
PySoldier - A 2D Shooter inPython
Computer Game PrototypingMihael Franker Christensen s031756Ask Hjorth Larsen s021864Supervisor: Mihael RoseDTU - Tehnial University of Denmark10 November 2005

This spae intentionally left blank

1

Table of ontents
1 PySoldier - A Realtime 2D Shooter 41.1 What is PySoldier? . 41.2 Rules . 41.3 Primary evaluation . 61.4 Overview of PySoldier . 62 Arhiteture and Design 82.1 Overall arhiteture . 82.1.1 Initialization . 82.1.2 Player management . 82.1.3 Main loop . 92.2 Physial simulation . 92.2.1 Collision detetion . 102.2.2 Collision handling . 102.2.3 Newtonian movement - sprite dynamis 102.2.4 More on sprites . 112.2.5 Firing . 122.3 Map and level building . 122.3.1 Introdution . 122.3.2 Level problems . 132.4 Interfae . 132.4.1 In-game graphis . 132.4.2 Peripherals - mouse and key input . 132.5 Network arhiteture . 142.5.1 Client/Server model . 142.5.2 Approahes to lient-side interpolation 142.5.3 Client limitation . 152.5.4 Game protool . 152.5.5 Consisteny . 162.5.6 Conlusion . 163 Implementation 173.1 Implementation of physial simulation . 173.1.1 Movement . 173.1.2 Collision handling . 183.1.3 Implementation problems of sloped urves 183.2 Level implementation . 183.3 Network implementation . 203.3.1 The Client lass . 202

3.3.2 The Server lass . 203.4 User interfae . 213.5 Additional game ontent: sound . 224 Testing and gameplay experiene 234.1 Testing . 234.2 Gameplay experiene . 244.3 Further development . 245 Conlusion 25Referenes . 25

3

Chapter 1PySoldier - A Realtime 2DShooter1.1 What is PySoldier?PySoldier is a 2D sideways-srolling shooter written in the Python programming language.The player ontrols a soldier by means of mouse and keyboard, and the view is enteredon that soldier during normal gameplay. The player an walk around in a world onsistingmainly of retangular platforms, and the objetive is to kill the opposing soldier, whih isontrolled by another human player aross a network.This doument desribes in detail the development of PySoldier into a reasonable om-puter game prototype. In other words, the game is not intended to be omplete as suh, yetour development has of ourse attempted to provide reasonable playability and eliminateany serious bugs, suh that the feasibility of the game's ideas an be proven.The immediately following setion will de�ne the rules and goals of PySoldier preisely.The general game arhiteture is treated in hapter 2, while hapter 3 will go into furtherdetail with some of the more important or di�ult implementation issues. The experienesgathered during our own playtesting are disussed in hapter 4, whih will also state someof the future features planned or wished for. This hapter will also list all presently knownbugs. Last, hapter 5 will onlude on the projet as a whole.A sreenshot of PySoldier an be seen on �gure 1.1.1.2 RulesPySoldier is a 1on1 basi shooter in 2D mode. The player will see the world from thelassi platform game perspetive. For the game to be a serious prototype we have severalmodules that must be implemented in order to onsider the task omplete. First of all weneed a physial world in whih objets an move around under a newtonian system, thismeans implementation of gravity, mass for moving objets and fores working in both gamedimensions. The rules of the game is quite simple from a player aspekt of the game.Network is essential sine it an only be played using UDP You need a mouse andkeyboard for playing the game Python needs to be installed with following pakages in themost reent versions:
• hoop 4

Figure 1.1: Sreen shot of PySoldier. One player is �ring into the air while a grenadeexplodes. Note that the bakground olour has been hanged to white from blak to easeprinting.
• PyOpenGL
• pygame
• PyUI
• twisted
• GLUTWhen playing the game the player should move his/her horisontally avatar around inthe world using the arrow keys on the keyboard. The game will not allow normal illegalations as moving up a vertial wall. For movement in vertial dimension the up arrow is thejump button whih allow the player to jump a ertain height - thus degrading the ontrolin the horisontal line. For atual ombat the mouse buttons will be onsidered the primaryinput. The game will support a simple point and lik interfae with a shot being �re inthe diretion of the mouse ursor from the avatars position. All shots �red will either beremoved from the game hitting game obstales or hitting a player thus ausing damage. Ondeath the avatar will momentarily be removed from the game until respawning, and a fragis awarded to the opposing player. A simple indiator will display the frag ount for bothplayers. A more formal list of rules:
• Two players eah ontrol one soldier by means of the ontrols below
• Soldiers may move in horizontal line by left, right arrow
• Jumping by up arrow
• Left mouse button will �re shot in the diretion of the mouse pointer5

• Right mouse button will throw a grenade in the diretion of the mouse pointer
• Grenades explode after some time
• Soldiers will take damage from hits by shots or nearby explosions
• Soldiers may pass through other soldiers
• Soldiers may not pass through terrain objets
• Bullets and grenades will pass through other bullets or grenades
• Bullets will be removed from the game upon ollision
• Grenades boune o� solid surfaes
• Soldiers, bullets and explosions adhere to Newtonian physis
• A frag is sored upon death of the opposing soldier
• At any time, the player with the highest sore is onsidered winning1.3 Primary evaluationFor the game to work as intended several problems needs to be solved. The manner of theimplementation is, as previously mentioned, a game prototype. This means that most ofthe single modules of the game may not be partiularly well optimized, but should funtionqualitatively as if in the �nal implementation. It is easily predited that the most importantoverall aspets and hardest to implement will be, in order of implementation time:1. Creation of a funtional physial representation.2. UDP networking - lient/server modes with synhronization.3. Designing levels and additional game ontentFor the physial world implementation, the SimObjets of the hoop library will be used andeah update method will make sure physial laws are upheld. The use of SimObjets will beextended to the level design as a level will be made from impenetrable, stationary objets.Networking will be based on the twisted datagram protool, and the goal for the networkode is to ahieve smooth gameplay and responsiveness on lients by means of a su�ientlyhigh frequeny of network updates. Finally, most rendering managed again by hoop, whihworks on top of PyUI and pygame.1.4 Overview of PySoldierWhen launhing PySoldier, �rst pyui is initialized and an Application is onstrutedwhih uses a pyui Frame to display a menu. The main game loop is the run method of

Application, whih repeatedly invokes the draw and updatemethods of pyui along witha ustom method whih will be spei�ed later, depending on whether the running session ofPySoldier is a lient or server. Initially this method does nothing.If the user enters an IP address and selets the join option from the menu, PySoldier willattempt to onnet to the spei�ed IP address. If onnetion is suessful, the game will be6

set to run lient mode. If the user presses the reate button, the game will run in servermode.In lient mode, all user input from the mouse or keyboard whih orrespond to gameontrols will be sent by UDP to the server whih handles it. The lient will onstantlyupdate the world with information reeived from the server.In server mode, UDP datagrams ontaining game updates will be sent aross the networkvery frequently, and eah suh update ontains all relevant information in the game. Thenotion of relevane is lari�ed in setion 2.5. For every frame, the lient will read anyinformation reeived from the network

7

Chapter 2Arhiteture and Design2.1 Overall arhitetureAs mentioned in the previous hapter, PySoldier onsists of several separate omponentsproviding di�erent funtionality, partiularly network lient behaviour, server behaviour,physial simulation and graphis. The design of these di�erent omponents will be shortlysummarized below for a quik overview, and ultimately in greater detail in the then re-maining setions of this hapter. Figure 2.1 ontains a shemati of the omplete gamestruture.2.1.1 InitializationDuring startup, PySoldier loads the setup of the physial simulation and reates a map, asdesribed in setion 2.3.Then PySoldier initializes a windowed display and presents a menuto the player, the details of whih are desribed in setion 3.4. At this stage, the game entersthe main loop, whih runs while the player onsiders the menu options. The player an noweither reate a game, enter an IP to a text�eld in order to join a game, or quit.Creating or joining a game will result in the game entering server or lient mode, re-spetively, and the game will from this point ontinue running until the player quits. Thegame loop will behave di�erently depending on the mode.If the user wants to join a game reated on his own omputer, whih is highly usefulfor debugging when only one omputer is available, he should join the 127.0.0.1 IP address,whih is for the same reason the default value. Simultaneously hosting and joining a gameis equivalent to running two sessions on di�erent omputers.2.1.2 Player managementUpon reation of the world it beomes neessary to trak the players in the game and ontrolthe interation between players and avatars. The total state of the game is enapsulatedwithin an environment, whih thus ontains referenes to physial game world and managesthe states of players, in partiular their sores. Immediately two players are initialized,and eah reeives a soldier along with a ontroller. The ontroller is responsible for passingontrol input to the soldiers, whether this input omes from keyboard and mouse input ornetwork. The ontroller will be examined loser in setion 2.4.2.
8

Figure 2.1: This shemati shows the overall struture of PySoldier. All modules are listedexept ertain trivial lasses e.g. ontaining sprite data. The PySoldier struture attemptsto delegate as muh funtionality as possible to di�erent modules in order to keep di�erentparts of the game mehanis separate.2.1.3 Main loopThe main loop will repeatedly perform a number of updates, eah to be desribed now. Firstthe display is updated, see setion 2.4.1. Seond the physial simulation will be updated,using a timer to measure the elapsed time between frames. This is desribed in setion 2.2.Next, a ustom update is performed whih initially does nothing. When a mode is seleted,however, this step will update server or lient, along with polling for mouse and keyboardinput. The e�et of mouse and key input di�ers, depending on whether the game is in lientor server mode. In lient mode, input will be relayed to the server, while in server mode itwill be applied diretly to the avatar of the loal player - this is desribed in 2.5.2.2 Physial simulationThe Hoop library provides most of the funtionality needed in PySoldier. This inludesollision detetion and some atual mehanial simulation. While these things will take areof many details, there are a few �aws or needs in the Hoop library that ompliate the design9

quite formidably.2.2.1 Collision detetionWhen designing a ollision grid, the basis of whih are not to be disussed here(see [1℄),there are two di�erent approahes whih have eah their merits and disadvantages. Thesimplest approah, whih is used in Hoop, is to register eah sprite in exatly one squareof the ollision grid. In ase the sprite overlaps other squares, we have to hek for atualollision against all the sprites resident in all adjaent squares, totalling 9 squares. Supposenow that there exists a kind of sprite whih is larger than a ollision square. If two of thesesprites meet, they may easily overlap physially, but the ollision detetor will not detetthis if their overlap ours outside the squares adjaent to those in whih they are entered.Thus, no sprite may be larger than the square of the ollision grid.The other approah avoids this problem by registering a sprite in all those ollisionsquares whih overlap with a bounding box of the sprite. Cheking for ollision in this aserequires only onsideration of those squares whih the sprite overlaps. Needless to say, whensprites overlap several squares in the grid, it an be rather omputationally ostly to movethem, but in most ases, partiularly for small sprites, the amount of heking of adjaentsquares will be smaller than in the above approah. More importantly, there is no longerany restrition to the size of sprites.The ulterior motive of this disussion in terms of PySoldier is that the Hoop approahdoes not support su�iently large olliding sprites to properly inlude terrain in the simula-tion. While PySoldier wishes to use large bloks of terrain in the simulation. Sine in mostases, only relatively few sprites are moving around at a time, some reverse engineering ofthe Hoop lasses may solve this problem. However suh reimplementation is hardly withinthe sope of this projet, and instead all terrain modelling has been done by means of smallerhunks. The omplete proedure is desribed in detail in setion 2.3.2.2.2 Collision handlingThe hoop library has a default ollision handling behaviour whih an easily be overridden tosupport more omplex interations. In PySoldier, when a soldier hits an obstale, the spriteshould not boune o�, but instead stay in ontat with that surfae. For example, the spriteshould rest on a horizontal surfae while sliding o� vertial ones. While the implementationof sloped surfaes would ertainly be bene�ial for game play, the hoop library annot dealwith these easily, and we have therefore deided to use only axially aligned terrain. Thepreise details of this problem are elaborated in setion 3.1.2.2.3 Newtonian movement - sprite dynamisPySoldier attempts to model newtonian movement of soldiers and bullets. The fat thatneither is suseptible to rotation (sine the PySoldier perspetive is not top-down) simpli�esmatters quite a lot.The most important single sprite is the soldier. A�eted by gravity and frition, soldiersbehave di�erently when they are in the air or on the ground. Frition in the air is quitesmall and laminar (i.e. proportional to the veloity of the soldier). Frition on the groundis physially the basis for movement, of ourse, but the question of how to deal with atualsoldier movement remains biologial. Our approah is to simply apply a onstant fore, let'sall it the motor fore T , whih is responsible for propulsion, and a fore proportional to thesoldier speed's speed v (equivalent to frition again), meaning that a soldier will aeleratewith a onstant rate at �rst, then exponentially approah the maximum speed depending10

on the partiular onstants hosen in the simulation. In other words, Newton's seond lawis
M

dvdt
= T − µv, (2.1)where M is the soldier's mass and µ the frition onstant. Note that the linearity of thisequation, whih in di�erent forms governs movement both while the soldier is in the air andon the ground, ensures that the desription remains physially orret when extended totwo-dimensional movement. It is easily shown that the maximum speed obtained in suh asystem is exatly

v∞ =
T

µ
. (2.2)When a soldier jumps, whih is possible only while on the ground, he is simply assigned aspei� vertial speed. While in the air, the soldier an still be ontrolled slightly (this helpslimb obstales), but this extra ontrol must not allow the soldier to obtain superhumanspeeds beause of the low frition. Thus, the air ontrol fator α is introdued, and themotor fore is proportional multiplied by this when the soldier is in the air. These onditionsare all satis�ed by this formula:

α = ǫ

(

1 −

∣

∣

∣

∣

v

v∞

∣

∣

∣

∣

)

= ǫ
(

1 −

∣

∣

∣

vµ

T

∣

∣

∣

)

. (2.3)The variable ǫ is hosen to make gameplay good (it is 0.4 presently). This hoie of airontrol funtion will ompletely eliminate the air ontrol when the speed is near maximumwalking speed, while air ontrol is quite high when the speed is low (whih is usually thease when a player tries to jump around between obstales). Of ourse, the onept of airontrol has no physial meaning and is only introdued to improve game play. This is donein most games whih rely heavily on jumping.2.2.4 More on spritesFive other mobile sprites exist, whih will now be desribed brie�y:
• Bullet. Spawned at the end of a gunbarrel when the gun is �red. Will ontinuemoving in the gun barrel's diretion, but is slowly de�eted by gravity and a slight airresistane1 (future implementations ould inlude wind resistane, whih is quite easyto add). Bullets annot ollide with eah other, yet on any other ollision they willease to exist. If a Bullet ollides with a Soldier, it will deal damage proportional toits kineti energy 1

2
Mv2. When the game runs in lient mode, however, bullets dealno damage sine this is managed through the network.

• Grenade. These objets are spawned similarly to bullets and obey the same physisalthough a lot heavier. They generally have lower veloities and do not ease to existupon ollision. Instead they boune o� surfaes realistially, until they reah theirpreset time limit at whih point they spawn an Explosion objet at their loation anddisappear.
• Explosion. This objet exists for less than one seond, and while it exists, any soldiersinside its ollision radius will be propelled away violently while reeiving high damage.Remember: grenades don't kill people, explosions kill people.1Physially, the air resistane should be proportional to the square of the magnitude of the bullet's speed,sine the �ow of air would be highly turbulent, but this approah generally makes trajetories more boring.11

• Gun. Purely graphial e�et, exept for the diretion in whih it points, whih deter-mines the �ring angle. Eah soldier is equipped with a Gun sprite. Generally the gunpoints in the diretion of the mouse ursor.
• Angel. Upon death of a soldier, an angel is spawned. The most prominent feature ofthe Angel is that unlike most other physial objets, it uriously aelerates upwardunder the gravitational in�uene. Angels move through any obstale and annot beontrolled. After a few moments they disappear, spawning the soldier whose life waspreviously ut short, thus ompleting the yle of life.Further there is a number of terrain sprites, an approah neessitated by the matters dis-ussed in the previous setion. These will be desribed in setion 2.3.2.2.5 FiringWhen a soldier �res, bullet objets should be reated at the loation of the soldier's gun'smuzzle. If this loation resides within the bounds of the soldier sprite, that soldier willimmediately hit himself with tragi onsequenes, unless something is done to prevent it. Areasonable way is to simply de�ne the muzzle point as the losest possible point suh thatsoldier and bullet sprites annot overlap. Bullets in PySoldier are therefore made to spawnaround the soldier on a irle, the radius of whih is slightly greater than the sum of theradii of the soldier and bullet objets.This opens the possibility of bullets spawning on the other side of thin objets, if themuzzle radius is too large. In the urrent release, the radius �ts rather tightly around thesoldier sprite, and this problem is not observed in pratie for bullets. Grenades, however,are large enough exhibit this problem under some irumstanes.One the bullet is spawned, it is possible that the soldier is updated before the bullet,moving into his own projetile and taking damage. A simple way to �x this bugs would be toregister the spawned bullet with the �ring soldier as an argument and make him invulnerableto his own shots. This has not been implemented sine we believe that a player shootingwildly into the air - then getting hit by his own bullets, should be severely punished! Thepresent version of PySoldier does not exhibit this problem unless the game stutters (perhapsdue to external proesses straining the omputer), in whih ase the time interval betweenupdates an beome arbitrarily large, so soldier move steps an have any size. This meansthe problem fundamentally annot be removed in this way - it is only possible to minimizeit by hanging the muzzle radius.2.3 Map and level building2.3.1 IntrodutionThe world of PySoldier onsists of moving objets, most importantly soldiers, and the terrainitself. The level is a representation of physial world in whih the battle is fought. As suhall urrent level objets onsists of stationary objets whih an not be penetrated by otherphysial objets and therefore restrits movement and lines of �re.We do not onsider extensive level designs an important requirement, but we do imple-ment a default level in order to omplete the gameplay. Proper level designs are obviouslyan important area of any future development.

12

2.3.2 Level problemsWhen making a level there are some issues whih need to be adressed before the manufa-toring of a level an begin:
• Levels need to have a logial build-up to make the gameplay fair for all sides.
• The level buildup must be ompatible with the ollision detetion.The game world is a oordinate system with a width of 1200 and a height of 600. The 2spawn points is plaed in eah side of the world to ensure a ertain time before the playersstart blasting. In this way most ombat will take plae around the enter of the world.A good level builder will make sure that the spawn points is somewhat isolated from theombat enter to ensure that a player an not be killed within the �rst ouple of seonds ina �ght.The ollision detetion in pygame is using a ollisiongrid. Eah ollisiontile has a de�nedwitdh and height (w = worldwidth / 20, h = worldheight / 20). This makes a total of 400ollision tiles in the world. When an objet is added to the world it is registered in the tilein whih its enter is loated. In order to validate ollision detetion, the size of ollidingobjets in the game must be restrited by the size of the world.2.4 Interfae2.4.1 In-game graphisMost of the graphial details in PySoldier are delegated either to PyUI or Hoop. The Hooplibrary allows sprites to be equipped with images, and the Hoop engine an render these tothe sreen. Eah sprite in PySoldier uses a ategory lass, whih points to an image �le.Rotation and translation will be taken are of by Hoop itself, depending on the loations ofthe sprites in the physial simulation. Graphis in general is not a foal point of the PySoldierdevelopment, and only few di�erent sprites are therefore available. More graphial ontentould be added in later versions, along with e.g. a bakground image. Remember that asreenshot an be seen on �gure 1.1 in the introdution to this doument.2.4.2 Peripherals - mouse and key inputDuring eah game update, we an poll mouse and keyboard for input and apply it to thegame state. If the game is running in lient mode, however, it should not be diretly appliedto the game state, yet instead forwarded aross the network to the server.Also, soldiers may reeive instrutions on what to do in two di�erent ways, namely fromthe peripherals diretly or through the network. In order to transparently aomodate thesedi�erenes, we have deided to split the peripheral updates in separate steps: �rst, the inputis read using the PyUI and pygame frameworks, then handled in di�erent updating methodsdepending on whether the game is in lient or server state. In lient mode, this onsistsmerely of sending the data aross the network as desribed in setion 2.5. In server mode,the method whih polls for input will apply the input data to the loal soldier's ontroller, anobjet assoiated with eah soldier whih keeps trak of what keys are urrently onsideredto be pressed by that soldier. The trik is that the data of the ontroller an be manipulatedin any way, either through atual key presses (as in the server ase) or by reading input fromthe network. Thus, for the programmer writing the behaviour of soldiers when reating toontrol input may poll the ontroller objet and blindly obey its data, regardless of whether13

this data originates from the network or the loal player, and regardless of whether the gameis in server or lient mode. E�etively, the input handling has been split into two steps.2.5 Network arhitetureSine PySoldier is a realtime game where players eah ontrol one avatar diretly, it is quiteimportant for the playability to ensure low latenies. This immediately suggests use of theUDP protool for the majority of the network tra�. Seletion of the protool is quiteimportant early on, sine the entire network ode will ultimately depend on this hoie.While the UDP protool is quite fast, however, it is unreliable. Certain one-time events,suh as the death of a player, annot be simply handled by, for example, sending a playerdeath event. If the responsible pakage is lost, the game will be out of synh immediately.Handshaking and distribution of information suh as niknames would further require somekind of guarantee of delivery. This means a TCP/IP protool might be onsidered for thiskind of events. In PySoldier there is one important detail: sine eah player only ontrolsa single person, only relatively small amounts of bandwidth will be neessary to even sendthe omplete state of the game. Our initial approah would be to rely solely on UDP, andsend (possibly redundant) information for every game update. This initial approah allowsfor two later optimizations:
• Use of rare large and frequent small network updates, so less bandwidth is used tosend information whih is unlikely to have hanged, or hanges so slowly that stritsynhronization aross the network is unneessary
• Introdution of TCP/IP to manage one-time events, thus eliminating most redundantdata transmissionWhile these optimizations are valid, we do not plan to implement either unless bandwidthbeomes a problem (presently no suh problems have been observed during LAN or internetplay).2.5.1 Client/Server modelPySoldier uses a lient/server model, where one player reates a server session and runsthe game loally. This session runs the omplete physial simulation, and the observationsof the server session are �nal (i.e. a person dies if the server thinks this is the ase, eventhough lients may not have seen this).A number of lients may onnet to the server, spawning lient sessions whih listen forand handle input from the server. In return lients will send data suh as keyboard andmouse input to the server, whih the server will parse and apply to the simulation. Theserver returns game states, i.e. player positions and other data. The exat nature of thisdata transmission will be disussed in setion 2.5.4.2.5.2 Approahes to lient-side interpolationAs mentioned earlier, beause of the unreliability of the UDP protool, we annot hopeto ensure that an exat simulation takes plae on the lients. The server will issue gameupdates with a ertain frequeny, but in pratie, sprites on the lients will only be lose totheir server-side positions.Apart from sending game data with a high frequeny, it is also ustomary to help thelients preserve a reasonable representation of the server game state by means of guesses or14

interpolation. For example, if server sends only the positions of sprites (whih ompletelydetermines the game state), the game play might be seen to stutter on the lients. If theserver sends the sprite veloities as well, lients may linearize and simulate player movementwhih will not only make the game play look more smooth, it will atually - on average -onstitute a better approximation to the server representation.In other words, the advantages of partial lient-side physial simulation are two-fold: thesimulation will appear more smooth on the lient, and will stay loser to the server's repre-sentation. PySoldier lients will therefore run a full-featured simulation of sprite movements,only negleting to apply damage and so on, whih will be managed through the network.On reeption of an update from the server, a lient will in the present version of PySoldierimmediately overwrite its physial data with the newly available. It might be reasonableto smooth out this orretion by adjusting the lient's physial data over a few frames, butthis feature remains as yet unimplemented sine gameplay progresses reasonably smoothlywithout. Also, this partiular approah an be dangerous - for example if the lient missesa few pakages and the sprite hits a orner whih bloks its movement, the sprite might getstuk while it should atually proeed around the orner. Some games will also, in orderto further improve the pereived responsiveness on lients, make the lient move slightlyas soon as ontrols are pressed, then silently apply orretions afterwards when response isreturned from the server. This is mostly useful in 1st person perspetive games when theplayer is, so to speak, loser to his avatar, and we have hosen not to implement this.2.5.3 Client limitationThe present state of the PySoldier does not allow more than one lient to onnet. This de-ision was made beause only a quite limited amount of omputers with appropriate Pythonsoftware installations were available during development, and the two-player approah easedtesting onsiderably. Care has been taken to ensure that this does not signi�antly impedethe later implementation of multiple players. Basially, the server spawns two players onstart-up, the loal player immediately taking ontrol of the �rst one and starting the simula-tion. The onneting lient will take ontrol of the seond, but the game may run inde�nitelywithout any lients onneting. Further development of the game would do well to stay withthis approah for as long time as possible due to the value of single-player testing.2.5.4 Game protoolThis setion will �nally state exatly whih information will be sent between lient andserver. The lient will send only input from the peripherals, i.e. mouse and keyboard.Eah update onsists of a series of 1's and 0's, eah indiating whether a ertain button ispresently pressed. These buttons are: arrow keys up, down, left and right (for movement),and the left mouse button (�ring). Finally, instead of sending the two oordinates of themouse ursor, from whih the server would be able to infer the angle in whih the lient'savatar's gun should point, this angle itself is sent.The pakages sent by the server to the lient onsists of both soldiers in the game (easilygeneralized to n players). Sending a soldier means sending position, veloity, angle of aimand health. Also this update would inlude the frag ounts of eah player, and the lientmay infer from the hanging of these values that someone has been killed (this may seeminonvenient, but it solves the problem of one-time updates over UDP onnetions quitesplendidly). The server will also send whether or not it is �ring, making it ustomary forthe lient to simulate the atual bullets. 15

2.5.5 ConsistenyAs stated in the previous setion, neither lient nor server sends the atual positions ofbullets. This is partly beause the task of keeping trak of every bullet reated and destroyedwould in�ate bandwidth requirements signi�antly. Bullets also move quite quikly, and suhinformation would not travel well aross the network. In the seleted approah the serverwill, obviously, simply apply the lient's ontrol input to its own model and thus reatebullets where appropriate in the simulation. The lient has to do exatly the same thing,but it is not in harge of the simulation. The lient therefore simply reates the bulletswhere it thinks they should be, but does not allow these bullets to deal damage to players.The question remains of how onsistent the lient's representation is. Sine bullets movequikly, it an be di�ult for the human lient player to see whether bullets atually hit,and small inonsistenies will therefore be virtually invisible. For large latenies, however,the game play will be seriously degraded.One alternative approah would be to send information about the reation of bullets onlyone. This would leave open the possibility for bullets not appearing due to paket loss, butsine the server will onsistently manage the damaging and killing of players, this would notseriously a�et game play. The possibility this remains of reverting to this approah, shouldthe urrently seleted approah be unsatisfatory.2.5.6 ConlusionThe PySoldier network model relies on a UDP lient/server struture where the server runsthe �nal physial simulation, while lients run a similar simulation yet apply orretionsreeived from the server with high frequeny. Presently only one lient is allowed. The lientsends almost only mouse and key input to the server, whih applies this to the simulation.

16

Chapter 3ImplementationThe last hapter dealt with the overall design of the PySoldier omponents. This hapterwill go into detail with the major implementation issues of eah omponent of PySoldier.The immediately following setion deals with the physial simulation, whih, as shall beseen, presented some serious unexpeted problems. Afterwards the map implementationis disussed, followed by the networking modules, whih are desribed in partiular detail.Last, the relatively small areas of user interfae and inlusion of sound e�ets in PySoldierwill be brie�y treated.3.1 Implementation of physial simulationAll sprites in PySoldier extend the hoop-lass SimObject. The hoop library manages mostof the simple sprite movement and ollision detetion. The partiular parts of the PySoldiersimulation that have to be implemented manually are therefore movement behaviour and ol-lision handling. These things are generally implemented by overriding the update and hitmethods of SimObject. Atually, Soldier is derived from a sublass ImprSimObjectof SimObject whih had its update method slightly hanged to support a riher ollisionhandling behaviour.3.1.1 MovementThe Newtonian movement of Soldier objets is implemented by adding three attributes,
xForce, yForce and mass. For every frame, during the update method of Soldier,the two former values are alulated by adding ontributions from physial interations anduser input. When no more fores work on the Soldier, the total fore is divided by the
mass, multiplied by the time interval supplied as argument to the update method by hoop,then added to the omponents of the sprite veloity, velocityX and velocityY. The
Update method of the superlass is then invoked to �nish the updating operations.One last tehniality in the movement ode is the neessity to distinguish between when asoldier is on the ground and in the air. Simply letting a ollision with the ground our eahframe does not work well with hoop, beause sprites will generally remain stationary if theyollide, and rediretion of movement on ollision is di�ult as the next setion will show.The easiest test is simply to hek whether plaing the soldier a ertain distane belowthe urrent position would result in a ollision with a stationary objet. Thus, standingon the ground equates to being su�iently lose to it. One problem may rise with thisimplementation: if the player hits the ground and is stopped by the ollision detetor, but17

this distane is larger than the threshold de�ning whether the soldier is on the earth, thenthe soldier will not hit the earth. However, if the ollision resets the soldier's speed to 0(whih is the orret behaviour as spei�ed in the game rules) on the ollision, gravitationmake the soldier slowly approah the surfae, eventually desending below the threshold ina matter of very short time.One minor hindrane with the hoop hit method is that it does not distinguish betweenprobing a loation for obstales to test whether a unit �ts in a ertain loation, or atuallytrying to move the objet to that loation - any ollision hek will result in hit methodsbeing alled if other objets overlap with the desired plaement. However, by returning 0from the hit method, one an suppress ollisions. When performing heks for whether asoldier is in the ground, therefore, are fored to use a somewhat unappealing approah ofsetting a �ag, then heking that �ag in the hit method to see if we are atually ollidingor just testing.Bullets and grenades move under the e�et of gravity and air resistane. The implemen-tation is idential to that of the Soldier.3.1.2 Collision handlingNext, the hit method is implemented. The partiular desired behaviour is to determinethe diretion of the surfae with whih the soldier ollides, then slide along that diretionwithout bouning o� or standing still. A simple implementation would be as follows:1. Try to move toward the desired loation.2. If a ollision is deteted, try moving in the x diretion only.3. If this too fails, try moving only in the y diretion.4. If all this fails, do nothing.However, hoop allows only one suh try (tehnially, one invoation of checkCollidefrom the update method), and if this fails the objet will have its hit method alled,but won't move in this frame. The obvious behaviour of letting a soldier on the groundollide with the ground one per frame is thus not a possibility, beause the soldier wouldsimply get stuk. Reursively retrying move ommands as suggested above from the hitmethod is unappealing, sine it would require keeping trak of what options had alreadybeen tried. To overome this problem we have deided to reate the aforementioned sublassof SimObject, alled ImprSimObject, whih simply overrides the update method withan almost idential one, trying in turn the three di�erent diretions if movement fails.3.1.3 Implementation problems of sloped urvesIt should be noted that the approah whih tries moving along eah axis is rather rude,seeing as it supports urved surfaes quite poorly. Presently the findHitDirectionsmethod inherited from SimObject is used to elegantly treat ollisions with axially alignedobjets, but this method would have to be rewritten if generalizing to arbitrary surfaes. Inonlusion, implementing arbitrary urve alignment into the ollision detetion is a nobleause, yet highly time onsuming sine a lot of hoop ode would have to be generalized.3.2 Level implementationWe have hosen to build the present level around a building blok struture. The designerhas 5 di�erent kinds of blok to put anywhere in the world. A dirtblok is a SimObject18

whih is immobile, is equipped with a hit method returning 0 to ensure they an overlapmutually, and is generally immutable.The urrent game version inludes only one level design.When building the world a list of tuples is loaded for eah type of dirtblok with eahelement of the form (x,y,dirtType). The totalTerrain list is then reated addingall terrainlists together and the method populate(x,y,dirtType) generates the wholelevel. Eah blok has a width and height value stated in the bloks soure. For simpli-ity, the enter of eah image is set to oinide with enter loations of the orrespondingsprites. This is ensured with the ode in the soure-�les as follows (this is an exerpt from
SourceTerrain1.py):
from OpenGL import GL

name = "quad"
image = "texture1.png"
centerX = 0
centerY = 0
numFrames = 1
w = 10
h = 10
points = ((-w,h), (w,h), (w,-h), (-w,-h))
primitives = [(GL.GL_QUADS, (0,1,2,3))]While it may seem intuitive to hange the shape of objets by using irregular polygonsin the points list, this is not supported by hoop and will break the onsisteny of ollisionpro�les with graphial appearane.The width and height of the objet then totals in (2w, 2h). Eah dirtType has its ownsoure �le ontaining the harateristis of the spei�ed objet. For illustration in game thedi�erent dirtTypes have unique olor odes so the user an see the urrent level buildup.The dirtbloks have the possibility of overlapping eah other to make more omplexshapes, muh unlike normal briks. The proess of building a level is hard this way sineeah blok needs to be put in plae by the designer manually. Given more time an easier andmore ompat way to store level data should be implemented, for example random ontentgeneration, automati generation from a table or from raw pixel data.In order to avoid ollision detetion errors the size of the level objets has a restritionas mentioned in setion 2.3. The ollision tiles have the (w,h) = (60,30). Eah objet is onlyregistrered for ollision in the one tile ontaining its enter - and ollision detetion traversesonly adjaent squares. This means that the ombined width or height of 2 olliding objetsan't be greater than the width or height of a tile times 2. This restrits our maximumwidth of 2 objets to 120 and the height to 60. Sine we dont have to worry about non-moving objets in this equation, we an make dirtobjets as large as (120 - soldier.width,60 - soldier.height), sine soldiers are the largest moving objets. For a better ollisiondetetor allowing larger objets, the hoop lasses may be extended or modi�ed, but theseonsiderations are not within the sope of this projet. Given a soldier's harateristis weget the largest allowable size of olliding objets (120 - 16, 60 - 20) = (104, 40), thereforeour largest dirtobjet have a width of 60 and a height of 40 whih borders the maximumgiven our world size (note that we only take this approah beause of the hoop limitations;ordinarily it would be inappropriate to rely on these details).

19

3.3 Network implementationPySoldier uses the Twisted network framework for both lient and server implementations.Basially, the Server and Client lasses extend the DatagramProtocol lass of theTwisted framework. Both lasses have an update method whih is polled from the mainloop of PySoldier, and whih will hek the Twisted reactor for network input, then (ifenough time has elapsed sine last time) send an update data to the ounterpart.Two ports are used for ommuniation in PySoldier: 8004 and 8005. All tra� fromlient to server uses the former, while the latter is used for all data going the opposite way.Presently, all data is sent to a spei� IP (i.e. not broadast) sine the test omputers ouldnot always be made to onnet while using broadast. In other words, this approah is morelikely to funtion well with �rewalls.The Client and Server lasses have onstrutors whih reeive the following param-eters: an objet representing the game world, and the two port numbers used for readingand writing. Data will be read or written to and from the world objet when updates arereeived or sent. Furthermore, the Client onstrutor takes an IP address, whih it willonnet to.The behaviour of both these lasses is determined by only few methods, whih will bedesribed in turn.3.3.1 The Client lassThe update method, whih is invoked from the PySoldier main loop, will hek all pendingdatagrams using reactor.runUntilCurrent and reactor.doSelect(0), then hekwith the pyui timer if it is time to write an update to the server. If it is (presently, if morethan 0.05 seonds have elapsed sine last time), the writeUpdate method is invoked.When updating through the reactor objet, the datagramReceived method is in-voked for eah datagram arrived sine last time. This method �rst heks whether the IP isequal to the server IP, then forwards to the parseDatagram method, whih will reate an
Unpacker objet from xdrlib. The Unpacker is used to unpak two Soldier objetsby means of the unpackSoldier method, then the number of frags of eah player is un-paked and applied to the game model. If these frag ounts inrease, the appropriate soldierwill be killed by setting the simulation objet's alive �ag to 0.The unpackSoldier method simply reads the position x and y omponents, the velo-ity omponents, aiming diretion and health of the soldier, then loads those values into theworld simulation. The position omponents are, importantly, sent as �oating point numbers,sine otherwise preision loss may result in the soldier olliding with other objets of thesimulation. The other values are not as important, and are paked as integers.Last, the writeUpdate method simply polls the pygame mouse and keyboard states,then heks whih of the PySoldier ontrol keys are down. Eah of these will be paked,by means of an xdrlib Packer, and sent, using the transport objet on the Packer'sbu�er.3.3.2 The Server lassThe update method of this lass performs quite similarly to that of lass Client. Firstit updates the world state using input from reactor, then it invokes the writeUpdatemethod if su�iently long time has elapsed sine last invoation.

writeUpdate will like before reate a Packer. It will pak the information of two
Soldier objets by means of the packSoldier method whih is analogous in type andorder of paking operations to the previously disussed unpackSoldier, only it paks20

Figure 3.1: The PySoldier menu. The option seleted by the user in this menu determinesthe mode in whih the game will run.numbers instead of unpaking them. Last, the frag ounts of eah player is paked, and thebu�er of the Packer objet is sent through the transport objet to all onneted lients(the number of whih is, as stated previously, limited to one).3.4 User interfaeWhen PySoldier is started the appliation launhes a LobbyFrame. The LobbyFrameis implemented as a normal frame from pyui.widgets, and three buttons and plus atext�eld are reated and added to it. Eah button is assigned a method to all uponativation. The three buttons are named "Create game", "Join game" and "Exit". Whenusing the "Create game" button, the onCreate method is invoked, the game enters servermode as previously explained, and the player takes ontrol of one of the soldiers, who hasalready been spawned. Thus, a game will immediately start with the reator ontrolling onesoldier without an opponent present in the game. The appliation will now start the serverand listen for a lient to join the running game.Figure 3.1 shows the PySoldier menu.In order to join a server whih is already running, a lient needs to know the IP addressof the server he wishes to onnet to. Entering an IP address in the text�eld and pressing the"Join game" button will invoke the onJoin method, making the game onnet to a game onthe given IP address. If a game is not found, simulation will run in lient mode, but the lientwill not reeive any updates from the non-existent server. If a server is at some later timespawned at that IP address, the game will ommene appropriately (this inde�nite waitingsheme is still used only beause it eases debugging). This is beause reating and joiningservers is less of a hassle without having to retry repeatedly if onnetion fails initially. Untilthen the player will not be able to move. If and when, however, a game server exists on theIP address, the lient will join the game while taking ontrol of the soldier not ontrolled bythe server.
21

3.5 Additional game ontent: soundIn PySoldier 4 di�erent sounds have been implemented. The implementation of these wasnot planned - more an impulsive move. The sounds are:
• luger.wav - the sound heard when �ring
• meinLeben.wav - the sound of a dying man
• theme.wav - the intro musi played only one
• explosion.wav - the sound heard when a grenade explodesThe sound �les are loated in the PySoldier/Sound library. The �les are loaded upon startingthe game in onstants.py using the pygame mixer:
fileName = pygame.mixer.Sound(’sound/fileName.wav’)Eah of the sounds is triggered upon an event in the game. The theme song of MontyPython will be played upon reation of the lobbyframe to greet players, while the others arein-game sounds. The luger �le is played for every �re ommand in the game, the meinLebenfor every death in the game and the explosion for every grenade. This makes it possible forplayers to �re shots outside their viewing range and still know if they manage to kill theopponent. The Sound objet reated by the mixer an be played throughout the programusing the ode:
constants.fileName.play()This makes the wave �le play one for eah method all.

22

Chapter 4Testing and gameplay experiene4.1 TestingThroughout the projet development we have used extensive funtional testing. Most ofthis have been done using �print ’whatever you want’� when testing network or ol-lisions. The use of funtional tests paid o� mostly in testing ollision handling on serverand lient. For a time we had problem with the lients avatar getting stuk on level ob-jets. This proved to be aused by rounding errors, beause we only sent soldier positionsaross the network as integers - not �oats. The integers were then rounded down, and onereeived on the lient, aidently ausing the avatar to ollide with objets. Simply using
print (soldier.posX, soldier.posY) we found the avatar to be inside a dirtBlok.One overlapping the dirtBlok, the avatar's hit method prohibited all moving - thus gettingstuk. Most types of debugging have been done on problems like this example.The game ode does not rely on exessive number runhing or ompliated loops, andmost of the funtionality has diret impat on the graphial representation of the game state.The network and ollision detetion ode whih would ordinarily require the highest levelof testing, is mostly loated within third party libraries, and therefore strutural testing isnot onsidered neessary. We assume that the ollision detetion and other modules havebeen tested thoroughly by their developers. The network is implemented with no degree offreedom whatsoever. Every pakage sent has a preset length and size. The unpaker uponreeiving unpaks the pakage to the same preset length and size; should an error our thegame would shut down immediatly and the appropriate error message and stak trae wouldbe printed by twisted. Therefore we believe that the performed funtional tests still ensurethe stability of our projet within reasonable margins.Here is a list of the known bugs:

• Grenades fail to explode if the ollision pro�le of the explosion will exeed the bound-aries of the world.
• Grenades an under rare irumstanes get stuk in the orners of terrain objets.Some slight orretions in the hit method should �x this.
• Grenades an spawn so far in front of soldiers that they may pass through thin mem-branes whih should otherwise blok the way. A properly designed level would notallow objets near the edge of the world, thus avoiding this otherwise un�xable issue.

23

4.2 Gameplay experieneIn its present state, PySoldier an be played inde�nitely by two players. The basi dynamisof the game work quite well in general with only a few easily �xed known bugs. The networkalso operates without any serious issues. On the lient side simulation, however, game playan su�er espeially if the onnetion is bad. This is and inevitability and no di�erentfrom other games in the genre. No atual bugs have yet been reorded here either. Thus,physial simulation and networking both seem quite omplete. The game, however, lakssome diversity in terms of di�erent levels, more weapons and so on whih ensures playabilityin the long run.4.3 Further developmentHaving implemented the game with as many assets as possible in the given time a few ofour favourites have been left out in the urrent version of PySoldier. The most pressingmatter would be a working updated physial simulation allowing objets of non- retangularshape. Rounded urves and triangular shapes would be preferred in the atual game as itwould make the game more natural. Sloped urves that ould be limbed by the playerwithout jumping an help remove some of the platform game atmosphere, making the gamefeel more modern and smooth. In the game's urrent state, game play an feel slow due tothe possibly exessive jumping around on retangular boxes.Other features yet to be implemented inlude new lasses for the players to selet. Thisfeature is quite easily implemented, seeing as graphis and numerial data (suh as walkingspeed or jump height) an easily be hanged, adding only the omplexity of sending thesoldier type information aross the network as well. Implementation of di�erent kinds ofbullets and gun types would be similarly quite easy.Last, allowing any number of lients to onnet at the same time would require someexpansion of the networking lasses, but it is a reasonably simple task. Note that we preferat this stage, not to allow this beause it ompliates play testing.

24

Chapter 5ConlusionIn this hapter we will write about the �nal program, our expetations, further plans forPySoldier and our projet development.The �nal state of the projet is in our minds both laking and satisfying. The game as�rst seen in our minds has been realized but still not to its full potential. The game playwas intended from the beginning to be fast paed and dynamial, and this has ertainlybeen ahieved satisfatorily. We are somewhat disappointed that we ould not �nd timeto implement non-retangular terrain objets, but these di�ulties arise from limitations inhoop. This feature along with a deeper physial implementation to allow soldiers to moveup and down hills was the next item on the todo-list. Adding di�erent types of soldiers andweaponry, along with enabling a free-for-all mode for more players would be most desirable.Unfortunately muh of our time has been spent on studying hoop and twisted librariesto support the urrent state of the game. The third-party libraries aid the developmentspeed but also somewhat restrits your freedom, at least in the ase of the hoop physialsimulation.In these last stages of the development the use of python has been somewhat morelearsighted. Produing games using pygame and other libraries makes development fasteras our experiene and understanding of python has inreased. The one thing whih westill �nd laking in python is the amount of available doumentation. This was partiularlyproblemati for PyUI and ertain parts of twisted. Overall we an onlude that the �nalprodut is satisfying for a �rst time experiene in python and given more dediation andtime it would beome a great game. Already at this stage it an be ful�lling enough to jumparound shooting.

25

Referenes[1℄ Game programming with Python (Game Development Series), Sean Riley, CHARLESRIVER MEDIA, INC. 2004. ISBN 1-58450-258-4

26

