JWars - A Generic Strategy
Game 1n Java

Midterm Project at IMM

Michael Francker Christensen s031756
Ask Hjorth Larsen s021864

Supervisor: Paul Fischer
DTU - Technical University of Denmark

June 8, 2006

This space intentionally left blank

Abstract

Contents

Abstract
1 Introduction
1.1 Acknowledgement oo
1.2 The realtime strategy genre
1.3 Why JWars?
2 Features of JWars
2.1 Gamedynamics
2.2 Technical features
3 Overview
3.1 Development plan oL
3.2 Modular overviewl
4 Networking
4.1 Choosing a network model
4.2 Synchronization Lo
4.3 The networking APT
5 Event handling

‘World of JWars

Collision detection

7.1 Introduction to collision detection
7.2 Design of collision detector
7.3 Terrain. L e e e e e
7.4 Pathfindingo oL
7.5 Vision e e e e
7.6 Data management

Unit organization

ii

9 Unit AI

9.1 Hierarchical structure
9.2 Design considerations00
9.3 Overview of Al structure.

10 Combat

10.1 Analysis of combat dynamics,
10.2 Weapons, armour and damage
10.3 Spotting and targetting Lo

11 Control

12 Graphics

13 Conclusion

References

iii

14
14
15
16

17
17
17
17

18

19

20

iv

Chapter 1

Introduction

1.1 Acknowledgement
1.2 The realtime strategy genre
1.3 Why JWars?

Chapter 2

Features of JWars

2.1

Game dynamics

game design regarding hierarchy

2.2

Technical features

This section lists briefly the

World representation. JWars uses a number of abstract 2D coordinate
spaces and provides utilities for conversions between these. Specifically
many tile-based maps are required by the different components of JWars.

Collision detection. An efficient tile-based collision detector is capable of
detecting collisions between circular objects of arbitrary size.

Pathfinding. The pathfinder implements an A* algorithm which dynam-
ically expands the search area according to requirements. This approach
accomodates obstacles of arbitrary size and placement.

Spotting system. The spotting system uses a tile-based approach which is
particularly efficient if the map is large compared to the visibility radius.

Artificial intelligence. A simple but highly extensible

Event handling model. A queueing system provides efficient management
of timed execution of game events avoiding unnecessary countdown timers.

Data management. Script-like files can be used to store game data such
as unit and weapon statistics. These are loaded into categories which
represent the abstract concepts of those units or weapons. Finally entities
can - in turn - be instantiated from categories.

e Server-client based networking model. The TCP/IP based networking
model supports a customizable set of instructions and provides base server
and client classes for managing player connections. This model has very
low bandwidth requirements, but requires perfect synchronization of the
game states across the network.

e Multiplayer synchronization utilities. Synchronization on multiple clients
is done by means of a timer which assures that clients follow the server
temporally closely.

Chapter 3

Overview

For reasons of extensibility, JWars consists of several modules which can be used
separately or with a minimum of cross-package dependencies.

3.1 Development plan

3.2 Modular overview

Describe basic concepts such as units

Chapter 4

Networking

4.1 Choosing a network model
4.2 Synchronization

4.3 The networking API

Chapter 5

Event handling

Chapter 6

World of JWars

Chapter 7

Collision detection

This chapter will after an introduction to collision detection describe the design
and capabilities of the JWars collision detector.

7.1 Introduction to collision detection

The most important objective of this section is to decide on an overall approach
to an efficient and reasonably simple collision detector bearing in mind the re-
quirents of real-time strategy games. There is by no means an optimal such
collision detector since requirements invariably will differ greatly with applica-
tions. Further shall restrict the discussion to two-dimensional collision detection
seeing as JWars does not need three dimensions.

In a real-time strategy game there is generally a large amount of units,
possible more than a thousand. It is therefore of the utmost importance that
the collision detector scales well with the number of units in the game.

Let n be the number of units present in some environment. In order to check
whether some of these overlap it is possible to check for each unit whether this
unit overlaps any of the other units, and we will assume the existence of some
arbitrary checking routine which can perform such a unit-to-unit comparison
to see whether they collide. While the amount of such checks can easily be
reduced, for example noting that the check of unit ¢ against unit j will produce
the same result as the check of unit j against unit ¢, this method invariably
results in O(n?) checks being performed. This approach is fine if there are very
few units, but this is obviously

The amount of checks can, however, be reduced by registering units in lim-
ited subdomains of the world and only checking units in the same subdomain
aganst each other (for now assuming that units in different subdomains can-
not intersect). Suppose, for example, that the world is split into ¢ parts each
containing % units. Then the total amount of checks, being before n?, will be

only
A\ 2
number of checks ~ ¢ (E) =n?/q.

It is evident that within each subdomain the complexity is still O(n?), but
decreasing the size of the subdomains can easily eliminate by far the most
checks, particularly if the division is made so small that only few units can
physically fit into the domains.

This approach still needs some modifications in order to work. Specifically,
units may conceivably overlap multiple subdomains, necessitating checks of units
against other units in nearby subdomains. Assuming square subdomains will
prove both easy and efficient, and we shall therefore do so. Consider a grid
consisting of w x h elements, or tiles, defining these subdomains—see figure 77.
We shall describe two ways to proceed.

1. Single-tile registration. Register each unit in the tile 7" which contains
its somehow-defined geometrical center. In order to check one unit it is
necessary to perform checks against every unit registered in either 7" or
one of the adjacent tiles. Thus every unit must be checked against the
contents of nine tiles. This approach is simple because a unit only has to
be registered in one tile, yet much less efficient than the optimistic case
above and requires that the units span no more than one tile size (in which
case they could overlap units in tiles even farther away).

2. Multiple-tile registration. Register the unit in every tile which it touches
(in practice, every tile which its bounding box overlaps). Checking a unit
now involves checking it against every other unit registered in any one of
those tiles it touches. This means that a unit whose bounding box is no
larger than a tile can intersect a maximum of four tiles. Units of arbitrary
size can cover any amount of tiles and therefore degrade performance, but
the collision detection will obviously not fail-also in most real-time games
the units are of approximately equal size and for the vast majority this
approach will be .

For the JWars collision detector we have chosen the second approach, primarily
because it does not restrict unit size to any particular scale. This approach will
also likely be more efficient since it in most cases will require less than half the
number of tiles to be visited (as noted, 4 is a bad case in this model whereas the
former model consistently requires 9). However there is one possible problem
which is illustrated in figure ?7, namely that two units which occupy two of the
same tiles will (unless carefully optimized out) be checked against each other in
each of those tiles'.

The best-case time of such a tiled collision detector is O(n) corresponding
to the case where all units are in separate tiles. The tiles should be sized such

1The present implementation does not optimize this, since this can hardly degrade efficiency
considerably.

that only a few units (of a size commonly found in the game) can fit into each,
but they should not be so small that every unit will invariably be registered in
multiple tiles. Every time a unit moves the tiles in which it is registered will
have to be updated, which becomes time consuming eventually.

As an example, this model should easily accommodate a battlefield with
many tanks (around 6m in size) and at the same time provide support for a few
warships (around 100 — 300 metres). If necessary, it is possible to improve the
model by allowing variably-sized tiles, such that the tiles are made larger at sea
than at land, for example. This approach will, however, not be implemented
since such extreme differences in scales are very uncommon in the genre.

Having covered the methods necessary to minimize the number of checks, it
is time to briefly mention the checking routine itself. It is obvious that a large-
scale game can not realistically provide collision detection between arbitrarily
complex shapes. In this genre units are commonly modelled as circular or
square, and we have therefore decided to provide only collision detection for
circular units. However the JWars collision detector does provide an escape
mechanism ensuring that units can implement a certain method to provide any
custom-shape collision detection. Using circular shapes provides the benefit of
simplicity and efficiency, and no custom shape handling will be discussed in this
text.

7.2 Design of collision detector

blahblah

7.3 Terrain

7.4 Pathfinding

When moving units in the world of JWars a navigational problem arises when
finding the shortest paths between to points. There exists a range of solutions
when finding the shortest path between to points. These solutions however
have different requirements for the map in which to navigate and some might
be inconsistent in speed. Most of todays RTS games solve this problem by
using a tilesystem for the map and designating tiles with either 'used’ or ’free’
as markers when scanning through the map with an algoritm. This approach has
several advantages, like high and consistent speed, while it requires a predefined
map-structure to search in. A good example is the A* algorithm which is a
shortest path graph algorithm. For finding a shortesth path using graphs for
data representation will be the best way. When finding a path on a map you
will need fixed points (reference points) designating where to turn and to make
heuristic evaluations during the search. A graph is normally represented like
this:

10

G=(V,E).

// indseet illustrationer

V' is a list or other representation of all the wvertices in the graph F is a
representation of the edges in the graph. An edge is best seen as a link between
two vertices - meaning that you can go from vertex vl to vertex v2 using the
edge e(vl,v2). The weight of an edge, corresponding to the amount of time it
takes to traverse it, is given by a weight function w : E — [0, infinity| since a
distance already travelled can not be negative.

Given a graph with a chosen data structure there are multiple ways to solve
the single-source shortest path problem from vertex A to B. Most of these
algorithms are based on selective expansion of the search area since this type
has the best running times with the fewest vertices visited.

The pathfinding in our instance has some requirements to the algorithm
which we must take into account before implementing a final algorithm. The
most pressing issue is to convert the dynamic and rather limitless implemen-
tation of units and other objects in the world of JWars. We have chosen to a
very open approach in the area of unit location and building placement. Any
building or unit is placeable anywhere on the map and will not fill out a certain
amount of tiles. The option of letting objects take space in the map can not
be done in JWars, since the data structures allows object of any size in JWars.
With the no limitations in size of objects, or the speed the can have, tiles can
be partially covered and still count as ’filled’ in a pathfinder. This system is
however implemented in some games and works well - these games however the
above mentioned limitations in object sizes and placements of static objects.

A tile system is incapable of handling the pathfinding in JWars - the aspect
of pathfinding on graphs is still viable and the most efficient method. The imple-
mentation we have chosen for the pathfinding is to transform the dynamic/open
implementation of the JWars-world to a graph-system on which we can perform
a search algorithm. For accomplishing this we have implemented a dynamic
graph system explained in the next chapter.

For every path needing to be found we start with the given graph for the
current map G = (V, E). 'V consist of all corners on static objects convex hulls
on the map. This data is stored in the collion map. F starts of as an empty
list. 2

The start and goal location are added to the program as Sloc and Gloc -
these are considered vertices which is set for each running of the algoritm. In
general pathfinding A* is considered the most effective search algorithm on the
single source shortest path problem. In effect this means that the algorithm
will terminate as soon as the shortest path has been found to the given goal
vertice. There exist a number of algorithms to solve the problem but the A*

2If it were to be a pre-defined list it should consist of all possible routes between any
vertices on the map. This amount of data would be hard to handle and if the amount of static
objects were large enough it would require alot of memory space.

11

algorithm has the shortest running time and fits or problem profile well in the
almost greedy expansion of the search tree.

In theory all edges can be represented in E' - but not active until discovered
by the algorithm. Using this approach we expand the graph according to A*
and evaluate it as such. The operation that makes this algorithm stand out
is the shoot-to function which activates vertices/edges while searching for the
path.

Here is pseudocode for the importent functions in the pathfinder.

boolean Shoot-to(Sloc, Gloc)

// When shooting from a vertice to another we will at some point either
// collide with the goal or another object on the map

If(collider = goal)

backtrack

else FindVertices(collider, angle(Sloc, Gloc))

FindVertices(vertice, angle)
// max/min are the points in the collider with the most extreme angle

// values from the original angle
Shoot-to

When solving this problem the algorithm only takes into account static ob-
jects which are registrered in the as static list in the collision tiles. Unfortunately
moving objects has the possibility of making

7.5 Vision

7.6 Data management

12

Chapter 8

Unit organization

13

Chapter 9

Unit Al

9.1 Hierarchical structure

Most realtime strategy games include two kinds of AI: first there is a simple
AT which controls the low-level behaviour of the individual units. This AT is
responsible for automatically doing tasks which are trivial, such as firing at
enemies within range or, if the unit is a resource gatherer, gather resources
from the next adjacent patch if the current patch is depleted such that the
player needs not bother keeping track of this. The other kind of AI is the
separate Al player which controls an entire army, and which is incompatible
with the interference of a human player. This Al is responsible for larger tactical
operations such as massing an army or responding to an attack.

In JWars, as we shall see, there is no such clear distinction between different
kinds of AI. Because of the hierarchical organization it is possible to assign an
AT to each node in the unit tree, meaning that while every single unit does have
an AT of limited complexity to control its trivial actions, like in the above case,
the platoon leader has another AI which is responsible for issuing orders to each
of the three or four squads simultaneously, and the company leader similarly is
responsible for controlling the three or four platoons. It is evident that this
model can in principle be extended to arbitrarily high levels of organization,
meaning that it will easily be equivalent to the second variety of Al mentioned
above. The entire army could efficiently be controlled by AI provided that the
AT elements in the hierarchy are capable of performing their tasks individually.

There are numerous benefits of such a model, the most important of which
we shall list here.

e Tactically, if one unit is attacked the entire platoon or company will be
able to respond. In classical realtime strategy games this would result in
a few units attacking while the rest were standing behind doing nothing.
Thus, this promotes sensible group behaviour which has been lacking in
this genre since its birth.

e It is easy for a human player to cooperate with the AI. For example it is

14

sensible to let the AT manage all activity on platoon and single-unit level
while the player takes care of company- and battalion-level operations.
This will relieve the player of the heavy burden of micromanagement which
frequently decides the game otherwise (as asserted in section ??). Thus,
more focus can be directed on strategy and tactics instead of managing
the controls.

e The controls may, as we shall see below, be structured in such a way
as to abstract the control from the concrete level in the hierarchy. This
means the player needs not bother whether controlling an entire company
or a single squad: dispatch of orders to an entire company will invoke the
company AT to interpret these orders in terms of platoon operations. Each
platoon AI will further interpret these orders and have the individual units
carry out the instructions.

e A formation-level AI can choose how to interpret an order to improve effi-
ciency. For example the player might order a platoon to attack an enemy
tank, but the platoon AI might know that rifles are not efficient against
the tank armour. Therefore it might conceivably choose to employ only
the platoon anti-tank section against the tank while the remaining platoon
members continue suppressing enemy infantry. These considerations are
easy for a human player, but cannot be employed on a large scale since
the human cannot see the entire battlefield simultaneously. Once again
this eases micromanagement.

There are, however, possible drawbacks of the system.

The worst danger of employing such an AI structure is probably that the AI
might do things that are unpredictable to or conflicting with the human player.
Care must be taken to ensure that human orders are not interfered with, and
that the behaviour is predictable to humans!.

From a game design perspective it might also be boring if the automatization
is too efficient, leaving the player with nothing to do. This problem, of course,
can be eliminated simply by disabling certain levels of automatization.

9.2 Design considerations

It was stated above that the control of single entities versus large formations
could be abstracted such that the player did not need to bother about the scale
of operations. If this principle is to be honoured, the user interface must allow
similar controls at every level of organization. At the software designing level
this may be parallelled by providing a common interface to be implemented by
different AT classes. It should be possible to give move orders, attack orders and

I Classical examples of this problem are when resource gatherers deplete resources and
automatically start harvesting from patches too close to the enemy, or when the player issues a
movement order and the unit moves the ‘wrong’ way into the line of fire because the pathfinder
has determined that this longer way is nonetheless faster.

15

so on, and each of these should have its implementation changed depending on
the context, i.e. whether the order is issued to a formation or a single entity.
It is also not entirely clear at this point which operations should be sup-
ported. If
interfaces and such

9.3 Overview of Al structure

list different AI interfaces

16

Chapter 10

Combat

10.1 Analysis of combat dynamics
10.2 Weapons, armour and damage

10.3 Spotting and targetting

17

Chapter 11

Control

18

Chapter 12

Graphics

19

Chapter 13

Conclusion

20

Bibliography

[1] Sean Riley, Game Programming with Python (Charles River Media, 2004.
ISBN 1-58450-258-4)

[2] T.H. Cormen et al., Introduction to Algorithms, 2nd Edition (McGraw-Hill
Book Company, 2001. ISBN 0-262-03293-7)

21

