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Examples of resonances

Negatively charged molecules

» Electrons may be locally bound by exchange/correlation,
but be repelled once they escape beyond a certain radius
» Autoionization: N5, Be™, ...

Molecules/atoms in electric
fields g [ A
» Right: atom + static E-field % :
Qo N
» Molecules in strong adiabatic Enf—
. unnelling
laser fields

X
Resonances may be long-lived and have important properties
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Trouble with ordinary DFT

» DFT calculates the ground state density
» A “resonant state” is by definition not the ground state

Complex scaling

v

Method to calculate “resonant states”

v

Involves non-Hermitian “Hamiltonian”
» Resonances become eigenstates with complex energy

Combine with DFT — DFRT,
“density functional resonance theory”

v



Complex scaling
®000000

The complex-scaling method
» Initial work by Aguilar, Balslev, Combes (1971) on operators

under the “dilation” Ryip(r) = eiN0/24(rei?),

» Original Schrédinger equation:
Lo
—§V +u(r) | Yn(r) = exn(r)

> Complex-scaled by §or[1eAfixed angle 6
H(r) —» H%(r) = RyHR," = H(re') and

[_e_m Lors U<rew)] () = &l (r)

» Transformation differently affects eigenvalues of discrete versus
continuous spectrum.
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The complex-scaling method

v

The complex Hamiltonian H?(r) is non-Hermitian

v

A "Resonant” eigenstate with energy ep + i€y is characterized
by uniform decay under time propagation

» Decay rate is I' = —2¢;

v

Let us diagonalize some complex-scaled Hamiltonians and see
what happens
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The free particle in one dimension

» Form of equation is effectively unchanged by complex scaling:

142 ,
3 —Zﬁgx) e = egify(z)

» Solve equation in box with zero boundary conditions to obtain
same free-particle solutions but different energies
€9 = €oexp(—i20)

» The continuum has “rotated down” by an angle of —26.

» Back-rotated states diverge exponentially:

R—Gwe(l') _ e—i9/2 (Aeikmcoseekxsinb? + Be—ikxcosee—kxsinb?)

» The back-rotated states (almost) have outgoing character

» Suggestion: Square-integrable complex-scaled states can
correspond to outgoing waves
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Effect on bounded states

or: why this would ever work

! I !
—L 0 L
Re(ze'?)

» Transformation corresponds to change of integration contour
» Integrals of analytic functions are contour-independent

» Thus: matrix elements of nice localized states unaffected by ¢
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Complex-scaling in DFT

» DFT is based on an energy functional expressible as matrix
elements of occupied states

» We “complex-scale” DFT by complex-scaling all matrix
elements in the functional:

L > [ (—%W) ¥ (r) dr
_’01// e
+E9C[n0]+/ eXt(r)n (r)dr

» Then we take the derivative to obtain complex-scaled
Kohn-Sham equations for stationary point of functional



Some definitions
> States 1% (r) = e®%/2¢),, (re'?)
» Density n(r) = an[sz(r)]? (no conjugation!)

N N d? oy d2
» Operators O%(r) = O(re'?), e.g., w2 e 20
Self-consistency loop

» Solve non-Hermitian KS equations for ¢/ (r), e,

» Figure out occupations f,, depending on energies €,

v

Calculate density

v

Solve Poisson equation, calculate XC potential, add external
potential

v

Repeat until self-consistent



Exchange and correlation

>

The only tricky term in the energy functional is E?_[n?] which
we must, for one thing, actually define.

Analytic continuation is unique — only one correct definition
0
of EY,

Change integration contour for some ordinary real density n(r):

Eyc[n] = /n(r)e(n(r))drz /n(rew)e(n(rew))dreiw

00(r) = Sediel.

For LDA, exchange potential becomes

Define potential as v

™



“Stitching” potentials

— Re(v1) —  Re(v2) — Re(vs)

== Im(vy) == Im(v2) == Im(vs)

Exchange potential [arb. units]

Distance [arb. units]

Figure: Stitching of LDA exchange potential. Continuously connecting
the branches of v/ (r) ~ e~ *[n?(r)]'/3



Pseudopotentials

v

Atoms are represented by the HGH pseudopotentials

v

Pseudopotentials parametrized from Gaussians and polynomials

v

Can be analytically continued explicitly

v

Disadvantage: Gaussians displaced from 0 oscillate upon
scaling
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> lonization rates compared to accurate reference (Scrinzi)
» LDA: overestimates ionization rates for small fields
» EXX: quite accurate
» ADK: perturbative approximation, works for small fields only
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Exchange and correlation: Discussion

» ADK depends only on ionization potential
Error in LDA attributable to overestimate of IP/HOMO

» LDA overestimates IP because of wrong asymptotic decay

v

v

XC functionals that improve upon asymptotic decay may be
the key: LB94, ...

» EXX has correct Coulomb-like asymptotic form and agrees well
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H, dissociative ionization

10—1

Ionization rate [a.u.]
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> lonization of Hy at different atomic separations
» Electric field axially aligned

» Accurate reference calculations by Saenz
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Features/misfeatures of DFRT implementation

» Implemented in Octopus (not very user friendly/documented)

» Non-Hermitian eigensolver (ARPACK) slowly solves KS
equations

» Atoms represented by explicitly complex-scaled HGH
pseudopotentials

> Linear density mixing (for now)
» Occupation order of Kohn—Sham states chosen by heuristic
» We have implemented LDA and two-particle EXX
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Publications

» Ask Hjorth Larsen, Umberto de Giovannini, Daniel Lee
Whitenack, Adam Wasserman, Angel Rubio
Stark lonization of Atoms and Molecules within Density
Functional Resonance Theory. J. Phys. Chem. Lett., 2013, 4
(16), pp 2734-2738

» Ask Hjorth Larsen, Umberto De Giovannini, Angel Rubio.
Dynamical Processes in Open Quantum Systems from a
TDDFT Perspective: Resonances and Electron Photoemission
Density-Functional Methods for Excited States, volume 368 of
Topics in Current Chemistry, pages 219-271. Springer
International Publishing, 2015
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Conclusions

Features of DFRT
» Resonances with efficiency of DFT (almost; same
computational complexity at least)

» Almost formally justified

“Disadvantages”

» Small imaginary energies (~ 107°) difficult to converge
» Gaussian-shaped pseudopotentials oscillate when displaced

» Hartree potential and other density-dependent quantities are
not formally entirely justified
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