Meeting with SLAC people

June 17, 2011

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Background information

Small Au nanoclusters

- \blacktriangleright Planar structures $(N < 12)$
- \blacktriangleright Cage-like structures
- \blacktriangleright Tetrahedron $(N = 20)$
- ▶ Various low-symmetry structures...

Large Au clusters

- \blacktriangleright Icosahedra
- \blacktriangleright Truncated octahedra

Also depends on temperature, etc. We don't want to mess with all the complicated structures. Rather we consider some simpler, more regular systems.

A O A G A 4 O A G A G A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A 4 O A

Geometric shells

- ▶ Consider a central atom, and then add complete shells of atoms around that atom
- \blacktriangleright If atoms are added on fcc lattice sites, we get the cuboctahedra with $N = 13, 55, 147, 309, 561, 923, 1415, \ldots$

Above: The first gold cuboctahedra and some oxygen

K ロ X K @ X K 할 X K 할 X 및 할 X 9 Q Q*

Peeling off atoms

- \blacktriangleright Start with one cuboctahedron
- \blacktriangleright Find atoms with lowest coordination
- \blacktriangleright Remove one of those at random
- \blacktriangleright Repeat as necessary until smaller cuboctahedron remains

K ロ X K @ X K 할 X K 할 X 및 할 X 9 Q Q*

- ▶ We use this method to generate large amounts of clusters of different size
- \triangleright Tends to remove corner atoms and whole facets

Adsorption energy as a function of cluster size. Different colours are different random seeds, i.e. ways in which to remove atoms. Below is variation of Fermi level

イロト イ押ト イヨト イ

 \equiv

÷

 $2Q$

Electronic structure of Au and Pt clusters

- ► Figure: DOS as a function of cluster size and energy. $Red = large DOS$.
- \blacktriangleright Au: Fermi level (purple) well above d-band
- \blacktriangleright Pt: Fermi level at top of d-band
- \blacktriangleright For Au, gaps in spectrum around Fermi level

Au cluster DOS and relaxation effects

 \triangleright Spectrum before and after relaxation for cuboctahedra (left), icosahedra (right). Structure is enhanced by relaxation.

A DIA K RIA K E A CHA K H A VIO

 \blacktriangleright Magic numbers 34, 58, 92, 138

Adsorption energies

- ▶ Adsorption energies as a function of cluster size for O, F, Li with different randomly generated clusters (colours)
- ◮ Jumps at 58 and 138 correspond to electronic magic numbers
- Opposite behaviour for Li vs O/F hints at alkali/halogen-like properties of clusters around magic numbers
- \blacktriangleright (clusters are unrelaxed. Forgot to subtract atomic reference energies so all graphs should be shifted[...\)](#page-6-0) \equiv \rightarrow \equiv \sim \sim \sim

Relaxed clusters and comparison to Pt

- O on relaxed Au / Pt clusters
- \triangleright Smaller clusters bind more strongly
- \triangleright Most variations for Pt coincide with variations of local geometry
- \triangleright For Au, local geometry and magic both significant

Projected density of states on O

- ▶ Projected density of states on O atom
- \triangleright Split into bonding/antibonding states, all of which are filled
- ▶ Since the antobonding states do not become unoccupied, so that won't explain the stronger bonding on smaller clusters.
- Assume V_{ak} behaves like semielliptic d-band and s-band
- \blacktriangleright (Δ is V_{ak} recast as a continuous function)
- \blacktriangleright Move d-band, see what happens (blue / green in Figure)
- \blacktriangleright Conclusion: if $\epsilon_F > -4.5$, d-band does not affect adsorption energy

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{B} + \math$

 $2Q$

DOS of clusters obtained by simulated annealing with EMT

イロト 不優 トメ 差 トメ 差 ト

È

 299

EMT relaxations

atom. EMT-relaxed clusters generally have lowest energies, except for very small clusters with linear structures etc

K ロ ト K 御 ト K 差 ト

 $2Q$

Analysis in terms of facet sizes and local coordination

- \triangleright Calculate adsorption energy on plateaus of various size
- \triangleright This might distinguish global electronic structure effects (magic numbers and such) from purely geometric effects

 2990

Binding energy as a function of avg. neighbour coordination (top) and plateau size in atoms (bottom) on different Au surfacesÈ 299

- ► Adsorption energy as a function of the average coordination number of the adsorbates' neighbouring metal atoms
- ► Au surface binding decreases with coordination up to 7 (coinciding with a 55 cluster facet), but eventually reverses.
- \blacktriangleright Pt binding more regular.