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1 Introduction
Classical computing is evolving ever closer to a number of fundamental limits that will
eventually halt further progress. These limits, generally of thermodynamic and quantum
mechanical nature[2]: as components grow smaller, the inevitable heat generation will
become more significant, and quantum mechanical effects will become observable, intro-
ducing random effects in the calculations. Quantum computers, while presently still in
their infancy, may offer the solution to several of these problems.

This report will provide an overview of the basic concepts of quantum computing,
specifically the concepts of qubits, gates and entanglement. Further we will discuss some
advantages and challenges in the field, notably algorithms which are particularly well-
suited for quantum computers, including a description of a physical implementation that
performs Shor’s prime factorization algorithm.

2 Fundamentals of quantum computing
The bit, holding a value of either 0 or 1, is the basic unit of information in classical
computing. While it is not difficult to envision a similar scheme in the context of quantum
mechanics, there are notable properties of quantum mechanical systems that vastly change
the behaviour compared to classical computing.

2.1 The qubit
Consider a quantum mechanical system having two eigenstates which we shall label |0〉
and |1〉. It is a basic property of quantum mechanics that such a system can be in any of
the following states

|ψ〉 = α |0〉+ β |1〉 , α2 + β2 = 1 (2.1)

where α and β are complex numbers. Thus there are not only two distinct states, but
infinitely many, occupying a two-dimensional Hilbert space. We shall refer to such a
system as a qubit, and Section 5.1 will discuss ways to realize such systems physically.
The constants α and β can serve as coefficients in a matrix representation of the qubit

ψ =

[
α
β

]
. (2.2)

Let us expand this system to include two qubits. Classically this would yield four possible
states, namely 00, 01, 10 and 11. Quantum mechanically we can obtain the eigenstates of
the composite system by evaluating the Kronecker products of the matrices representing
each of the single-qubit systems’ eigenvectors, for example

[
1
0

]
⊗
[

1
0

]
=




1
0
0
0


 . (2.3)

This system, where each single qubit is in the state |0〉, shall be denoted |00〉. Evaluating
the remaining combinations and applying analogous notation we see that this system is
described by the four eigenstates |00〉, |01〉, |10〉 and |11〉, defined compactly as

|q1q2〉 = |q1〉 ⊗ |q2〉 , where {q1, q2} ∈ {0, 1} × {0, 1}. (2.4)

1



Thus, the eigenstates of a two-qubit system span a four-dimensional Hilbert space. Indeed
for n qubits q1 . . . qn we have a Hilbert space of dimension 2n, the basis of which consists
of all vectors of the form

|q1q2 . . . qn〉 = |q1〉 ⊗ |q2〉 ⊗ . . .⊗ |qn〉 , where {qi}ni=1 ∈ {0, 1}n. (2.5)

This finally allows any state of the system to be expressed as a linear combination

|ψ〉 = α1 |00 . . .0〉+ α2 |0 . . . 01〉+ . . .+ α2n |11 . . .1〉 , (2.6)

where the absolute value of the sum of the squares of the coefficients must be unity. As
in the former cases, the constants αi serve as the coefficients in the matrix representation

ψ = [α1, . . . , α2n ]
T (2.7)

which will be used throughout the following sections. The property that the dimension
increases exponentially with n is quite important: it means that the state of an n-qubit
register actually encompasses 2n complex numbers, which means that quantum registers
can potentially hold extremely large amounts of classical data, supposing that a method
exists whereby this data can be reliably extracted.

2.2 Quantum mechanical entanglement
A state is said to be entangled if it cannot be expressed as a Kronecker product of single-
qubit states. Entanglement thus has no meaning for single qubits, but pertains only to
collections of qubits.

Consider therefore a system of two qubits a and b. As noted above, the state of this
system can be any superposition of the four eigenstates |00〉, |01〉, |10〉 and |11〉. The basis
vectors themselves do not – by their very definition as Kronecker products – represent
entangled states. Note that the concept of entanglement has no equivalent in classical
physics.

There are four particularly simple entangled states of two-qubit systems that are called
the Bell states:

∣∣Φ±
〉

=
1√
2

(|00〉 ± |11〉) , (2.8)

∣∣Ψ±
〉

=
1√
2

(|01〉 ± |10〉) . (2.9)

The significance of entanglement is easily illustrated: suppose a measurement is performed
on |Ψ+〉. Since the system is either found in state |01〉 or |10〉, qubits a and b cannot have
the same value. The result of a measurement of a alone will therefore immediately force
qubit b into the opposite state, even if the physical systems comprising a and b are
separated by a large distance!

Quantum entanglement is for this reason said to be a non-local property, and has thus
been a subject of immense controversy although the phenomenon has later been observed
experimentally.[3]

3 Quantum mechanical gates
Classical computers represent data by means of bits and manipulate data by means of
logical gates. The last sections have dealt with the properties of the qubit; now it is
therefore time to treat the concept of quantum mechanical gates.
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A logical gate is generally a device which implements some logical operation on some
number of bits. For example an AND gate takes two bits as input and produces an
single bit of output, namely 1 if both inputs are 1, and otherwise 0. Quantum mechanical
gates, corresponding simply to unitary operators, similarly perform operations on qubits.
Because the operators are unitary, the number of output qubits must equal the number
of input qubits. Indeed, the output system is actually a modification of the input system
(and therefore belongs to the same space), unlike in classical computing where the output
is actually a separate copy of the input system.

The simplest operators are the unary ones which operate on a single input. Since a
single qubit belongs to a two-dimensional space, a unary operator must evidently have a
representation in the form of a 2× 2 matrix of complex numbers. All unary operators are
therefore of the form

U =

[
a c
b d

]
∈ C2×2, (3.1)

and in matrix notation the output state |Φ〉 = Φ corresponding to a given input state
|Ψ〉 = Ψ is calculated by simple matrix multiplication. In the general case of n qubits we
have

Φ = UΨ, where Ψ,Φ ∈ C2n , U ∈ C2n×2n . (3.2)

We shall now turn our attention to two-qubit systems, which are described by four-
dimensional spaces. We shall use the usual basis

{|00〉 , |01〉 , |10〉 , |11〉} (3.3)

which will prove convenient since the lack of explicit superpositions ensures that these
basis vectors have direct analogues in classical computing.

3.1 The XOR gate
As an example let us propose a quantum mechanical XOR gate. While XOR ordinarily has
only one output (and thus cannot be described by a unitary operator), we can simply let
one of the input qubits stay unmodified and put the “return value” into the other.

It follows from basic linear algebra that any operation (such as the XOR gate) can be
uniquely defined by specifying its action on each of the basis vectors (this means that
specifying its actions on classical bits is sufficient). Let therefore each input qubit be
either |0〉 or |1〉. If the first qubit is |0〉 then both qubits are unmodified. If the first qubit
is |1〉 the second qubit is negated.

The XOR operation is also known as the controlled-NOT, or CNOT, since the action on
the second qubit is either nothing or NOT, depending on the value of the first qubit.

The resulting matrix representation is, as can easily be derived by applying the above
mentioned rules on each basis vector,

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (3.4)

Surprisingly no such thing as a quantum mechanical AND gate can exist. From the result
of an AND operation it is not always possible to replicate the input, since the output 0 is
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yielded by several different inputs. The requirement of unitarity (specifically reversability)
thus prevents the strict implementation of the AND and OR operations. However, by acting
on one qubit it is possible to obtain an operation on the other qubit which is consistent
with either AND or OR.

A particularly useful property of the XOR gate is that it can be applied to entangle
qubits. Take for example the unentangled state

|ψ〉 =
1√
2

(|00〉+ |10〉) =
1√
2

(|0〉+ |1〉)⊗ |0〉 . (3.5)

Applying the CNOT operation yields

CNOT |ψ〉 =
1√
2




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0







1
0
1
0


 =

1√
2




1
0
0
1




=
1√
2

(|00〉+ |11〉) =
∣∣Φ+

〉
, (3.6)

which is one of the Bell states.

3.2 The no-cloning theorem
In the article by [1] it is mentioned that the XOR operation cannot be used for copying
a given state of a qubit in general. This is a result of what is known as the no-cloning
theorem, which states that it is not possible to create identical copies of an arbitrary
unknown quantum state. A short proof [4, p. 531] of the no-cloning theorem using a XOR
operation can be given, assuming we have two pure quantum states |ψ〉 and |s〉, and want
to copy |ψ〉 into |s〉. The initial state, |C〉1, in the copying process is

|C〉1 = |ψ〉 ⊗ |s〉 . (3.7)

If a unitary evolution U now acts on the copying, e.g. a XOR operation, we get

|C〉2 = |ψ〉 ⊗ |s〉 → U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 . (3.8)

Assuming this copying procedure works for two different pure states, |ψ〉 and |φ〉, we have

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉 (3.9)
U(|φ〉 ⊗ |s〉) = |φ〉 ⊗ |φ〉 . (3.10)

The inner product of these two equations yields

〈ψ|φ〉 = (〈ψ|φ〉)2 (3.11)

Since the equation x = x2 only has two solutions, x = 0 and x = 1, either |ψ〉 = |φ〉 or |ψ〉
and |φ〉 are orthogonal. This is of course not the case in general, hence is general cloning
of pure states using unitary evolution not possible. In the above, two assumptions were
made: The state to be copied is a pure state and the operator is unitary. Fortunately these
two assumptions cause no loss of generality, since the state can be purified if it is initially
a mixed state, and an arbitrary quantum operation can be implemented if we introduce
an ancilla and perform a suitable unitary evolution.
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4 Potential quantum computer superiority
There are several computational tasks where a quantum computer would outrun todays
classical computers. In this section an overview of these will be presented.

4.1 Prime factorization
One of the potentially most important applications for the quantum computer is its ability
to factor large number much faster than classical computers. When a classical computer
factorizes numbers it basically tries the numbers from end to end. If a computer thus were
able to test 1010 different numbers per second, which is actually more than any computer
built today can handle, the average time to find the factors of a 60-digit long number
would exceed the age of the universe with billions of years.

Using quantum computers, on the other hand, factorization problems might be solved
much faster than with classical computers. The quantum computer’s ability to factor large
numbers quickly derives from the quantum computer’s ability to vastly parallelize the
performance of a fast Fourier transform, using destructive interference among a number
of parallel computation paths, that increases exponentially with the number of physical
qubits involved in the computation [1].

One algorithm which can be used for factorization of large numbers using quantum
computers is the so-called Shor’s algorithm. Like many quantum computer algorithms,
Shor’s algorithm is probabilistic, meaning that it gives the correct answer with a high prob-
ability, and that the probability of failure can be decreased by repeating the algorithm.
The fastest algorithm used for factorizing of a large number, n, whose representation has
log2(n) bits, on a classical computer runs in exponential time as

exp
(
c(logn)

1
3 · log logn

)2/3

, (4.1)

where c is a constant. In contrast, Shor’s algorithm running on a quantum computer with
2n qubits would be able to do the same computation in a time that is polynomial in the
logarithm

(log n)2 · log logn. (4.2)

Apart from factorization of large numbers the quantum computer is also capable of solving
a related problem called the discrete logarithm problem. These abilities would enable the
quantum computer to break many of the cryptographic systems in use today. The creation
of a quantum computer could there have significant ramifications for electronic privacy
and security.[1][9][8]

4.2 Quantum data-base search
Another area where quantum computers may be more effective than conventional com-
puters is database search. A quantum computer using the so-called Grover’s algorithm for
a database search may be much faster than a classical computer using todays conventional
search algorithms. When searching a database you need the search criterion, p(x), that
can be evaluated on any record x of the database. A search algorithm then searches for
an x where p(x) = 1. In this context x can be adressed by a k -bit string, and the database
can contain up to N = 2k records. A classical algorithm evaluates p(x) one input at a
time. In the quantum domain, however, the query p can be evaluated on records x or y
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or a superposition of the two (x+ y)/
√

2, with the result [p(x) + p(y)]/
√

2. This quantum
mechanical property enables search with only

√
N queries. In the classical case of serial

computation, many more queries are required because an unsuccesful evaluation of p(x)
does not yield any new information about records other than x. Therefore anywhere from
1 to N or an average of N/2 queries are needed.[5]

4.3 Other applications

In 1982 Richard Feynman proposed that it would be possible to do simulations of quantum
mechanical problems on quantum computers instead of classical computers. The speedup
achieved by the quantum computer could be as great as for prime factorization. This
could have great significance for medicine, biology and nanotechnology, because todays
conventional computers take a very long time solving the computationally heavy quantum
mechanical calculations.

5 Difficulties in quantum computation

A search on google scholar of the keywords “quantum computation” results in 324,000
hits. The amount of research being done in the field is staggering, yet an operational
quantum computer comparable with todays computers is still many years into to the
future. Although several advances has been made in the field, there are still a number of
problems that need to be overcome in order to make an efficient quantum computer.

The system should be scalable so as to hold a large number of qubits. To create
a quantum computer a large number of qubits must be created and controlled. One of
the best quantum computers today has only 7 qubits - enough to factor the number 151,
see Section 6. If an n-bit number is to be factorized, a 2n-qubit quantum computer is
needed. The problem is that the increase in difficulty of implementation rises greatly with
the number of qubits.

Qubits can be initialized to arbitrary values. This problem is harder than it sounds.
If a quantum computer should work, it must be able to place the qubits in arbitrary values.
This could e.g. be a particular spin or polarization of a particle.

The decoherence time of the qubit should be long enough to make operations
on them. The spontaneous collapse of the particle wavefunctions into a mixture of states
(possibly entangled with the environment), called decoherence, is a very important factor
when designing a quantum computer. If the decoherence time of the qubit particles is
shorter than the gate operation time, the computer will not be able to do computations.
This is because measurements of the states of the particles will be corrupted when they
become entangled with the environment. This interaction is generally irreversible. It is
therefore not all particles that can be used in a quantum computer, which could pose a
problem when designing the computer. Furthermore qubits have a tendency to decohere
when a measurement is performed on them. This is not very appropriate since it causes
the invertibility of the quantum computational steps to be broken.

The gate set of a quantum computers must be Turing-complete. The Turing-
completeness criterion basically means that the computer must be programmable and
must be able to perform a computational task, i.e. emulating a universal Turing machine.

1Only 4 of the qubits are used for factorization
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If a quantum computer does not fulfill the Turing-completeness criterion, it can never be
used as a conventional computer.

It must be possible to perform single quantum sensitivity measurements. If
the quantum computer only uses one copy of a qubit to perform the calculations it must
be possible to do single-particle measurements. Although possible, this can be a problem
since the particles can be electrons or photons, and because the measurements should be
very precise.

Many of these problems have been solved individually, but the real challenge is to realize
all of these criteria simultanously. There are however several groups who have shown
remarkable progress in doing so.[9][1]

5.1 Physical quantum computer implementations
One of the fields where many of the criteria have been realized is the field of ion trap
quantum computing. In the ion trap quantum computer the qubits are represented by
the internal spin of individual ions held in an electromagnetic trap, see Figure 1. The
more atoms in the trap, the more qubits in the system. The qubits can be set in a
zero-state with a technique called laser cooling. Since the coupling to the environment
in the ion trap is very low, the decoherence time of the particles is long enough to use
them for computational operations. A technique called quantum-jump spectroscopy makes
it possible to perform single quantum measurements with almost 100% efficiency. By
coupling the spin of the ions with the quantum state of the vibration of the ions in the
trap, it is furthermore possible to entangle the spin of the ions, thus making it possible to
use all the entanglement-related features of the quantum computer. Unfortunately it has
proved very hard to cool the trap to the ground state of motion using the laser cooling
technique. This has only been done by one group for one or two ions[1]. In the next section
another way of realizing a quantum computer will be discussed.

6 Experimental realization of Shor’s quantum factoring
algorithm using nuclear magnetic resonance

In the article [6] by L. M. K. Vandersypen et. al. an experimental quantum computing
setup for computation of the prime factors of a given number using Shor’s algorithm is
presented. In a classical computer, the number of steps for finding the factors of an l-digit
integer N increases exponentially with l. However, a quantum computer using Shor’s
algorithm, can make the same factorization in polynomial time, thereby decreasing the
computation time from years to minutes. In [6] N = 15, hence the prime factors are 3
and 5. The setup is based on measuring the spin of seven spin-1/2 nuclei in a molecule
using room temperature liquid-state nuclear magnetic resonance (or NMR).

6.1 Shor’s algorithm
The problem of factoring a given integer into primes can be formulated as finding an
integer p that divides N , where 1 < p < N . Shor’s Algorithm consists of two parts.
The first part is to turn the factoring problem into a period finding problem, while the
second part is to find the period r of a function f(x), using an inverse quantum Fourier
transformation (QFT). When the period is found, it is inserted into f and the prime
factors are found immediately.
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Figure 1: The ion trap keeps the ions suspended in an electromagnetic
field.
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We start by considering the function

f(x) = ax mod N, (6.1)

i.e. the remainder of ax divided by N , and then try to find the smallest integer r for which
f(x+ r) = f(x). a is randomly chosen with the restriction that a < N . The problem now
is to find values of r that satisfy Equation 6.1. We start out with n qubits, in the initial
state [8]

1√
n

n−1∑

x=0

|x〉 |0〉 . (6.2)

Here |x〉 and |0〉 denote the states of two different registers called the input and output
registers. Applying the function f(x) on the input register we get, storing the result in
the output register,

1√
n

n−1∑

x=0

|x〉 |f(x)〉 . (6.3)

When using quantum computing, applying f(x) once will apply it to all coefficients of
the state, thus making the process parallel, and hence decreasing the computation time
from exponential to polynomial compared to classical methods. A side effect of applying
f(x) is that x collapses into an equal superposition, x′, of each value of x, between 0 and
n − 1 that satisfy Equation 6.1. If one tried to measure the resulting superposition the
state would collapse and information would be lost. We therefore apply the inverse QTF

UQFT |x′〉 =
1√
n

n−1∑

y=0

exp (−2πixy/n) |y〉 , (6.4)

thereby getting the state

1√
n

n−1∑

x=0

n−1∑

y=0

exp (−2πixy/n) |y〉 |f(x)〉 . (6.5)

If a measurement is made now, so that the input and output registers will hold the
outcome y and f(x), respectively, it can be shown that y will take values that are a
multiple of 2n/r, with a very high probability. If the obtained result, which is only an
informed guess and therefore denoted r′, does not satisfy f(x) = f(x+ r′), the correct r,
is found by trying multiples of r′. Finally the factors of N are found by calculating the
greatest common denominator (gcd) of ar/2 ± 1 and N2.

6.2 Quantum computing molecule
In the setup used in [6], the quantum computations are performed by a molecule consisting
of five 19F and two 13C spin-1/2 nuclei, i.e. 7 qubits, see Figure 2. If the molecule is placed
in a static magnetic field, each spin, i, has only two separate eigenstates, |0〉 or |1〉 (spin
up or spin down). Since N = 15, four of the qubits are to be used for storing f(x), i.e. the
output register3, while the remaining three are used for storing the result of the period

2See [8] for the mathematical proof
3The required number of qubits is found as log2 N , which in this case equals 4.
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Figure 2: The molecule,a perfluorobutadienyl iron complex, used for
quantum computations consists of five 19F and two 13C spin-1/2 nuclei.
The molecule is placed in a static magnetic field, hence the spins has only
two discrete eigenstates.

finding (that is the QFT), which is in the input register. In fact only two qubits are needed
to find the period, but using three gives the possibility of detecting more periods and thus
testing the QTF more thoroughly. The Hamiltonian for the molecule in the magnetic field
is

H0 = −
∑

i

~ωiIzi, (6.6)

where ωi is the angular frequency and Iz is the ẑ component of the angular momentum
of the ith spin. The density matrix for the molecule is initially determined by the thermal
equilibrium, that is

ρth =
exp−H0/kbT

27
. (6.7)

The pairwise interaction of the 7 spins through the chemical bonds, that is the J-coupling,
is given by

HJ = −
∑

i<j

2π~JijIziIzj , (6.8)

Using spin-selective radio frequency pulses separated by time intervals of free evolution
under the hamiltonian, the system can be manipulated into another computational state.
The actual state of the three first qubits is estimated using NMR spectroscopy, using that

ρ ∼
∑

c

wc

∣∣∣∣c
23

r

〉〈
c

23

r

∣∣∣∣ (6.9)

Before starting the Shor algorithm, the system is brought into a 7-spin effective pure
state, using temporal averaging, with a NMR signal equivalent to |ψ〉 = |0000001〉, see a)
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Figure 3: Nuclear magnetic resonance (NMR) measurements of the
first three qubits. a) is when the system is in thermal equilibrium. b) is
when the system has been prepared for Shor’s algorithm using temporal
averaging. c) and d) is the output for a = 11 and a = 7, respectively.
Both c) and d) has three traces where the top ones are the ideally expected
results, the middle traces are the measured data and the bottom traces
are simulated data with the effect of decoherence taken into account
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and b) on Figure 3. The computer is tested for two different choices of a, namely a = 11
and a = 7. The results are shown on Figure 3 c) and d). For a = 11 it is seen that qubit
1 and 2 has two spectral peaks pointing upwards, hence they are in the |0〉 state, while
qubit 3 has a peak up and a peak down, hence it is in an equal mixture of |0〉 and |1〉. The
input register is therefore in a mixture of |000〉 and |100〉 (qubit 3 is the first bit), or |0〉
and |4〉 in decimal notation. r can now be found as r = 2n/4 = 2, and gcd(112/2 ± 1, N)
the yields the two prime factors 5 and 3. Similarly for the a = 7 case, where qubit 1
is in the |0〉 state, and qubit 2 and 3 are both in a mixed state. The input register is
therefore |100〉, |110〉, |010〉 and |000〉 or |6〉, |4〉, |2〉 and |0〉. This gives r = 2n/2 = 4
and the prime factors are again gcd(74/2 ± 1, 15)={3,5}. Comparing the top and bottom
simulated results in c) and d) on Figure 3 it is also seen that decoherence has too be taken
into account when trying to describe the system, although there still are some deviations
from the theoretically expected results. These deviations is partly due approximations in
the model, partly due to imperfections in the experimental setup.

7 Conclusion
We have now completed our treatment of several aspects of quantum computing. First
we have described formally how data can be represented in the form of qubits, their
mathematical properties and significance.

Further we have introduced the notion of gates, along with a mathematical description
of the interaction of qubits through these, the properties of entangled states and the
significance of the no-cloning theorem.

This has allowed us to describe how quantum computers have fundamental advantages
within certain problems such as Shor’s algorithm for prime factorization in polynomial
time, which can revolutionize the field of data encryption, along with Grover’s algorithm
which can provide substantial performance improvements to database searches.

Last we have considered a specific implementation of a quantum computer which has
been used to actually perform prime factorization, albeit only of the number 15. Still
the successful implementation even on such a small scale suggests that the ideas behind
quantum computers are indeed feasible and may become efficient tools some time in the
future.
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