Resonances from density functional theory with complex scaling

Ask Hjorth Larsen, Umberto De Giovannini, Angel Rubio

Nano-bio Spectroscopy Group Departamento de Física de Materiales Universidad del País Vasco / Euskal Herriko Unibertsitatea

September 8, 2015

K ロ X K 御 X X 평 X X 평 X X 평 X

Examples of resonances

Negatively charged molecules

- \blacktriangleright Electrons may be locally bound by exchange/correlation, but be repelled once they escape beyond a certain radius
- ► Autoionization: N_2^- , Be $^-$, ...

Molecules/atoms in electric fields

- \triangleright Right: atom + static E-field
- \blacktriangleright Molecules in strong adiabatic laser fields

Resonances may be long-lived and have important properties

◆ロ→ →伊→ → ヨ→ → ヨ→ \mathbb{P}^1 QQ

Trouble with ordinary DFT

- \triangleright DFT calculates the ground state density
- \triangleright A "resonant state" is by definition not the ground state

Complex scaling

- \triangleright Method to calculate "resonant states"
- \blacktriangleright Involves non-Hermitian "Hamiltonian"
- \triangleright Resonances become eigenstates with complex energy

KORKA REPARATION ADD

 \blacktriangleright Combine with DFT \rightarrow DFRT, "density functional resonance theory"

The complex-scaling method

- \blacktriangleright Initial work by Aguilar, Balslev, Combes (1971) on operators under the "dilation" $\hat{R}_{\theta}\psi(\mathbf{r})=\mathrm{e}^{iN\theta/2}\psi(\mathbf{r}\mathrm{e}^{i\theta}),$
- ▶ Original Schrödinger equation:

$$
\left[-\frac{1}{2}\nabla^2 + v(\mathbf{r})\right]\psi_n(\mathbf{r}) = \epsilon_n \psi_n(\mathbf{r})
$$

 \blacktriangleright Complex-scaled by some fixed angle θ : $\hat{H}({\bf r})\rightarrow \hat{H}^{\theta}({\bf r})\equiv \hat{R}_{\theta}\hat{H}\hat{R}_{\theta}^{-1}=\hat{H}({\bf r}\mathrm{e}^{i\theta})$ and

$$
\left[-e^{-i2\theta} \frac{1}{2} \nabla^2 + v(\mathbf{r} e^{i\theta}) \right] \psi_n^{\theta}(\mathbf{r}) = \epsilon_n^{\theta} \psi_n^{\theta}(\mathbf{r})
$$

 \blacktriangleright Transformation differently affects eigenvalues of discrete versus continuous spectrum.

The complex-scaling method

- \blacktriangleright The complex Hamiltonian $\hat{H}^{\theta}({\bf r})$ is non-Hermitian
- A "Resonant" eigenstate with energy $\epsilon_R + i\epsilon_I$ is characterized by uniform decay under time propagation
- ► Decay rate is $\Gamma = -2\epsilon_I$
- \blacktriangleright Let us diagonalize some complex-scaled Hamiltonians and see what happens

KORK EX KEY KEY YOUR

The free particle in one dimension

 \triangleright Form of equation is effectively unchanged by complex scaling:

$$
-\frac{1}{2}\frac{d^2\psi_{\theta}(x)}{dx^2}e^{-i2\theta} = \epsilon_{\theta}\psi_{\theta}(x)
$$

- \triangleright Solve equation in box with zero boundary conditions to obtain same free-particle solutions but different energies $\epsilon_{\theta} = \epsilon_0 \exp(-i2\theta)$
- ► The continuum has "rotated down" by an angle of -2θ .
- \triangleright Back-rotated states diverge exponentially:

$$
\hat{R}_{-\theta}\psi_{\theta}(x) = e^{-i\theta/2} \left(A e^{ikx \cos \theta} e^{kx \sin \theta} + B e^{-ikx \cos \theta} e^{-kx \sin \theta} \right)
$$

- \blacktriangleright The back-rotated states (almost) have outgoing character
- **>** Suggestion: Square-integrable complex-scaled states can correspond to outgoing waves4 D X 4 P X 3 X 4 B X 3 B X 9 Q O

Effect on bounded states

or: why this would ever work

- \blacktriangleright Transformation corresponds to change of integration contour
- \blacktriangleright Integrals of analytic functions are contour-independent
- \blacktriangleright Thus: matrix elements of nice localized states unaffected by θ

◆ ロ → → イヨ → → キヨ → → ヨ →

Complex-scaling in DFT

- \triangleright DFT is based on an energy functional expressible as matrix elements of occupied states
- \triangleright We "complex-scale" DFT by complex-scaling all matrix elements in the functional:

$$
E_{\text{res}} - i\frac{\Gamma}{2} = e^{-i2\theta} \sum_{n} \int \psi_{n}^{\theta}(\mathbf{r}) \left(-\frac{1}{2} \nabla^{2} \right) \psi_{n}^{\theta}(\mathbf{r}) d\mathbf{r} + e^{-i\theta} \frac{1}{2} \iint \frac{n^{\theta}(\mathbf{r}) n^{\theta}(\mathbf{r}^{\prime})}{\|\mathbf{r} - \mathbf{r}^{\prime}\|} d\mathbf{r} d\mathbf{r}^{\prime} + E_{\text{xc}}^{\theta}[n^{\theta}] + \int v_{\text{ext}}^{\theta}(\mathbf{r}) n^{\theta}(\mathbf{r}) d\mathbf{r}
$$

KORKA REPARATION ADD

 \blacktriangleright Then we take the derivative to obtain complex-scaled Kohn-Sham equations for stationary point of functional

Some definitions

► States
$$
\psi_n^{\theta}(\mathbf{r}) = e^{i3\theta/2}\psi_n(\mathbf{r}e^{i\theta})
$$

\n▶ Density $n^{\theta}(\mathbf{r}) = \sum f_n[\psi_n^{\theta}(\mathbf{r})]^2$ (no conjugation!)

 n

$$
\blacktriangleright \text{ Operators } \hat{O}^{\theta}(\mathbf{r}) = \hat{O}(\mathbf{r}e^{i\theta}), \text{ e.g., } \frac{d^2}{dx^2} \to e^{-i2\theta} \frac{d^2}{dx^2}
$$

Self-consistency loop

- \blacktriangleright Solve non-Hermitian KS equations for $\psi^{\theta}_n({\bf r}), \epsilon_n$
- Figure out occupations f_n depending on energies ϵ_n
- \blacktriangleright Calculate density
- ▶ Solve Poisson equation, calculate XC potential, add external potential

 \blacktriangleright Repeat until self-consistent

Exchange and correlation

- \blacktriangleright The only tricky term in the energy functional is $E_{\text{xc}}^\theta[n^\theta]$ which we must, for one thing, actually define.
- Analytic continuation is unique \rightarrow only one correct definition of $E_{\rm xc}^{\theta}$
- \blacktriangleright Change integration contour for some ordinary real density $n(\mathbf{r})$:

$$
E_{\rm xc}[n] = \int n(\mathbf{r}) \epsilon(n(\mathbf{r})) \, \mathrm{d}\mathbf{r} = \int n(\mathbf{r} e^{i\theta}) \epsilon(n(\mathbf{r} e^{i\theta})) \, \mathrm{d}\mathbf{r} e^{i3\theta}
$$

- ► Define potential as $v_{\text{xc}}^{\theta}(\mathbf{r}) = \frac{\delta E_{\text{xc}}[n_{\theta}]}{\delta n_{\theta}(\mathbf{r})}$.
- \blacktriangleright For LDA, exchange potential becomes

$$
v_{\mathbf{x}}^{\theta}(\mathbf{r}) = -\left(\frac{3}{\pi}\right)^{1/3} e^{-i\theta} [n^{\theta}(\mathbf{r})]^{1/3} = v_{\mathbf{x}}(\mathbf{r}e^{i\theta})
$$

A O A Y A P A P A P A SHOP

"Stitching" potentials

Figure: Stitching of LDA exchange potential. Continuously connecting the branches of $v_{x}^{\theta}(\mathbf{r})\sim \mathrm{e}^{-i\theta}[n^{\theta}(\mathbf{r})]^{1/3}$

K ロ X K @ X K 할 X K 할 X (할)

Pseudopotentials

- \triangleright Atoms are represented by the HGH pseudopotentials
- \triangleright Pseudopotentials parametrized from Gaussians and polynomials

KORKA REPARATION ADD

- \triangleright Can be analytically continued explicitly
- \triangleright Disadvantage: Gaussians displaced from 0 oscillate upon scaling

Ionization of Helium atom in static electric field

- ▶ Ionization rates compared to accurate reference (Scrinzi)
- LDA: overestimates ionization rates for small fields
- \triangleright EXX: quite accurate
- \triangleright ADK: perturbative approximation, works for small fields only

Exchange and correlation: Discussion

- \triangleright ADK depends only on ionization potential
- \blacktriangleright Error in LDA attributable to overestimate of IP/HOMO
- \blacktriangleright LDA overestimates IP because of wrong asymptotic decay
- \triangleright XC functionals that improve upon asymptotic decay may be the key: $LBB4, \ldots$
- \triangleright EXX has correct Coulomb-like asymptotic form and agrees well

KORKA REPARATION ADD

H_2 dissociative ionization

一面

- \blacktriangleright lonization of H_2 at different atomic separations
- \blacktriangleright Electric field axially aligned
- **Accurate reference calculations by Saen[z](#page-16-0)**

Features/misfeatures of DFRT implementation

- ▶ Implemented in Octopus (not very user friendly/documented)
- ▶ Non-Hermitian eigensolver (ARPACK) slowly solves KS equations
- \triangleright Atoms represented by explicitly complex-scaled HGH pseudopotentials
- \blacktriangleright Linear density mixing (for now)
- Occupation order of Kohn-Sham states chosen by heuristic

KORK EX KEY KEY YOUR

 \triangleright We have implemented LDA and two-particle EXX

Publications

- ▶ Ask Hjorth Larsen, Umberto de Giovannini, Daniel Lee Whitenack, Adam Wasserman, Angel Rubio Stark Ionization of Atoms and Molecules within Density Functional Resonance Theory. J. Phys. Chem. Lett., 2013, 4 (16) , pp 2734-2738
- ▶ Ask Hjorth Larsen, Umberto De Giovannini, Angel Rubio. Dynamical Processes in Open Quantum Systems from a TDDFT Perspective: Resonances and Electron Photoemission Density-Functional Methods for Excited States, volume 368 of Topics in Current Chemistry, pages 219–271. Springer International Publishing, 2015

Conclusions

Features of DFRT

- \triangleright Resonances with efficiency of DFT (almost; same computational complexity at least)
- \blacktriangleright Almost formally justified

Disadvantages

- ► Small imaginary energies ($\sim 10^{-5})$ difficult to converge
- \blacktriangleright Gaussian-shaped pseudopotentials oscillate when displaced
- \blacktriangleright Hartree potential and other density-dependent quantities are not formally entirely justified

KORA (FRAGE) A EL VIGO