollidefrom the update method), and if this fails the obje
t will have its hit method
alled,but won't move in this frame. The obvious behaviour of letting a soldier on the ground
ollide with the ground on
e per frame is thus not a possibility, be
ause the soldier wouldsimply get stu
k. Re
ursively retrying move
ommands as suggested above from the hitmethod is unappealing, sin
e it would require keeping tra
k of what options had alreadybeen tried. To over
ome this problem we have de
ided to
reate the aforementioned sub
lassof SimObject,
alled ImprSimObject, whi
h simply overrides the update method withan almost identi
al one, trying in turn the three di�erent dire
tions if movement fails.3.1.3 Implementation problems of sloped
urvesIt should be noted that the approa
h whi
h tries moving along ea
h axis is rather
rude,seeing as it supports
urved surfa
es quite poorly. Presently the findHitDirectionsmethod inherited from SimObject is used to elegantly treat
ollisions with axially alignedobje
ts, but this method would have to be rewritten if generalizing to arbitrary surfa
es. In
on
lusion, implementing arbitrary
urve alignment into the
ollision dete
tion is a noble
ause, yet highly time
onsuming sin
e a lot of hoop
ode would have to be generalized.3.2 Level implementationWe have
hosen to build the present level around a building blo
k stru
ture. The designerhas 5 di�erent kinds of blo
k to put anywhere in the world. A dirtblo
k is a SimObject18

whi
h is immobile, is equipped with a hit method returning 0 to ensure they
an overlapmutually, and is generally immutable.The
urrent game version in
ludes only one level design.When building the world a list of tuples is loaded for ea
h type of dirtblo
k with ea
helement of the form (x,y,dirtType). The totalTerrain list is then
reated addingall terrainlists together and the method populate(x,y,dirtType) generates the wholelevel. Ea
h blo
k has a width and height value stated in the blo
ks sour
e. For simpli
-ity, the
enter of ea
h image is set to
oin
ide with
enter lo
ations of the
orrespondingsprites. This is ensured with the
ode in the sour
e-�les as follows (this is an ex
erpt from
SourceTerrain1.py):
from OpenGL import GL

name = "quad"
image = "texture1.png"
centerX = 0
centerY = 0
numFrames = 1
w = 10
h = 10
points = ((-w,h), (w,h), (w,-h), (-w,-h))
primitives = [(GL.GL_QUADS, (0,1,2,3))]While it may seem intuitive to
hange the shape of obje
ts by using irregular polygonsin the points list, this is not supported by hoop and will break the
onsisten
y of
ollisionpro�les with graphi
al appearan
e.The width and height of the obje
t then totals in (2w, 2h). Ea
h dirtType has its ownsour
e �le
ontaining the
hara
teristi
s of the spe
i�ed obje
t. For illustration in game thedi�erent dirtTypes have unique
olor
odes so the user
an see the
urrent level buildup.The dirtblo
ks have the possibility of overlapping ea
h other to make more
omplexshapes, mu
h unlike normal bri
ks. The pro
ess of building a level is hard this way sin
eea
h blo
k needs to be put in pla
e by the designer manually. Given more time an easier andmore
ompa
t way to store level data should be implemented, for example random
ontentgeneration, automati
 generation from a table or from raw pixel data.In order to avoid
ollision dete
tion errors the size of the level obje
ts has a restri
tionas mentioned in se
tion 2.3. The
ollision tiles have the (w,h) = (60,30). Ea
h obje
t is onlyregistrered for
ollision in the one tile
ontaining its
enter - and
ollision dete
tion traversesonly adja
ent squares. This means that the
ombined width or height of 2
olliding obje
ts
an't be greater than the width or height of a tile times 2. This restri
ts our maximumwidth of 2 obje
ts to 120 and the height to 60. Sin
e we dont have to worry about non-moving obje
ts in this equation, we
an make dirtobje
ts as large as (120 - soldier.width,60 - soldier.height), sin
e soldiers are the largest moving obje
ts. For a better
ollisiondete
tor allowing larger obje
ts, the hoop
lasses may be extended or modi�ed, but these
onsiderations are not within the s
ope of this proje
t. Given a soldier's
harateristi
s weget the largest allowable size of
olliding obje
ts (120 - 16, 60 - 20) = (104, 40), thereforeour largest dirtobje
t have a width of 60 and a height of 40 whi
h borders the maximumgiven our world size (note that we only take this approa
h be
ause of the hoop limitations;ordinarily it would be inappropriate to rely on these details).

19

3.3 Network implementationPySoldier uses the Twisted network framework for both
lient and server implementations.Basi
ally, the Server and Client
lasses extend the DatagramProtocol
lass of theTwisted framework. Both
lasses have an update method whi
h is polled from the mainloop of PySoldier, and whi
h will
he
k the Twisted reactor for network input, then (ifenough time has elapsed sin
e last time) send an update data to the
ounterpart.Two ports are used for
ommuni
ation in PySoldier: 8004 and 8005. All tra�
 from
lient to server uses the former, while the latter is used for all data going the opposite way.Presently, all data is sent to a spe
i�
 IP (i.e. not broad
ast) sin
e the test
omputers
ouldnot always be made to
onne
t while using broad
ast. In other words, this approa
h is morelikely to fun
tion well with �rewalls.The Client and Server
lasses have
onstru
tors whi
h re
eive the following param-eters: an obje
t representing the game world, and the two port numbers used for readingand writing. Data will be read or written to and from the world obje
t when updates arere
eived or sent. Furthermore, the Client
onstru
tor takes an IP address, whi
h it will
onne
t to.The behaviour of both these
lasses is determined by only few methods, whi
h will bedes
ribed in turn.3.3.1 The Client
lassThe update method, whi
h is invoked from the PySoldier main loop, will
he
k all pendingdatagrams using reactor.runUntilCurrent and reactor.doSelect(0), then
he
kwith the pyui timer if it is time to write an update to the server. If it is (presently, if morethan 0.05 se
onds have elapsed sin
e last time), the writeUpdate method is invoked.When updating through the reactor obje
t, the datagramReceived method is in-voked for ea
h datagram arrived sin
e last time. This method �rst
he
ks whether the IP isequal to the server IP, then forwards to the parseDatagram method, whi
h will
reate an
Unpacker obje
t from xdrlib. The Unpacker is used to unpa
k two Soldier obje
tsby means of the unpackSoldier method, then the number of frags of ea
h player is un-pa
ked and applied to the game model. If these frag
ounts in
rease, the appropriate soldierwill be killed by setting the simulation obje
t's alive �ag to 0.The unpackSoldier method simply reads the position x and y
omponents, the velo
-ity
omponents, aiming dire
tion and health of the soldier, then loads those values into theworld simulation. The position
omponents are, importantly, sent as �oating point numbers,sin
e otherwise pre
ision loss may result in the soldier
olliding with other obje
ts of thesimulation. The other values are not as important, and are pa
ked as integers.Last, the writeUpdate method simply polls the pygame mouse and keyboard states,then
he
ks whi
h of the PySoldier
ontrol keys are down. Ea
h of these will be pa
ked,by means of an xdrlib Packer, and sent, using the transport obje
t on the Packer'sbu�er.3.3.2 The Server
lassThe update method of this
lass performs quite similarly to that of
lass Client. Firstit updates the world state using input from reactor, then it invokes the writeUpdatemethod if su�
iently long time has elapsed sin
e last invo
ation.

writeUpdate will like before
reate a Packer. It will pa
k the information of two
Soldier obje
ts by means of the packSoldier method whi
h is analogous in type andorder of pa
king operations to the previously dis
ussed unpackSoldier, only it pa
ks20

Figure 3.1: The PySoldier menu. The option sele
ted by the user in this menu determinesthe mode in whi
h the game will run.numbers instead of unpa
king them. Last, the frag
ounts of ea
h player is pa
ked, and thebu�er of the Packer obje
t is sent through the transport obje
t to all
onne
ted
lients(the number of whi
h is, as stated previously, limited to one).3.4 User interfa
eWhen PySoldier is started the appli
ation laun
hes a LobbyFrame. The LobbyFrameis implemented as a normal frame from pyui.widgets, and three buttons and plus atext�eld are
reated and added to it. Ea
h button is assigned a method to
all upona
tivation. The three buttons are named "Create game", "Join game" and "Exit". Whenusing the "Create game" button, the onCreate method is invoked, the game enters servermode as previously explained, and the player takes
ontrol of one of the soldiers, who hasalready been spawned. Thus, a game will immediately start with the
reator
ontrolling onesoldier without an opponent present in the game. The appli
ation will now start the serverand listen for a
lient to join the running game.Figure 3.1 shows the PySoldier menu.In order to join a server whi
h is already running, a
lient needs to know the IP addressof the server he wishes to
onne
t to. Entering an IP address in the text�eld and pressing the"Join game" button will invoke the onJoin method, making the game
onne
t to a game onthe given IP address. If a game is not found, simulation will run in
lient mode, but the
lientwill not re
eive any updates from the non-existent server. If a server is at some later timespawned at that IP address, the game will
ommen
e appropriately (this inde�nite waitings
heme is still used only be
ause it eases debugging). This is be
ause
reating and joiningservers is less of a hassle without having to retry repeatedly if
onne
tion fails initially. Untilthen the player will not be able to move. If and when, however, a game server exists on theIP address, the
lient will join the game while taking
ontrol of the soldier not
ontrolled bythe server.
21

3.5 Additional game
ontent: soundIn PySoldier 4 di�erent sounds have been implemented. The implementation of these wasnot planned - more an impulsive move. The sounds are:
• luger.wav - the sound heard when �ring
• meinLeben.wav - the sound of a dying man
• theme.wav - the intro musi
 played only on
e
• explosion.wav - the sound heard when a grenade explodesThe sound �les are lo
ated in the PySoldier/Sound library. The �les are loaded upon startingthe game in
onstants.py using the pygame mixer:
fileName = pygame.mixer.Sound(’sound/fileName.wav’)Ea
h of the sounds is triggered upon an event in the game. The theme song of MontyPython will be played upon
reation of the lobbyframe to greet players, while the others arein-game sounds. The luger �le is played for every �re
ommand in the game, the meinLebenfor every death in the game and the explosion for every grenade. This makes it possible forplayers to �re shots outside their viewing range and still know if they manage to kill theopponent. The Sound obje
t
reated by the mixer
an be played throughout the programusing the
ode:
constants.fileName.play()This makes the wave �le play on
e for ea
h method
all.

22

Chapter 4Testing and gameplay experien
e4.1 TestingThroughout the proje
t development we have used extensive fun
tional testing. Most ofthis have been done using �print ’whatever you want’� when testing network or
ol-lisions. The use of fun
tional tests paid o� mostly in testing
ollision handling on serverand
lient. For a time we had problem with the
lients avatar getting stu
k on level ob-je
ts. This proved to be
aused by rounding errors, be
ause we only sent soldier positionsa
ross the network as integers - not �oats. The integers were then rounded down, and on
ere
eived on the
lient, a

idently
ausing the avatar to
ollide with obje
ts. Simply using
print (soldier.posX, soldier.posY) we found the avatar to be inside a dirtBlo
k.On
e overlapping the dirtBlo
k, the avatar's hit method prohibited all moving - thus gettingstu
k. Most types of debugging have been done on problems like this example.The game
ode does not rely on ex
essive number
run
hing or
ompli
ated loops, andmost of the fun
tionality has dire
t impa
t on the graphi
al representation of the game state.The network and
ollision dete
tion
ode whi
h would ordinarily require the highest levelof testing, is mostly lo
ated within third party libraries, and therefore stru
tural testing isnot
onsidered ne
essary. We assume that the
ollision dete
tion and other modules havebeen tested thoroughly by their developers. The network is implemented with no degree offreedom whatsoever. Every pa
kage sent has a preset length and size. The unpa
ker uponre
eiving unpa
ks the pa
kage to the same preset length and size; should an error o

ur thegame would shut down immediatly and the appropriate error message and sta
k tra
e wouldbe printed by twisted. Therefore we believe that the performed fun
tional tests still ensurethe stability of our proje
t within reasonable margins.Here is a list of the known bugs:

• Grenades fail to explode if the
ollision pro�le of the explosion will ex
eed the bound-aries of the world.
• Grenades
an under rare
ir
umstan
es get stu
k in the
orners of terrain obje
ts.Some slight
orre
tions in the hit method should �x this.
• Grenades
an spawn so far in front of soldiers that they may pass through thin mem-branes whi
h should otherwise blo
k the way. A properly designed level would notallow obje
ts near the edge of the world, thus avoiding this otherwise un�xable issue.

23

4.2 Gameplay experien
eIn its present state, PySoldier
an be played inde�nitely by two players. The basi
 dynami
sof the game work quite well in general with only a few easily �xed known bugs. The networkalso operates without any serious issues. On the
lient side simulation, however, game play
an su�er espe
ially if the
onne
tion is bad. This is and inevitability and no di�erentfrom other games in the genre. No a
tual bugs have yet been re
orded here either. Thus,physi
al simulation and networking both seem quite
omplete. The game, however, la
kssome diversity in terms of di�erent levels, more weapons and so on whi
h ensures playabilityin the long run.4.3 Further developmentHaving implemented the game with as many assets as possible in the given time a few ofour favourites have been left out in the
urrent version of PySoldier. The most pressingmatter would be a working updated physi
al simulation allowing obje
ts of non- re
tangularshape. Rounded
urves and triangular shapes would be preferred in the a
tual game as itwould make the game more natural. Sloped
urves that
ould be
limbed by the playerwithout jumping
an help remove some of the platform game atmosphere, making the gamefeel more modern and smooth. In the game's
urrent state, game play
an feel slow due tothe possibly ex
essive jumping around on re
tangular boxes.Other features yet to be implemented in
lude new
lasses for the players to sele
t. Thisfeature is quite easily implemented, seeing as graphi
s and numeri
al data (su
h as walkingspeed or jump height)
an easily be
hanged, adding only the
omplexity of sending thesoldier type information a
ross the network as well. Implementation of di�erent kinds ofbullets and gun types would be similarly quite easy.Last, allowing any number of
lients to
onne
t at the same time would require someexpansion of the networking
lasses, but it is a reasonably simple task. Note that we preferat this stage, not to allow this be
ause it
ompli
ates play testing.

24

Chapter 5Con
lusionIn this
hapter we will write about the �nal program, our expe
tations, further plans forPySoldier and our proje
t development.The �nal state of the proje
t is in our minds both la
king and satisfying. The game as�rst seen in our minds has been realized but still not to its full potential. The game playwas intended from the beginning to be fast pa
ed and dynami
al, and this has
ertainlybeen a
hieved satisfa
torily. We are somewhat disappointed that we
ould not �nd timeto implement non-re
tangular terrain obje
ts, but these di�
ulties arise from limitations inhoop. This feature along with a deeper physi
al implementation to allow soldiers to moveup and down hills was the next item on the todo-list. Adding di�erent types of soldiers andweaponry, along with enabling a free-for-all mode for more players would be most desirable.Unfortunately mu
h of our time has been spent on studying hoop and twisted librariesto support the
urrent state of the game. The third-party libraries aid the developmentspeed but also somewhat restri
ts your freedom, at least in the
ase of the hoop physi
alsimulation.In these last stages of the development the use of python has been somewhat more
learsighted. Produ
ing games using pygame and other libraries makes development fasteras our experien
e and understanding of python has in
reased. The one thing whi
h westill �nd la
king in python is the amount of available do
umentation. This was parti
ularlyproblemati
 for PyUI and
ertain parts of twisted. Overall we
an
on
lude that the �nalprodu
t is satisfying for a �rst time experien
e in python and given more dedi
ation andtime it would be
ome a great game. Already at this stage it
an be ful�lling enough to jumparound shooting.

25

Referen
es[1℄ Game programming with Python (Game Development Series), Sean Riley, CHARLESRIVER MEDIA, INC. 2004. ISBN 1-58450-258-4

26

