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Examples of resonances

Negatively charged molecules

I Electrons may be locally bound by exchange/correlation,
but be repelled once they escape beyond a certain radius

I Autoionization: N−2 , Be
−, . . .

Molecules/atoms in electric
�elds

I Right: atom + static E-�eld

I Molecules in strong adiabatic
laser �elds
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Resonances may be long-lived and have important properties
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Trouble with ordinary DFT

I DFT calculates the ground state density

I A �resonant state� is by de�nition not the ground state

Complex scaling

I Method to calculate �resonant states�

I Involves non-Hermitian �Hamiltonian�

I Resonances become eigenstates with complex energy

I Combine with DFT → DFRT,
�density functional resonance theory�
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The complex-scaling method

I Initial work by Aguilar, Balslev, Combes (1971) on operators
under the �dilation� R̂θψ(r) = eiNθ/2ψ(reiθ),

I Original Schrödinger equation:[
−1

2
∇2 + v(r)

]
ψn(r) = εnψn(r)

I Complex-scaled by some �xed angle θ:
Ĥ(r)→ Ĥθ(r) ≡ R̂θĤR̂−1θ = Ĥ(reiθ) and[

−e−i2θ
1

2
∇2 + v(reiθ)

]
ψθn(r) = εθnψ

θ
n(r)

I Transformation di�erently a�ects eigenvalues of discrete versus
continuous spectrum.
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The complex-scaling method

I The complex Hamiltonian Ĥθ(r) is non-Hermitian

I A �Resonant� eigenstate with energy εR + iεI is characterized
by uniform decay under time propagation

I Decay rate is Γ = −2εI
I Let us diagonalize some complex-scaled Hamiltonians and see

what happens
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The free particle in one dimension

I Form of equation is e�ectively unchanged by complex scaling:

−1

2

d2ψθ(x)

dx2
e−i2θ = εθψθ(x)

I Solve equation in box with zero boundary conditions to obtain
same free-particle solutions but di�erent energies
εθ = ε0 exp(−i2θ)

I The continuum has �rotated down� by an angle of −2θ.

I Back-rotated states diverge exponentially:

R̂−θψθ(x) = e−iθ/2
(
Aeikx cos θekx sin θ +Be−ikx cos θe−kx sin θ

)
I The back-rotated states (almost) have outgoing character

I Suggestion: Square-integrable complex-scaled states can
correspond to outgoing waves
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E�ect on bounded states
or: why this would ever work

−L 0 L

Re(xeiθ)

0

Im
(x

ei
θ
)

I Transformation corresponds to change of integration contour

I Integrals of analytic functions are contour-independent

I Thus: matrix elements of nice localized states una�ected by θ
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I Bound-state energies una�ected

I Continuous spectrum rotates

I Resonances una�ected once
�uncovered�



Introduction Complex scaling DFRT Results and discussion

−6 −4 −2 0 2 4 6
−15

−10

−5

0

5

10

15

θ = 0.4

v(x) Re v(xeiθ) Im v(xeiθ)

−3 −2 −1 0 1 2 3

w
av

ef
un

ct
io

n

Re bound
Im bound

Re res1
Im res1

Re res2
Im res2

−4 −2 0 2 4 6 8 10

Re ε

−10

−8

−6

−4

−2

0

2

4

Im
ε

continuum, argz
=
−

2θ

resonances

bound
state

I Bound-state energies una�ected

I Continuous spectrum rotates

I Resonances una�ected once
�uncovered�



Introduction Complex scaling DFRT Results and discussion

In electric �eld

I Upper left:
Potential

I Upper right:
Wavefunctions

I Below:
Spectrum
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Complex-scaling in DFT

I DFT is based on an energy functional expressible as matrix
elements of occupied states

I We �complex-scale� DFT by complex-scaling all matrix
elements in the functional:

Eres − i
Γ

2
= e−i2θ

∑
n

∫
ψθn(r)

(
−1

2
∇2

)
ψθn(r) dr

+ e−iθ
1

2

∫∫
nθ(r)nθ(r′)
‖r− r′‖

dr dr′

+ Eθxc[n
θ] +

∫
vθext(r)nθ(r) dr

I Then we take the derivative to obtain complex-scaled
Kohn�Sham equations for stationary point of functional
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Some de�nitions

I States ψθn(r) = ei3θ/2ψn(reiθ)

I Density nθ(r) =
∑
n

fn[ψθn(r)]2 (no conjugation!)

I Operators Ôθ(r) = Ô(reiθ), e.g.,
d2

dx2
→ e−i2θ

d2

dx2

Self-consistency loop

I Solve non-Hermitian KS equations for ψθn(r), εn

I Figure out occupations fn depending on energies εn

I Calculate density

I Solve Poisson equation, calculate XC potential, add external
potential

I Repeat until self-consistent
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Exchange and correlation

I The only tricky term in the energy functional is Eθxc[n
θ] which

we must, for one thing, actually de�ne.

I Analytic continuation is unique → only one correct de�nition
of Eθxc

I Change integration contour for some ordinary real density n(r):

Exc[n] =

∫
n(r)ε(n(r)) dr =

∫
n(reiθ)ε(n(reiθ)) dr ei3θ

I De�ne potential as vθxc(r) = δExc[nθ]
δnθ(r)

.

I For LDA, exchange potential becomes

vθx(r) = −
(

3

π

)1/3

e−iθ[nθ(r)]1/3 = vx(reiθ)
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�Stitching� potentials

Figure: Stitching of LDA exchange potential. Continuously connecting

the branches of vθx(r) ∼ e−iθ[nθ(r)]1/3
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Pseudopotentials

I Atoms are represented by the HGH pseudopotentials

I Pseudopotentials parametrized from Gaussians and polynomials

I Can be analytically continued explicitly

I Disadvantage: Gaussians displaced from 0 oscillate upon
scaling
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Ionization of Helium atom in static electric �eld

I Ionization rates compared to accurate reference (Scrinzi)

I LDA: overestimates ionization rates for small �elds

I EXX: quite accurate

I ADK: perturbative approximation, works for small �elds only
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Exchange and correlation: Discussion

I ADK depends only on ionization potential

I Error in LDA attributable to overestimate of IP/HOMO

I LDA overestimates IP because of wrong asymptotic decay

I XC functionals that improve upon asymptotic decay may be
the key: LB94, . . .

I EXX has correct Coulomb-like asymptotic form and agrees well
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H2 dissociative ionization

I Ionization of H2 at di�erent atomic separations

I Electric �eld axially aligned

I Accurate reference calculations by Saenz
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Features/misfeatures of DFRT implementation

I Implemented in Octopus (not very user friendly/documented)

I Non-Hermitian eigensolver (ARPACK) slowly solves KS
equations

I Atoms represented by explicitly complex-scaled HGH
pseudopotentials

I Linear density mixing (for now)

I Occupation order of Kohn�Sham states chosen by heuristic

I We have implemented LDA and two-particle EXX
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Publications

I Ask Hjorth Larsen, Umberto de Giovannini, Daniel Lee
Whitenack, Adam Wasserman, Angel Rubio
Stark Ionization of Atoms and Molecules within Density
Functional Resonance Theory. J. Phys. Chem. Lett., 2013, 4
(16), pp 2734�2738

I Ask Hjorth Larsen, Umberto De Giovannini, Angel Rubio.
Dynamical Processes in Open Quantum Systems from a
TDDFT Perspective: Resonances and Electron Photoemission
Density-Functional Methods for Excited States, volume 368 of
Topics in Current Chemistry, pages 219�271. Springer
International Publishing, 2015
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Conclusions

Features of DFRT

I Resonances with e�ciency of DFT (almost; same
computational complexity at least)

I Almost formally justi�ed

�Disadvantages�

I Small imaginary energies (∼ 10−5) di�cult to converge

I Gaussian-shaped pseudopotentials oscillate when displaced

I Hartree potential and other density-dependent quantities are
not formally entirely justi�ed
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