
1 Derivatives

By de�nition,

f ′(x) = lim
δ→0

f(x+ δ)− f(x)
δ

. (1)

On a uniform grid {xi}, the smallest distance we can represent is the grid
spacing, h. A natural choice is therefore the following di�erence quotient:

f ′(x) ≈ f(x+ h)− f(x)
h

. (2)

But this is a left derivative: It uses x and x+ h to approximate the derivative
at x. Intuition should tell us (right?) that it actually best approximates the
derivative between those two points, i.e., f ′(x + h/2), which is not part of our
grid. If we are going to do computations with both f and f ′, we should wisely
try to have them on the same grid so we can easily do arithmetic with them.
We therefore write:

f ′(x) ≈ f(x+ h)− f(x− h)
2h

. (3)

We say that this is a central �nite-di�erence derivative since the function values
are symmetric around the point where we calculate the derivative. To get the
second-order derivative, we apply this expression twice:

f ′′(x) ≈ 1

2h
[f ′(x+ h)− f ′(x− h)]

=
1

4h2
[f(x+ 2h)− 2f(x) + f(x− 2h)] . (4)

In this expression we only see di�erences of 2h. Hence we take 2h to be the grid
spacing and rewrite accordingly:

f ′′(x) ≈ 1

h2
[f(x+ h)− 2f(x) + f(x− h)] . (5)

In conclusion, this is how we would calculate the second-order derivative from
function values on a grid.

One can use a higher-order Taylor expansion and obtain expressions that
involve several other �nearest neighbours�: f(x), f(x ± h), f(x ± 2h), Such
expressions give higher accuracy if the grid is �ne enough.

How can we represent the kinetic operator as a matrix? Note how the
expression for the second derivative is a linear combination of function values
at di�erent (neighbouring) grid points. We arrange the coe�cients −2 and +1
in the diagonal and the �rst o�-diagonals. Then it is straightforward to verify

1

4 2 0 2 4

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 y = sin x
dy / dx
d2y / dx2
Ty

Figure 1: Derivatives calculated by �nite di�erences, and action of the kinetic
operator T̂ .

that:

Ty = − 1

2h2

−2 1 0 · · · 0

1 −2 1
...

0 1 −2
. . . 0

... −2 1
0 · · · 0 1 −2

f(x1)
...

f(xi)
...

f(xN)

= − 1

2h2

...

f(xi − h)− 2f(xi) + f(xi + h)
...

 . (6)

All the derivatives are shown on Figure 1. The script which calculates and plots
them is this:

import numpy as np

import matplotlib.pylab as plt

N = 64

x = np.linspace(-5, 5, N)

h = x[1] - x[0] # Spacing

y = np.sin(x)

plt.plot(x, y, 'o-', label='y = sin x')

2

dydx = (y[1:] - y[:N - 1]) / h

Stencil is most accurate *between* grid points:

xplushalf = 0.5 * (x[1:] + x[:-1])

Ignore end points of grid as necessary:

d2ydx2 = (y[2:] -2.0 * y[1:-1] + y[: -2]) / h**2

plt.plot(xplushalf , dydx , 's-', label='dy / dx')

plt.plot(x[1:-1], d2ydx2 , 'v-', label='d2y / dx2')

T = np.zeros ((N, N))

for i in range(N - 1):

T[i, i] = -2.0

T[i, i + 1] = 1.0

T[i + 1, i] = 1.0

T[-1, -1] = -2.0

T *= -0.5 / h**2

Ty = np.dot(T, y)

Derivative will be discontinuous at the end of the grid

unless it approaches zero there. Plot only the interiour:

plt.plot(x[1:-1], Ty[1:-1], 'd-', label='Ty')

print(T)

plt.legend ()

plt.savefig('derivatives.pdf')

plt.show()

2 Free particles and the harmonic oscillator

If we simply take T to be the whole Hamiltonian, we are calculating non-
interacting particles within a box as large as our grid. We get the independent-
particle wavefunctions using this script: independent_particles.py This gives
the wavefunctions shown on Figure 2.

The second part of the above listed script adds a quadratic potential to
obtain the wavefunctions for the harmonic oscillator, shown on Figure 3.

Finally we need to implement the di�erent potentials and a self-consistency
loop.

import numpy as np

import matplotlib.pyplot as plt

xmax = 6.0 # Box size

Ng = 200 # Number of grid points

Nn = 3 # Number of states in our calculation

3

6 4 2 0 2 4 6

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

n=1, e=0.033590
n=2, e=0.134353
n=3, e=0.302262
n=4, e=0.537279
n=5, e=0.839345

Figure 2: Particles in a box.

6 4 2 0 2 4 6

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
n=1, e=0.499886
n=2, e=1.499432
n=3, e=2.498522
n=4, e=3.497157
n=5, e=4.495336

Figure 3: Harmonic oscillator, whose exact energies are 1/2, 3/2, 5/2, 7/2,
The calculated values are slightly o� due to the �nite precision of the grid.

4

(The number of electrons is twice the number of

states -- each state is double occupied .)

x_g = np.linspace(-xmax , xmax , Ng)

dx = x_g[1] - x_g [0]

vext_g = 0.5 * x_g **2 # External potential

T_gg = np.zeros((Ng, Ng)) # Kinetic operator

for i in range(Ng):

T_gg[i, i] = -2.0

if i > 0:

T_gg[i, i - 1] = 1.0

T_gg[i - 1, i] = 1.0

T_gg *= -0.5 / dx**2

Initialize density as even:

n_g = 2.0 * Nn / (Ng * dx) * np.ones(Ng)

print('Initial charge ', n_g.sum() * dx)

Nn states , each one doubly occupied.

Initialize as constant density:

vhartree_g = np.zeros(Ng)

vx_g = np.zeros(Ng)

def soft_poisson_solve(n_g):

vhartree_g = np.zeros(Ng)

for i in range(Ng):

for j in range(Ng):

vhartree_g[i] += n_g[j] / np.sqrt (1.0 + (x_g[i] - x_g[j])**2)

vhartree_g *= dx

Ehartree = 0.5 * (vhartree_g * n_g).sum() * dx

return Ehartree , vhartree_g

def calculate_exchange(n_g):

vx_g = -(3.0 / np.pi * n_g)**(1.0 / 3.0)

Ex_prefactor = -3.0 / 4.0 * (3.0 / np.pi)**(1.0 / 3.0)

Ex = Ex_prefactor * (n_g **(4.0 / 3.0)). sum() * dx

return Ex, vx_g

density_change = 1.0

while density_change > 1e-6:

Calculate Hamiltonian

veff_g = vext_g + vhartree_g + vx_g

H_gg = T_gg + np.diag(veff_g) # Hamiltonian

Solve KS equations

5

eps_n , psi_gn = np.linalg.eigh(H_gg)

print('Energies ', ' '.join('{:4f}'.format(eps)

for eps in eps_n[:Nn]))

Normalize states. The states are normalized

already , but not in our dx metric

psi_gn /= np.sqrt(dx)

Update density

nold_g = n_g

n_g = 2.0 * (psi_gn[:, :Nn]**2). sum(axis =1)

density_change = np.abs(nold_g - n_g).sum() * dx

charge = n_g.sum() * dx

print('Number of electrons ', charge)

print('Convergence err', density_change)

assert abs(charge - 2.0 * Nn) < 1e-14

Calculate Hartree potential

Ehartree , vhartree_g = soft_poisson_solve(n_g)

print('Electrostatic energy ', Ehartree)

Calculate exchange potential

(we won't bother with correlation !)

Ex , vx_g = calculate_exchange(n_g)

print('Exchange energy ', Ex)

Ebs = 2.0 * eps_n[:Nn].sum() # "Band structure" energy

Ekin = Ebs - (veff_g * n_g).sum() * dx

print('Ekin', Ekin)

Epot = Ehartree + Ex + (vext_g * n_g).sum() * dx

print('Epot', Epot)

Etot = Ekin + Epot

print('Energy ', Etot)

for i in range(Nn):

plt.plot(x_g , psi_gn[:, i],

label='n={}, e={:3f}'.format(i + 1, eps_n[i]))

plt.legend(loc='lower right')

plt.show()

6

