
Introduction Getting started with Python Getting started with ASE

Introduction to Python and ASE

Ask Hjorth Larsen
asklarsen@gmail.com

Nano-bio Spectroscopy Group
and ETSF Scienti�c Development Centre
Universidad del País Vasco UPV/EHU

May 29, 2017

Introduction Getting started with Python Getting started with ASE

This minicourse

Python

I Learn basic scripting

I Intro to scienti�c libraries: NumPy, SciPy, Matplotlib, ...

ASE � the Atomic Simulation Environment

I Fully scriptable tools and work�ows for atomistic simulations

I Written in Python

GPAW

I DFT code written in Python and C using ASE

I Calculations are Python scripts; no �input �les�

Introduction Getting started with Python Getting started with ASE

Python

�The only way to learn a new programming language is by writing
programs in it. The �rst program to write is the same for all
languages� � Kernighan & Ritchie, �Programming in C�

Write your �rst Python program

I Open a �le, say, hello.py, in your favourite editor

I Type: print('hello, world!')

I Save the �le.

I Run: python3 hello.py

(In Python2: print 'hello, world!',
but as of Python3, print is a function!)

Introduction Getting started with Python Getting started with ASE

The interactive interpreter

askhl@jormungandr:~$ python

Python 2.7.9 (default, Jun 29 2016, 13:08:31)

[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print('hello, world!')

hello, world!

>>> 2 + 2

4

>>> [x**2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>>

I Use the interactive interpreter to play around and try stu�.

I Interactive interpreter is the best �pocket calculator�.

Introduction Getting started with Python Getting started with ASE

Basics of Python

Language features

I General-purpose language suitable for scripting and rapid
application development

I No type declarations � dynamic typing

I Memory management, bounds checks, ...

�Boundary conditions�

I Standard implementation of Python is CPython, written in C

I Python programs are run by the Python interpreter

I Other Pythons: Jython, IronPython, PyPy

I First version from 1991. Ongoing transition from Python2 to
Python3

Introduction Getting started with Python Getting started with ASE

Python basics

>>> a = 3

>>> a * 7

21

>>> x = [1, 2, a, 'hello']

>>> x.append (7)

>>> x

[1, 2, 3, 'hello', 7]

>>> x[2] # Access an element

3

>>> x[1] = 17 # Set an element

>>> x

[1, 17, 3, 'hello', 7]

>>> x[-1] # Negative indices count from the end

7

Introduction Getting started with Python Getting started with ASE

Common built-in types

I Numeric types: 5, 5.0, 1j, True, False

I str: 'hello, world!'

I list: [x, y, z]

I tuple: (x, y, z) (like list, but cannot be modi�ed)

I dict: maps objects to objects;
{'banana': 'yellow', 'apple': 'red', 7: [17, 42]}

I None � value which represents lack of a value

Introduction Getting started with Python Getting started with ASE

Control structures

Implementation of Danish drinking game

for i in range(1, 101):

txt = str(i)

if i == 5 + 7:

print('fum bum sum')

elif i % (5 * 7) == 0:

print('fum bum multiplum ')

elif '5' in txt and '7' in txt:

print('fum bum')

elif '5' in txt:

print('fum')

elif '7' in txt:

print('bum')

else:

print(txt)

Indentation controls scope! Indent using four spaces.

Output:

1

2

3

4

fum

6

bum

8

9

10

11

fum bum sum

13

14

fum

Introduction Getting started with Python Getting started with ASE

�Pythonic� or not
symbols = ['H', 'He', 'Li' , 'Be', 'B', 'C']

names = ['hydrogen ', 'helium ', 'lithium ',

'beryllium ', 'boron', 'carbon ']

for i in range(len(symbols)): # C/Fortran -style

print(symbols[i])

for sym in symbols: # Python -style

print(sym)

for i, sym in enumerate(symbols):

print('Element {} is {}'.format(i + 1, sym))

for sym , name in zip(symbols , names):

print('{} is {}'.format(sym , name))

I C: Loop over a number and use the number to index the list.
I Python: Loop over the list.

Introduction Getting started with Python Getting started with ASE

File I/O

Print to a file:

fd = open('goethe.txt', 'w')

fd.write('Wer reitet so spät\n'

' durch Nacht und Wind?\n')

fd.write('Es ist der Vater\n'

' mit seinem Kind.\n')

Read lines from a file:

fd = open('goethe.txt')

for line in fd:

print(line , end='')

Or read everything at once:

text = open('goethe.txt').read()

Introduction Getting started with Python Getting started with ASE

�Batteries included�

The Python standard library

I math mathematical functions, math.sin(2.0 * math.pi)

I os, sys interact with OS or system; os.system('ls -l')

I subprocess run and talk to subprocesses

I shutil work with �les (copy, etc.)

I pickle serialization � read and write arbitrary objects

I re regular expressions

I glob, fnmatch expand �lenames; glob('data/*.txt')

I argparse parse command-line arguments

I urllib open web pages

and much more.

Introduction Getting started with Python Getting started with ASE

import math

def gauss(a, x):

return math.exp(-0.5 * (x / a)**2)

class Gaussian:

def __init__(self , a):

self.a = a

def calculate(self , x):

return math.exp(-0.5 * (x / self.a)**2)

def main ():

print(gauss (5.0, 0.3))

g = Gaussian (5.0)

print(g.calculate (0.3))

calc = g.calculate

print(calc (0.3))

main()

Introduction Getting started with Python Getting started with ASE

ASE

I Started as an object-oriented Python interface to the old
ultrasoft pseudopotential planewave code Dacapo

I S.R. Bahn, K.W. Jacobsen, �An object-oriented scripting
interface to a legacy electronic structure code�. Computing in
Science & Engineering, 4(3):56�66, 2002.

I BDFL: Jens Jørgen Mortensen, DTU Physics

I Very large number of contributors

I Now has interfaces to many codes, and many tools.

I New reference paper: A.H. Larsen, J.J. Mortensen et al., �The
Atomic Simulation Environment � A Python library for working
with atoms�: J. Phys. Cond. Matt. (Available as Psi-k
Highlight of the Month, January 2017)

Introduction Getting started with Python Getting started with ASE

Build and view structures

from ase import Atoms

from ase.visualize import view

a = 2.04

gold = Atoms('Au', pbc=True ,

cell =[[0, a, a],

[a, 0, a],

[a, a, 0]])

print(gold)

view(gold.repeat ((2, 2, 2)))

from ase.build import molecule

view(molecule('C6H6'))

Introduction Getting started with Python Getting started with ASE

Example: Bulk rutile

from ase.lattice.spacegroup import crystal

a = 4.6

c = 2.95

rutile = crystal (['Ti', 'O'],

basis =[(0, 0, 0),

(0.3, 0.3, 0.0)],

spacegroup =136,

cellpar =[a, a, c, 90, 90, 90])

Introduction Getting started with Python Getting started with ASE

Try the ASE GUI

I Run ase gui

(previously: ase-gui)

I Build nanoparticle or
something else

I Select, move atoms
(Ctrl+M)

I Save to your favourite
format

Introduction Getting started with Python Getting started with ASE

Main features

I The Atoms object

I Set up molecules, crystals, surfaces and more using provided
modules augmented by scripting

I Use GUI to visualize structures

I Read and write many �le formats (xyz, cube, xsf, cif, pdb, ...)

I Call external codes from Python using the ASE Calculator
interface

Calculator

I A calculator can take Atoms as input and produce energies and
forces as output

I Most calculators call an external DFT code

I Some calculators: EMT, GPAW, NWChem, Abinit, VASP

I There are 30+ calculators.

Introduction Getting started with Python Getting started with ASE

Structure optimization

from ase import Atoms

from ase.optimize import BFGS

from gpaw import GPAW

system = Atoms('H2O', positions =[[-1, 0, 0],

[1, 0, 0],

[0, 0, 1]])

system.center(vacuum =3.0)

system.calc = GPAW(mode='lcao', basis='dzp')

opt = BFGS(system ,

trajectory='opt.traj',

logfile='opt.log')

opt.run(fmax =0.05)

Introduction Getting started with Python Getting started with ASE

Atoms

Calculator

External code

generate

input

script

retrieve and

convert data

"get

potential

energy"

solve Schrödinger

equation

return the

potential

energy

Interface through �le I/O

I ASE creates input�le, runs
programme (see �gure)

Calculator daemon

I Calculator runs in background

I Read/write using sockets

Direct linking

I Everything within one process
→ e�cient and nice

I Also rather complicated

Introduction Getting started with Python Getting started with ASE

Calculators

Basic properties

I atoms.get_potential_energy()

I atoms.get_forces()

I atoms.get_stress()

I atoms.get_dipole_moment()

Electronic structure calculators

I calc.get_eigenvalues()

I calc.get_occupations()

I calc.get_pseudo_density()

I calc.get_ibz_k_points()

Introduction Getting started with Python Getting started with ASE

Some algorithms using energies and forces

I Gradient-based structure optimizations with constraints

I Global optimizations: minima/basin hopping, genetic algorithm

I Molecular dynamics with di�erent controls

I Saddle-point searches (for transition states)

I Vibrational modes (molecules and phonons)

Introduction Getting started with Python Getting started with ASE

Atoms

Calculator

Dynamics

Optimizer

GPAW DacapoAbinit ...

Interface

Implementations

Vibrations

BFGS MDMin

MolecularDynamics

Langevin Verlet

NEB

Constraints

Introduction Getting started with Python Getting started with ASE

Set up structures

I ase.build.molecule G2 molecule test set

I ase.build.bulk

I ase.spacegroup.crystal From spacegroup

I ase.lattice.cubic, tetragonal, ...

I ase.build.surface

Skim features on web page!

Introduction Getting started with Python Getting started with ASE

Tutorials

I https://www.python.org/

I https://docs.python.org/3/tutorial/

I https://wiki.fysik.dtu.dk/ase/

I https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html

https://www.python.org/
https://docs.python.org/3/tutorial/
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html

	Introduction
	Getting started with Python
	Getting started with ASE

