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This minicourse

Python

I Learn basic scripting

I Intro to scienti�c libraries: NumPy, SciPy, Matplotlib, ...

ASE � the Atomic Simulation Environment

I Fully scriptable tools and work�ows for atomistic simulations

I Written in Python

GPAW

I DFT code written in Python and C using ASE

I Calculations are Python scripts; no �input �les�
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Python

�The only way to learn a new programming language is by writing
programs in it. The �rst program to write is the same for all
languages� � Kernighan & Ritchie, �Programming in C�

Write your �rst Python program

I Open a �le, say, hello.py, in your favourite editor

I Type: print('hello, world!')

I Save the �le.

I Run: python3 hello.py

(In Python2: print 'hello, world!',
but as of Python3, print is a function!)
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The interactive interpreter

askhl@jormungandr:~$ python

Python 2.7.9 (default, Jun 29 2016, 13:08:31)

[GCC 4.9.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print('hello, world!')

hello, world!

>>> 2 + 2

4

>>> [x**2 for x in range(10)]

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>>

I Use the interactive interpreter to play around and try stu�.

I Interactive interpreter is the best �pocket calculator�.
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Basics of Python

Language features

I General-purpose language suitable for scripting and rapid
application development

I No type declarations � dynamic typing

I Memory management, bounds checks, ...

�Boundary conditions�

I Standard implementation of Python is CPython, written in C

I Python programs are run by the Python interpreter

I Other Pythons: Jython, IronPython, PyPy

I First version from 1991. Ongoing transition from Python2 to
Python3
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Python basics

>>> a = 3

>>> a * 7

21

>>> x = [1, 2, a, 'hello']

>>> x.append (7)

>>> x

[1, 2, 3, 'hello', 7]

>>> x[2] # Access an element

3

>>> x[1] = 17 # Set an element

>>> x

[1, 17, 3, 'hello', 7]

>>> x[-1] # Negative indices count from the end

7
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Common built-in types

I Numeric types: 5, 5.0, 1j, True, False

I str: 'hello, world!'

I list: [x, y, z]

I tuple: (x, y, z) (like list, but cannot be modi�ed)

I dict: maps objects to objects;
{'banana': 'yellow', 'apple': 'red', 7: [17, 42]}

I None � value which represents lack of a value
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Control structures

# Implementation of Danish drinking game

for i in range(1, 101):

txt = str(i)

if i == 5 + 7:

print('fum bum sum')

elif i % (5 * 7) == 0:

print('fum bum multiplum ')

elif '5' in txt and '7' in txt:

print('fum bum')

elif '5' in txt:

print('fum')

elif '7' in txt:

print('bum')

else:

print(txt)

Indentation controls scope! Indent using four spaces.

Output:

1

2

3

4

fum

6

bum

8

9

10

11

fum bum sum

13

14

fum
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�Pythonic� or not
symbols = ['H', 'He', 'Li' , 'Be', 'B', 'C']

names = ['hydrogen ', 'helium ', 'lithium ',

'beryllium ', 'boron', 'carbon ']

for i in range(len(symbols )): # C/Fortran -style

print(symbols[i])

for sym in symbols: # Python -style

print(sym)

for i, sym in enumerate(symbols ):

print('Element {} is {}'.format(i + 1, sym))

for sym , name in zip(symbols , names):

print('{} is {}'.format(sym , name))

I C: Loop over a number and use the number to index the list.
I Python: Loop over the list.
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File I/O

# Print to a file:

fd = open('goethe.txt', 'w')

fd.write('Wer reitet so spät\n'

' durch Nacht und Wind?\n')

fd.write('Es ist der Vater\n'

' mit seinem Kind.\n')

# Read lines from a file:

fd = open('goethe.txt')

for line in fd:

print(line , end='')

# Or read everything at once:

text = open('goethe.txt').read()
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�Batteries included�

The Python standard library

I math mathematical functions, math.sin(2.0 * math.pi)

I os, sys interact with OS or system; os.system('ls -l')

I subprocess run and talk to subprocesses

I shutil work with �les (copy, etc.)

I pickle serialization � read and write arbitrary objects

I re regular expressions

I glob, fnmatch expand �lenames; glob('data/*.txt')

I argparse parse command-line arguments

I urllib open web pages

and much more.
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import math

def gauss(a, x):

return math.exp(-0.5 * (x / a)**2)

class Gaussian:

def __init__(self , a):

self.a = a

def calculate(self , x):

return math.exp(-0.5 * (x / self.a)**2)

def main ():

print(gauss (5.0, 0.3))

g = Gaussian (5.0)

print(g.calculate (0.3))

calc = g.calculate

print(calc (0.3))

main()
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ASE

I Started as an object-oriented Python interface to the old
ultrasoft pseudopotential planewave code Dacapo

I S.R. Bahn, K.W. Jacobsen, �An object-oriented scripting
interface to a legacy electronic structure code�. Computing in
Science & Engineering, 4(3):56�66, 2002.

I BDFL: Jens Jørgen Mortensen, DTU Physics

I Very large number of contributors

I Now has interfaces to many codes, and many tools.

I New reference paper: A.H. Larsen, J.J. Mortensen et al., �The
Atomic Simulation Environment � A Python library for working
with atoms�: J. Phys. Cond. Matt. (Available as Psi-k
Highlight of the Month, January 2017)
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Build and view structures

from ase import Atoms

from ase.visualize import view

a = 2.04

gold = Atoms('Au', pbc=True ,

cell =[[0, a, a],

[a, 0, a],

[a, a, 0]])

print(gold)

view(gold.repeat ((2, 2, 2)))

from ase.build import molecule

view(molecule('C6H6'))
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Example: Bulk rutile

from ase.lattice.spacegroup import crystal

a = 4.6

c = 2.95

rutile = crystal (['Ti', 'O'],

basis =[(0, 0, 0),

(0.3, 0.3, 0.0)],

spacegroup =136,

cellpar =[a, a, c, 90, 90, 90])
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Try the ASE GUI

I Run ase gui

(previously: ase-gui)

I Build nanoparticle or
something else

I Select, move atoms
(Ctrl+M)

I Save to your favourite
format
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Main features

I The Atoms object

I Set up molecules, crystals, surfaces and more using provided
modules augmented by scripting

I Use GUI to visualize structures

I Read and write many �le formats (xyz, cube, xsf, cif, pdb, ...)

I Call external codes from Python using the ASE Calculator
interface

Calculator

I A calculator can take Atoms as input and produce energies and
forces as output

I Most calculators call an external DFT code

I Some calculators: EMT, GPAW, NWChem, Abinit, VASP

I There are 30+ calculators.
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Structure optimization

from ase import Atoms

from ase.optimize import BFGS

from gpaw import GPAW

system = Atoms('H2O', positions =[[-1, 0, 0],

[1, 0, 0],

[0, 0, 1]])

system.center(vacuum =3.0)

system.calc = GPAW(mode='lcao', basis='dzp')

opt = BFGS(system ,

trajectory='opt.traj',

logfile='opt.log')

opt.run(fmax =0.05)
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Atoms

Calculator

External code

generate

input

script

retrieve and

convert data

"get

potential

energy"

solve Schrödinger

equation

return the

potential

energy

Interface through �le I/O

I ASE creates input�le, runs
programme (see �gure)

Calculator daemon

I Calculator runs in background

I Read/write using sockets

Direct linking

I Everything within one process
→ e�cient and nice

I Also rather complicated
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Calculators

Basic properties

I atoms.get_potential_energy()

I atoms.get_forces()

I atoms.get_stress()

I atoms.get_dipole_moment()

Electronic structure calculators

I calc.get_eigenvalues()

I calc.get_occupations()

I calc.get_pseudo_density()

I calc.get_ibz_k_points()
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Some algorithms using energies and forces

I Gradient-based structure optimizations with constraints

I Global optimizations: minima/basin hopping, genetic algorithm

I Molecular dynamics with di�erent controls

I Saddle-point searches (for transition states)

I Vibrational modes (molecules and phonons)
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Atoms

Calculator

Dynamics

Optimizer

GPAW DacapoAbinit ...

Interface

Implementations

Vibrations

BFGS MDMin

MolecularDynamics

Langevin Verlet

NEB

Constraints
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Set up structures

I ase.build.molecule G2 molecule test set

I ase.build.bulk

I ase.spacegroup.crystal From spacegroup

I ase.lattice.cubic, tetragonal, ...

I ase.build.surface

Skim features on web page!
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Tutorials

I https://www.python.org/

I https://docs.python.org/3/tutorial/

I https://wiki.fysik.dtu.dk/ase/

I https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html

https://www.python.org/
https://docs.python.org/3/tutorial/
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/tutorials/tutorials.html
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