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Abstract

This project is about combining a numerical method with an analytical method for solving
partial differential equations. The specific problem used in this project is the modelling
of shallow wave scattering on an object. The problem is related to the development of
warning systems for tsunamis and damage estimation. This sadly became a very relevant
problem on Dec 26, 2004 when a massive tsunami claimed the lives of 230,000 people in
one of the worst natural disasters in written history.

In the report we first discuss the theory of wave propagation and formulate the wave
problem and boundary conditions as a partial differential equation. This is done for a
simple mirror symmetric geometry and solved analytically. The problem is then solved
using the FEM-tool ComsoL™, which yields almost identical results. The next step is
to couple the analytical solution to the numerical solution, using basis functions of the
analytical solution in the far field as boundary conditions to a numerical problem in the
vicinity of the object where analytical solution is in most cases impossible. This method
is validated by comparison to the analytical solution and is in good agreement.

We proceed to use expressions based on the analytical solution as boundary condi-
tions for the numerical problem, and solve similar problems for arbitrary and increasingly
complex geometries, such as ellipses and later realistic coast lines.

The last step is modify the problem to account for variable water depth near the
“coast” of the scattering object and solve the problem again. This step is the final major
step towards a fully realistic model of the waves hitting actual countries, and is therefore
important if the model is to be used in actual warning systems. However it must be
underlined that this project investigates the solution method and should be regarded
merely as a proof of concept regarding tsunami dynamics.
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Chapter 1

Introduction

1.1 Introduction

On August 26 1883 after several months of increasing volcanic activity and minor erup-
tions, the volcano on the island of Krakatoa near Indonesia, see Figure 1.1, erupted in
four major explosions. The yield of the explosions is estimated to be equivalent to 200
megatons of TNT, making it the largest in recorded history. The explosions were heard
as far away as 3500km - a twelfth of the planet’s surface. As a result, ash was hurled
80km into the atmosphere. The death toll from the explosion was enormous. Pyroclastic
flows killed 1000 people on the island of Ketimbang near Sumatra, after traveling 40km
on a cushion of superheated steam across the ocean. There were no survivors of the 3000
people on the island Sebesi 13 km from Krakatoa. The biggest killer however, was the
series of giant tsunami waves caused by the gigantic pyroclastic flows entering the sea.
In some places 30m high waves were reported, and tsunami waves were reported as far
away as the english channel. When the devastation had ended the death toll had reached
36,417 people world wide. [7]

121 years later on December 26, 2004 an earthquake of magnitude 9.15 on the Richter
scale struck in the Indian Ocean, see Figure 1.3. The earthquake started a tsunami wave
not even one meter tall but several hundreds of kilometers long. As the wave closed in
on the coastline of Indonesia, Thailand, India and even the African continent, it rose to

SwaravEsT =

Figure 1.1: Krakatoa is placed in the Sunda Strait near Indonesia. [7].



Figure 1.2: Krakatoa as it looked before the explosion. [7].
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Figure 1.3: The epicenter of the earthquake in 2004 was near Jakarta
of Indonesia. [8]

as much as 30m in height and penetrated several kilometers inland, killing 230,000. The
high number of casualities made the 2004 tsunami the deadliest tsunami ever. The main
reason of the many victims was the lack of a warning system in the Indian Ocean. This is
partly because the region is one of the poorest in the world, and partly because a major
tsunami event had not occured since Krakatoa. United Nations has since started working
on an Indian Ocean Tsunami Warning System. [§]

Part of an effective warning system could be a prediction of where the tsunami would
strike and how much damage it would cause in specific regions. A way to give a rough
estimate of this is to run a numerical simulation of the tsunami wave, and estimate the
impact on the different countries. This project will try to make such numerical simula-
tions. We will start with analytical solutions to actual wave problems, and later combine
analytical and numerical methods to expoit the strengths of both methods. The result
should be fast simulations of waves hitting arbitrary geometries. To make the simulations
as close to reality as possible we will also implement variable water depth in the numerical
model. These results could be used as a warning system for tsunamis. However far from
all earthquakes results in tsunamis. On March 28, 2005 an earthquake with a magnitude
of 8.7 in roughly the same area as the one Dec 26, did not create any tsunamis. The
numerical simulation is therefore not meant as a final warning system, but merely as part
of one. By solving for many different earthquakes and wave scenarios it will be possible



Figure 1.4: The tsunami wave killed 230,000 people world wide when
it hit land. David Rydevik[8]

to make fast predictions of tsunamis.

1.2 Report overview

We have three major sections in the report.
e Mathematical model
e Numerical solution and comparison
e Extension to complicated geometries

In the mathematical model section the wave problem is formulated and solved. In this
section we only consider simple geometries i.e a plane wave hitting a cylinder. The details
in the solution method is discussed and the results are presented.

In the next chapter we investigate how to transform the analytical problem into a
numerical problem. To solve this we use the FEM solver CoMsoL™.

In the section “Extension to complicated geometries” we couple the numerical and
analytical solution together: we use the analytical solution in the far field and as the
boundary condition for the numerical solution. In the vicinity of the diffracting object
the problem is solved numerically. In this section we also introduce arbitrary geometries,
such as ellipses and countries. At the end of the chapter we take variable water depth into
acount in the model.



Chapter 2

Mathematical model

ARTHUR: Camelot!
GALAHAD: Camelot!
LAUNCELOT: Camelot!
PATSY: It’s only a model.
ARTHUR: Shhh!

Monty Python and the Holy Grail

2.1 Analytic solution for a simple wave problem

We will in this section consider a simple wave problem which can be solved analytically.
We consider an infinite ocean with a flat floor of some depth & in which there is a massive
cylindrical construction of radius a, see Figure 2.1. The fish is assumed to be infinitely
small.

Before we try to find an analytical solution we will have to choose an appropriate
coordinate system. Since the construction is a cylinder it is natural to choose a cylindri-
cal coordinate system, as shown on Figure 2.2, where we have put z = 0 at the ocean
surface. We wish to describe the propagation of waves in the vicinity of this construction,
specifically waves of very long wave length L > h such as tsunami waves'. This shallow
water assumption will greatly simplify the model. First we will consider the propagation
of such waves in an entirely empty sea, and the results from this model will be applied to
obtain the desired description of the dynamics near the construction.

In the open-sea case we consider a simple wave, 7;, propagating in some direction
which we happen to define as the = direction. We require that the wave be harmonic, i.e.
described by a time dependent factor exp(—iwt) and spatial variation exp(ikz) where w
is the angular frequency defined as w = QT”, where T is the period and assumed constant,
t is the time and k is the wavenumber defined as k& = 27” To keep the mathematics
as simple as possible we assume that the flow of the 3 dimensional fluid is irrotational,
incompressible and that fluid motion mainly occurs at the surface. The incident harmonic
wave will scatter on the cylinder and produce some resultant field, the precise form of
which we shall derive in the following.

By integrating the fluid motion over the depth h, and changing from rectangular to
cylindrical coordinates we can make the following transition into polar coordinates

(z,y,2) — (z,y) — r(cos b,sinb). (2.1.1)

!Tsunamis can have wave lengths of several hundred kilometres according to [2].
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Figure 2.1: Vertical cross section of the cylinder on the flat ocean
floor. a is the radius of the cylinder and h is the depth. The cylindrical
symmetry axis is denoted z.

Figure 2.2: The cylindrical coordinatesystem. The symmetry azis z is
pointing out of the paper.



The wave equation for a two dimensional fluid is in terms of the vertical displacement
Y(x,y,t) in Cartesian coordinates given as

0% = <v2 - ia—Q) Y =0, (2.1.2)

c2 ot?
where V? is the Laplacian. It is easy to separate this partial differential equation into
a time-dependent part which allows the canonical solution already introduced above,
7(t) = exp(—iwt) (where the sign convention enforces that the wave will propagate in the
positive z direction), and a spatially dependent part n(z,y) governed by the Helmholtz
equation

(V> + &%) n=0, (2.1.3)

such that a complete wave solution is ) = 7. If we focus only on the spatially dependent
motion of the fluid, we only have to solve Helmholtz equation. The time dependence can
at any point be reinstated by multiplying by 7 = exp(—iwt).

2.2 Determining boundary conditions

We now return to the case where we have a cylinder of radius a placed at the origin.
The incident wave, 7;, cannot penetrate the surface of the cylinder and will therefore be
totally reflected, creating a scattered wavefield, ns. Hence we regard the resulting wave
field, 0, as the sum of the incident wave field 7; and the scattered wave field 7, or

77(3379) = ni(mvy)+ns(mvy)7 (221)
ni(x,y) = oaexp(ikz). (2.2.2)

If we know the incident and the scattered wave field we can thereby find the resulting
wave field using Equation (2.2.1). Unfortunately, it is not possible to formulate practical
boundary conditions for the resulting wave field n at infinity. We therefore reformulate
Equation (2.2.1) as

ns(z,y) =n(z,y) —ni(z,y) (2.2.3)

with the intention of solving for n; which will later prove to have more favourable boundary
conditions.

The Helmholtz equation for the incident wave field (Equation (2.1.3)) is also valid for
the resulting wave field 7, if we assume that the amplitude is small. Note that k& = %’T is
indeed a constant, since L = ¢TI where both T and ¢ are constants?. Hence we conclude
that since 1 and 7; each satisfy the Helmholtz equation, so does the scattered wave field

7s, and we have

(V> + k?) ns(z,y) = 0. (2.2.4)
or in polar coordinates

(V? + &%) ns(r, 0) = 0. (2.2.5)

As we will show in a moment, we are able to define boundary conditions at infinity for 7;,
and we can then use the solution of the above equation, together with Equation (2.2.1),

2A result of constant depth.



to find the resulting wave field. Equation (2.2.5) is a second order partial differential
equation in both r and 6, and thus we need two boundary conditions for each, or four in
total. First we will demand that any wave that hits the cylinder will be totally reflected
at its surface, since there it cannot flow into the cylinder, i.e. the wave field will only have
a horizontal slope. Physically this means that the water surface only moves in the up and
down direction. Mathematically this can be expressed as

[%]T_a =0. (2.2.6)

Secondly, since there is no energy source at infinity (that is at » — o0), 75 must be going
outwards, it cannot go inwards, or in other words; if an observer is looking towards the
cylinder from infinity, he/she will only see the reflections from the cylinder, not from any
other direction.

We now have two boundary conditions for r. The model must nessesarily be 27 peri-
odic, we therefore define the two boundary conditions for the 6 coordinate as

n(r,0) =n(r,0 + 27), (2.2.7)

and

on(r,0 on(r,0 + 27
77((99 ) _ ol i ). (2.2.8)
We now have all four boundary conditions, and using Equation (2.2.1) we can reformulate

these in terms of the scattered and incident wave field as

Oni | Ons _
{37“ +5, L_a =0 (2.2.9)
For r — oo 7, is going outward (2.2.10)
ns(r,0) = ns(r,0 +2m) (2.2.11)
ons(r,0) _ Ons(r,6 +2m)
26 i : (2.2.12)

2.3 Separation of variables

We shall now find a product solution for ns in Equation (2.2.5). Specifically we assume
the existence of a solution®

Ns(r,0) = R(r)O(6). (2.3.1)
where R and O are yet unknown functions. Note that the Laplacian in polar coordinates
is [1, p. 196]

s 10 0 1 02
=== (re |+ 555 2.3.2
v ror \"or +r2392’ (2:32)
such that 7 becomes
V2ns = V2(RO) = 19 (rR'©) + L ror (2.3.3)
* ror r2 e

3Note that the scattered wave must diminish towards 0 with increasing r, which makes linear combi-
nations of such expressions eligible for solutions. This approach would be impossible if the wave did not
diminish, because of inhomogeneous boundary conditions.



1 1
=R'©O+-R0O+ —2R9". (2.3.4)
T T
Substituting into the differential Equation (2.2.5) results in the equation
/! 1 ! 1 1 2
R@—F;R@—i—r—gR@ +k“RO =0 (2.3.5)

which can be rewritten, multiplying by r?(RO)~!

sides of the equation, to

and rearranging terms to appropriate

1 ! 1!
_%cﬂ%+ﬁ<%qmﬁ. (2:3.6)

Notice that the left hand and right hand sides are dependent only on 6 and r, respectively,
and in order for the equation to be true for all values of these variables, the expressions of
each side must be equal to the same constant, say \. We have thus separated the partial
differential equation, obtaining the two ordinary differential equations

0"+X0 = 0 (2.3.7)
2R+ rR + (7‘2/€2 _ /\) R = 0. (2.3.8)

The former equation allows 27-periodic solutions only if X is a non-negative real. Further
it will prove convenient to perform the substitution A = n2, since all 27 — periodic solu-
tions ©,, can then be written (cf. the well-known solution of second-order linear ordinary
differential equations)

0,(0) = A, cosnb + B, sinnf, n € Ny. (2.3.9)

Note that the special case n = 0 is consistent with this notation since it eventually con-
tributes with a constant term (physically corresponding to a wave with constant amplitude
on circles concentric with the origin). The solution must necessarily be mirror symmetric
about the x axis, since the incident wave, PDE and boundary conditions all possess this
symmetry. This translates to a requirement that ©,, be even, which can be achieved only
for B,, = 0 except for n = 0 in which case the sine-dependent term is zero anyway. The
solution can now be written

O,(0) = A, cosnf, n € No. (2.3.10)

It is now time to turn to the differential equation for R, Equation (2.3.8), which by
introduction of the index n reads

PR+ 1R, + (r*k* —=n®) R, =0, n € No. (2.3.11)

This is the parametric form of the Bessel equation of order n, which we will first rewrite
to the ordinary Bessel equation. By making the substitution v = kr = du = kdr and
introducing the function x, R(r) = R (%) = x(u) the chain rule can be used to rewrite

the ODE, since

Ry = Xl G = k() (2312)
Ry(r) = Kxp(u), (2.3.13)



which inserted into Equation (2.3.11) yields
P2 kX, + (PR =X, =
u?xp +uxy, + (W —n)xn = 0, (2.3.14)
which has the general solution [1, p. 242]
Xn(w) = Podn(u) + QnYn(u), (2.3.15)

where J,, and Y, are the Bessel functions of first and second kind, respectively, of order
n. The boundary condition at infinity states that the waves are outgoing at infinity. It is
therefore convenient* to use the so-called Hankel funtions, defined as

Hg)(a}) = Ju(z) +iYa(2)
H?(z) = Ju(x)—iY(2), (2.3.16)

where 4 is the imaginary unit. Using these functions the general solution to the Bessel
ODE can be rewritten as

Rn(r) = P*HY (kr) + FXH® (kr). (2.3.17)

For r — +o0 it is known [3, table 16-1] that H,(Lz)(kr) exp(—iwt) will create a wavefront
propagating inward. The boundary condition (2.2.10) will therefore exclude this term of
the equation yielding

R, (r) = PrHWD (kr). (2.3.18)

The scattered wavefield 7 is then found from a superposition of product solutions

+oo
Y Ra(r)On(0)

778(7“, 9) =
n=0
= Z krA cos nb
n=0
= ZD,LH(D (kr)cosnf where D,, = A, P;. (2.3.19)

The incident wave field, Equation (2.2.2), can be written as [4, entry 94]

“+oo
ni(z,y) = aexp(ikz) = aexp(ikr cosf) = a Z €nd" Jn (kr) cos(nd), (2.3.20)
n=0
where €, is
1, n=20
€"_{2, n=12... (2.3.21)

The total solution is given by Equation (2.2.1) in polar coordinates:

+oo
n(r,0) = Z [aenz Jn(kr) + Dy HD (kr) | cosnf (2.3.22)
n=0

4This will become clear in a moment

10



Using the first boundary condition then yields

—+oo
% = Z [aeni”kJ,'l(ka) + anH,'L(l)(ka)} cosnf =0 &

+0oo too
Z Do kH'™ (ka) cosnf = — Z aeni"kJ) (ka) cosnf =
n=0 n=0

J! (ka)
HY (ka)’

N

D,, = —aeni (2.3.23)

where we have used that two Fourier series are equal if and only if they are coefficient-wise
equal. Inserting this in Equation (2.3.22) we have

—+o0

. o JIn(ka) 1
n(r,d) = aeni™ Ty (kr) — aeni® — HD (kr) | cosnb
2[ HiY (k)
+oo /
0 _ S eni” Jn(kr)—#mﬁl)(kﬂ cosné, (2.3.24)
@ n=0 Hy (ka')

where the final expression has been normalized. This is the analytical solution of the
proposed problem. Finally we note that the differential quotients of the Bessel- and Hankel
functions can be evaluated using the formulae

zd) (z) —ndy(x) = —zJpq()
cHY (z) —nHO(z) = —zHY (2), (2.3.25)

which make function evaluations practical.

2.4 Discussion of results

Let us finally consider some of the primary geometrical features of the solution to verify
its credibility and physical significance. Figure 2.3 shows radial plots of the amplitude of
7n for angles § = m and 6 = 0. For the § = 7 direction which corresponds to the negative
x-axis, it is observed that the solution for small r (Figure 2.3a) resembles a standing wave.
This is because for r < a, the cylinder locally resembles a plane which would indeed result
in a standing wave with amplitude twice that of the incident wave [9, p. 192]. For larger
r the reflected wave disperses, and the incident wave expression, Equation (2.2.2), will
be dominant; this wave has an amplitude of 1, and indeed Figure 2.3b shows part of the
decay of amplitude oscillations towards 1.

On the far side of the cylinder, i.e. for 8 = 0, there is a “valley” in amplitude, see
Figure 2.3c. This plot is made for & > a, and the amplitude at the cylinder surface is
quite low (around 0.15). The amplitude increases steadily towards 1 for larger r. Last,
Figure 2.3d where § = 0 and k£ < a hardly shows any change in amplitude at all. Thus
if the wavelength is much longer than the cylinder then the cylinder will not have any
significant influence on the overall flow. Compare this to the well-known result that you
cannot measure particles by means of waves with wavelength larger than the particle size.

Figures 2.4 and 2.5 show a three-dimensional plot of the absolute value of the total
wave field, and a contour plot of the the region around the cylinder, respectively. It
appears that curves of nodes and anti-nodes “bend” around the cylinder.

11



(a) Near the cylinder on the angle of in-
cidence 0 = 7 the amplitude oscillations
resemble a standing wave. Here ka = 50.

(c) Immediately on the far side of the
cylinderm 6 = 0, the amplitude is nearly
0, i.e. the cylinder screens the surface
from the indident wave. Further away the
amplitude increases toward that of the in-
cident wave. ka = 13.

0.8

0.6

04
0

(b) Far from the cylinder for 6 = 7 the in-
terference due to the cylinder decays and
the amplitude approaches that of the inci-
dent wave, which is 1. Here ka = 2.

1.01

1.008

1.006

1.004

1.002

0.998
0

(d) For high wavelengths ka = 1/5 and
6 = 0, almost no scattering occurs. This is
consistent with well-known results of wave
mechanics. It is interesting that the am-
plitude is slightly larger than 1 in some
places.

Figure 2.3: Radial plots of the amplitude of the solution n. On all plots
the radius of the cylinder is a = 1 (i.e. r and k take relative values).
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Figure 2.4: Three-dimensional plot of the exact amplitude of the solu-
tion 1 from Equation (2.3.24). The red cylinder represents the construc-
tion.

Figure 2.5: Contour plot of the exact solution n of Equation (2.3.24).
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Chapter 3

Numerical solution and
comparison

This chapter deals with the transformation of the differential problem of the previous
chapter into one which can be solved numerically, specifically using the Finite Element
Method (FEM). This method will then be applied and the solution compared to the
analytical one.

3.1 PDE to FEM transformation

We will in this section show how to transform a PDE problem, defined in some closed
region R, into a set of linear equations. In this example we will consider the Poisson
equation in two dimensions, defined as
2 2

Viu(z,y) = % + g—yZ = f(z,y). (3.1.1)
If we want to solve this equation using the finite element method, we will have to restrict
it to a closed and bounded region R. Rather arbitrarily we choose the region shown in
Figure 3.1. To simplify the example as much as possible we demand that u = 0 on the
boundaries. The transformation could be done with non-zero boundary conditions, but
it would complicate the derivation, and thereby the understanding of the fundemental
transformation procedure, more than necessary. The partial differential equation, (3.1.1),
together with the boundary conditions is called the strong form of the PDE problem. We
will later derive another form called the weak form. The usual approach to this problem
would be to apply the method of separation of variables, yet this is only possible if all but
one of the parameters are constant along every boundary segment which is clearly not
the case on the diagonals in Figure 3.1. Instead we will divide R into smaller, triangularly
shaped subdomains. We do this by selecting n interior points p; and connecting them to
their nearest neighbor points and their nearest boundary corner points. This is illustrated
on Figure 3.2 where n = 4. It can be shown that when using this method, the total
number of triangles, Argtal, is given by

ATotal = ABoundary -2+ 2”, (312)

where Apoundary is the number of boundary triangles. Hence on Figure 3.2, where n = 4,
we have 16 triangles.

14
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Figure 3.1: The geometry defining the closed region R is a 10 sided
polygon. For all boundaries u = 0.

_r
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Figure 3.2: The region R is divided into 16 smaller subdomains by
inserting 4 interior points and connecting them to their nearest neighbor
and their nearest boundary corner points.
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We now introduce a set of functions called the trial functions 7; : R— R, j=1...n,
corresponding to each of the n chosen interior points. Further we require that each of these
functions be non-zero only in the subdomains adjacent to the corresponding interior point,
green area in Figure 3.3, and that for each interior point p;, Tj(p;) = 1 (we say that the
trial functions have local support). For the sake of simplicity one can use affine trial
functions, though in practice they could be any continuously decaying functions with the
above constraints. Note that CoMsoL™ uses quadratic trial functions.

Furthermore define the test functions F; : R — R for ¢ = 1...n. In reality we have
some freedom in choosing these functions, but it greatly simplifies matters if the test
functions are simply equal to the trial functions. Thus we set E; = T;. Note that if the
test functions are indeed kept different from the trial functions, this will carry through to
the results of this section and result in the loss of desirable symmetry.

We now multiply the differential equation by a test function, i.e.

T;Vu =T f. (3.1.3)

Integrating this expression over the entire domain of definition R, yields

//Rij%dA://RijdA. (3.1.4)

We wish to eliminate the Laplacian V2 and achieve an expression in which only one
differentiation is carried out. To do this we shall apply the well-known formula

V- (fVyg) = fV3g+Vf Vg, (3.1.5)

which, using f =T and g = u results in the expression

//R{V'(TJVU)—VTj-Vu}dA://RijdA. (3.1.6)

The first term in the left hand side of this equation can, by using Gauss’ theorem, be
written as

//RV (T Vu)dA = %iju nds, (3.1.7)

where the vector n is an outward pointing unit normal vector as seen on Figure 3.4. This

yields
%iju -nds — // VTj - VudA = // ijdA7 (318)
R R

when inserted into the previous equation. Since the trial function 7} is zero outside the
adjacent triangular subdomains, and thus along the boundary of R (see Figure 3.3), the
line integral is equal to zero. We now have:

// VTj-VudA:—// fT;dA, j=1,2...n. (3.1.9)
R R

This is the previously mentioned weak form of the PDE, Equation (3.1.1). We now intro-
duce an approximation function U which approximates the exact solution u

n

Uz,y) = Y BiTi(x,y), (3.1.10)
— =



P -

=

Figure 3.3: The trial function is zero outside the local region surround-
ing its associated internal point (green). At point 1 it takes the value one
and is decreasing towards the perimeter (blue) of the local region. Along
the perimeter the trial function is zero and the line integral is therefore
also zero.

]
ds

ds

.0

Figure 3.4: The orientation of the boundaries equipped with outward
pointing normal vectors.
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where B; are constants. When this approximation is inserted into Equation (3.1.9), the
equation yields

// VT;-V (ZBJ;) dA = —// frydA, j=1,2...n (3.1.11)
R i=1 R
ZBi// VE-VTjdA:—// fTdA, j=1,2...n. (3.1.12)
i=1 R R

We now have n linear equations with n unknowns B;. We now define the n x n-dimensional
symmetrical stiffness matriz K = [K,;] and the n-dimensional load vector F = [F;] by

// VT, -VT;dA i,j=1,2...n (3.1.13)
R

//RijdA i=1,2...n (3.1.14)

Ej
The problem can now be rewritten in matrix notation as

KB =F. (3.1.15)

Thus the previous partial differential equation (i.e. the strong form) has been transformed
to a set of linear equations, the solution of which (in terms of the constants B;) will yield
an approximation to the solution v of the original problem.

In conclusion we note that the previous differential problem which was explicitely
dependent on the coordinates (z,y) has been transformed into a purely algebraic problem
in which no differentiation takes place. The loss of coordinate dependency stems from the
integration over the entire region R in the expressions (3.1.13) and (3.1.14). Also note —
as stated previously — that the jth test function has been defined such that it is 1 on the
interior point p; at which point all other test functions are 0. This means that B; will be
equal to the value of the approximated solution U at the point p;, i.e.

U(p;) = B, (3.1.16)

which shows the mathematical significance of the constants B;. Another quite important
consequence of the local support of the test functions is that if two interior points p; and
p; are not adjacent (i.e. they are not vertices of the same triangular subdomain of R)
the integral in Equation (3.1.13) is zero. For a large problem with many thus separated
interior points, most of these integrals will therefore cancel and only those corresponding
to geometrically neighbouring points will remain. This will have important consequences
for the application of the results of this section numerically since most of a computer’s
calculatory power will be expended on evaluating the stiffness matrix.

3.2 ComsoL™ implementation

In order to find solutions for more complicated geometries than for the cylinder discussed
in Chapter 2, one needs to make use of numerical approximation, such as the finite element
method (FEM) discussed in Chapter 3.1. We will still be using the same Helmholtz
differential equation, and as in the analytical solution we will therefore have to define
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Figure 3.5: Since the FEM requires finite boundaries, the FEM model
is limited to the area between the cylinder and a circle with radius b. The
model is divided into two subdomains. The analytical solution is com-
puted in II and the numerical in 1. To make the solution in subdomain
I unique, continuity at the border between the subdomains is demanded.

two boundary conditions for each coordinate. At the cylinder surface we assume total
reflection, mathematically expressed as

[%L_a —o. (3.2.1)

In the analytical solution we could define boundary conditions at infinity, but for a finite
element solution this is not possible. We therefore limit the FEM solution to a circle
of arbitrary radius b, see Figure 3.5. The FEM solution will thus only be calculated for
a <71 <band —m < 0 < 7. At the outer boundary, r = b, we can use the analytic solution
as a Dirichlet boundary condition. If we divide the model into two subdomains, I and II
(see Figure 3.5), we may use the numerical solution in subdomain I and the analytical
solution in subdomain IT and demand continuity on the boundary, that is

(U Dlr=p = [n(1)]r=s- (3.2.2)

Physically it seems reasonable to demand continuity between the two subdomains since
we expect the wave to be continous. We now have all the boundary conditions for the
FEM model, and it is now possible to implement the model in the commercial FEM
application ComsoL™ The code for setting up and solving the problem is included in
Appendix A. The analytically determined values on the boundary, used for the Dirichlet
condition in the FEM solution, are calculated numerically in MATLAB™ by evaluating
Equation (2.3.24). Since we cannot include an infinite number of terms in the summation
we have to make a stop criterion. We do this by comparing the last computed term to
the total sum. If the last term is numerically a factor v smaller than the total sum we
assume it is reasonably close to its limit and stop the computation. The condition can be
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written as
€mi™ [Jm(kr) - HJ’Ugl(CZ))H’(’} (kr)} cosmf

S Eni™ {Jn(kr) P ()]Ea))H(l)(kr)} cosnf

<. (3.2.3)

We notice that the cosine term may be equal to zero for certain combinations of 6 and m.
This may result in the stop criterion being fullfilled prematurely. To avoid this situation
we further require that the penultimate term obey a similar condition

i — m—1(ka) 7r(1
€m—117 L |:Jm—1(l€7") mHm) 1(]€7"):| COS ((m — 1)9)

< 0. (3.2.4)
m ka 1)
S enin [n(kr) i E(;)H,S (kr)] cosnf

The two expressions will never be zero at the same time, ensuring that the calculation
does not stop before we want it to. To simplify the implementation we choose v = §. Since
we only calculate a finite summation, we can save all the Bessel and Hankel functions,
once they have been calculated and, if possible, reuse them later in the computation.
Whether this is possible depends on the actual coordinates, but it will always be possible
for the functions with ka as argument, since ka is constant.

The FEM solution is by nature an approximation. It is therefore of great interest to
verify the results obtained from ComsoL™. This is done by comparing it with the analytic
solution for subdomain I. To compare the analytic and the FEM solution a plot of each
of the solutions is made. The analytic solution is shown in Figure 3.6a and the FEM
solution in Figure 3.6b. The calculation is done from the center of the cylinder to a radius
of 3a (in this case 3 since a = 1). Although there are small differences, they are most
likely a consequence of a relatively low number of elements in the grid in the FEM model.
The calculation time is highly dependent on the number of elements in the mesh, so in
order to avoid too long calculation times, the number of elements in the grid is set to
about 30.000. Apart from the small differences due to the grid in the FEM model the
two solutions look identical. If one were to increase the number of elements in the grid to
solution would be closer to the analytical solution.

To further investigate the difference in the solutions a line plot is made in the distance
1.5 from the center of the cylinder for both the solutions. These line plots are then
subtracted from each other and the difference is plotted. The result is shown in Figure
3.7. If the solutions were identical we would expect a 0 result. The maximum absolute
error is about 0.02 resulting in a relative error of about 4% compared to the analytic
solution. The difference between the FEM solution and the analytical solution can be
reduced by using a larger number of internal points in the FEM model, and precision can
thus be increased at the cost of computation time.
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(a) The analytic solution of the wave (b) The finite element solution of the
problem. wave problem

Figure 3.6: The FEM and the analytic solution look very similar. The
small differences are caused by the number of elements in the grid. When
the grid is refined the FEM solution will converge to the analytical so-
lution.

b
&

Figure 3.7: The FEM solution subtracted from the analytic solution at
constant r = 1.5. The upper graph shows the absolute error, while the
lower graphs shows the relative error.
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Chapter 4

Extension to complicated
geometries

4.1 The analytical/numerical coupling method

We have now numerically and analytically solved a wave scattering problem, where the
scattered wave component is outgoing and the scattering cylinder is assumed to be fully
reflecting!. To generalize the problem further the latter boundary condition is now re-
moved. This allows an arbitrary object with arbitrary properties regarding for example
reflectivity. We shall, however, limit our interest to objects that are mirror symmetric in
the z-axis. Further it is assumed that Equation (2.3.22) remains valid far away from the
object such that the scattered wave component can be expressed as a linear combina-
tion of Hankel functions (we shall discuss this statement later), where we shall allow new
values of the coefficients D,,. The problem is depicted on Figure 4.1: We now have the
outer subdomain IT and the inner circular subdomain I with radius b, and an arbitrary
symmetrical object resides within I.

The problem remains of deciding the boundary conditions on the boundary between
subdomains I and IT in Figure 4.1. We require that the solutions n(I) and n(II) in subdo-
mains I and IT be joined on their common boundary continuously and differentiably. Thus
we define the two boundary conditions (still with the ambiguity of selecting the constants
D,,), namely (omitting the constant of proportionality « of the previous expressions)

+oo
n(1)(b,0) = n(I1)(b,0) = Z[eninjn(kaDnH,(})(kb)} cosnf  (4.1.1)

n=0

on(1) On(IT) Sy )
[ ol A el an:;J [enz J.(kb) + D H (kb)} cosnf. (4.1.2)
It is clear that every choice of D,, will result in a perfectly valid problem which ComsoL™
can solve in subdomain I. However there can obviously only be one correct such choice,
and CoMsoL™ will be able to find these values of D,, by applying certain requirements?.

1See the boundary conditions used to achieve the solution of the wave problem in Chapter 2.

2The details of these requirements were kindly supplied by Nils Malm of Comsor™ support [6]. The
requirement is integrated into the ComsoL™ model as a minimization of certain functionals in a way
similar to the implementation of Dirichlet boundary conditions. This eventually results in an expansion
of the system of linear equations which ComsoL™ maintains internally.
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Figure 4.1: The model is divided into two Subdomains, I and II. The
two subdomains are joind continously and differentiably.

We shall refer to the use of Hankel functions (analytically determined) as a boundary
condition to the numerical problem as the coupling method since the numerical solution
is coupled to the analytical one by means of the Hankel coefficients.

Recall that the analytical solution (2.3.22) was derived with the requirement that the
inner boundary was a circle. This is so far still true for region II; but it is uncertain
whether a change to non-cylindrical boundary conditions inside subdomain I might affect
the solution outside, i.e. whether there does at all exist a set of constants D,, such that
the Equation (2.3.22) can express the exact solution on the boundary. It is clear that if
the function space spanned by H,(ll)(kr) cos(nd) is complete within the space of outward-
propagating (in r) and even (in theta) functions, then any function can be expressed
by such an (infinite) linear combination. Therefore Equation (2.3.22) is unquestionable
if the Hankel functions are together complete. If this is not the case, a solution using
Equation (2.3.22) could include any number of terms and use arbitrary precision, and yet
the error would not approach 0. Even though this function space is hardly complete (since
all constants are already necessary to express an arbitrary 6-dependence) it will still be
plausible that linear combinations of the Hankel functions can provide a good solution
numerically, since the problem still resembles the cylindrical one in many respects (same
differential equation, assumptions, etc.).

Before continuing with the solution we shall consider some efficiency issues. Until now
the analytical solution has been evaluated by means of a finite sum (see Section 3.2),
and the summation was stopped when terms became sufficiently small compared to the
accumulated sum. We would like to minimize the necessary number of terms. Consider
Figure 4.2. The figure shows the values of n where the function evaluation terminates as a
function of ka. If, for instance, the value ka is kept at around 1, it is necessary to include
approximately 8 terms in order for the relative sizes of the remaining terms (compared
to the accumulated sum) each to be smaller than 1074,

Setting ka = 1 and b = 2a the coefficients D,, can be calculated using Equation
(2.3.23), assuming that the values of the previously considered problem will be at least
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Maximum n as a function of ka
T T T

30

Figure 4.2: The number of terms, n, as a function of ka for different

tolerances.
| n | R(D,) (D) |D,,| |
0 | —2.4087¢ — 01 —4.2761e—01 4.9079¢ — 01
1| —6.5616e— 01 —2.4538¢—01 7.0054e — 01
2 1.3823¢ — 02 —1.6570e —01 1.6627¢ — 01
3 7.1093e — 03 2.5271e — 05 7.1093e¢ — 03
4 | —1.1510e — 08 1.5173e — 04 1.5173e — 04
5 | —1.9355e— 06 —1.8731le—12 1.9355e¢ — 06
6 1.340le — 16 —1.6371e—08 1.6371e — 08
7 9.8530e — 11 4.8540e — 21 9.8530e — 11
8 | —9.8308e — 26 4.4360e — 13 4.4360e — 13
9 | —1.5506e — 15 —1.1940e — 30 1.5506e — 15

Table 4.1: D,, for ka = 1. Values decay rapidly with n.

somewhat similar in magnitude to those of the new problem. The first six terms are listed
in Table 4.1. Their numerical sizes decrease rapidly with n, and coupled with the fact
that the Bessel functions J,, (1) approach zero for increasing n as well (J7(1) ~ 1079),
this shows that we will most likely need only a few terms to evaluate the function n with
reasonable precision.

4.2 CoMSOL™ solution and validation

In order to evaluate the credibility of a CoMsoL™ solution, we shall now compare values of
D,, found by ComsoL™ with those of the analytical solution above. The entire geometry
from above is therefore implemented in a CoMsSOL™ script, and the thus calculated values
of the constants D,, are listed in Table 4.2. The last column shows the relative errors
of these numerical solutions compared to the values of Table 4.1. The relative error is
consistently smaller than 10~ as long as the absolute values of D,, are larger than 10719,
which means that large relative errors only occur when the coefficients are numerically
insignificant (at which point this behaviour is expected).

24



D numerical
n

‘ n ‘ R(D») S(Dn) |Dn| 15" ety —
0 —0.24087 —0.42761 0.49079 1.0080e — 05
1 —0.65616 —0.24538 0.70054 1.5792e — 06
2 0.013823 —0.1657 0.16627 —1.3960¢e — 05
3 0.0071093 2.5272¢ — 05 0.0071093 —5.2317e¢ — 06
4 | —1.1536e — 08 0.00015173 0.00015173 2.3064e — 05
5 | —1.9355¢—06 —9.8576e— 12 1.9355¢ — 06 —1.3536e — 05
6 6.0297¢ — 13 —1.6373e — 08 1.6373e — 08 1.1794e — 04
7 9.8075e¢ — 11 3.7601le — 14  9.8075e — 11 —4.6133e — 03
8 | —1.8112¢— 14 5.0556e — 13 5.0588e — 13 1.4039e — 01
9 4.5787e — 15 —1.2067¢e — 14 1.2906e — 14 7.3232¢ + 00

Table 4.2: The numerically computed coefficients D,, for ka = 1. Values
decay rapidly with n. The relative errors compared to the values of Table
4.1 are shown in the last column, and they are reasonably low as long

as |D,,| is appreciably large.
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Figure 4.3: The numerically coupled solution is here compared to the
analytical solution to the wave problem. It is seen that it resembles the

analytic solution very much.
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In Figure 4.3 the numerically coupled solution is compared to the analytical solution.
The two plots look very much alike. The conclusion is that the CoMsoL™ numerically
coupled simulation produces realistic values and therefore correctly approximates the
analytical solution.

4.3 Plots of arbitrary geometries

We have now shown how we can use the coupled solution method to solve the wave
problem for different geometries as long as the subdomains specific to analytical and
numerical solution methods could be joined along a circle. Having thus far considered
only cylindrical obstructions we shall move one step further, extending our perspective to
elliptic obstructions. In this section we shall use a and b to denote the minor and major
axes of ellipses, respectively.

In Figure 4.4a and b, two ellipses are considered as obstacles and the wave problem
is solved for k£ = 1. As seen the maximum amplitude is in both cases observed on the
left side of the ellipse where the incoming wave strikes first. When the ellipse is oriented
along the z-axis the amplitude of the wave is slightly above 1.3, see Figure 4.4c and d.
Surprisingly when the ellipse is oriented along the y-axis the maximum amplitude is above
2 (about 2.1), which means the standing wave analogy mentioned in Section 2.4 breaks
(at least partially) down. When the problem was solved with the circle geometry the
maximum possible amplitude was 2. Although we cannot validate the result, the solution
looks fairly reasonable: when the ellipse is oriented along the z-axis the max amplitude
is smaller than when it is along the y-axis. This seems logical since the wave can more
easily get around the obstruction in the latter case.

It seems that the maximum amplitude of the hitting wave is increasing when the
ellipse is oriented along the y-axis. This also agrees with the previously established notion
that long wavelengths (here compared to the size of the obstruction perpendicular to the
angle of incidence) will not ‘see’ smaller obstacles. However the fact that the amplitude
can exceed that of a standing wave prompts a closer consideration of this phenomenon. In
Figure 4.5 ellipses with different eccentricities are used when solving the wave problem.
When the major axis, oriented along the y-axis, is increased, the amplitude maximum
curiously bifurcates into two maxima. The maximum amplitude is as much as 2.5 in
Figure 4.5d. To investigate when this separation of maxima occurs, plots were made
along different line segments parallel with the y-axis and tangential to the left side of the
ellipse, see Figure 4.6. It seems that the bifurcation occurs when the major axis is about
3.2 and the minor 1.

Variation of wave number

We shall now consider the effect of varying wave numbers using different eccentricities.
Figure 4.7 shows two sets of ellipses with major axes oriented along z- and y-axes respec-
tively. Figure 4.8 shows several plots of the amplitude at the front and back of each of
these ellipses. The minor axis of the ellipse and the wave number k are then varied in
turn. The result is shown in Figure 4.8. In Figure 4.8a, the amplitude was measured at the
back of an ellipse with major axis parallel to the z-axis. The figure shows a dropping am-
plitude when the size of the minor axis is increased. Intuitively this seems correct because
an ellipse with a minor axis of 0 would not disturb the waves at all and the amplitude
would be one. When the wave number is decreased (wavelength increased) the amplitude
increases toward 1. This also seems correct since a larger wavelength will make the ellipse
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Figure 4.4: Ellipses oriented along the x and y azxes respectively. The
wave number is k = 1.

27



Surface: u Surface: u

10 10
2 3 .

8

18

1.

6
16 1

4 4
14 b

2
12 i

0 0
1 1
2 08 -2 0.
= 06 - o
-6 04 -2 .
-8 02 -8 .

- 10

0 -5 [} 5 10 ~10 3 0 B 10

> o
> @ ®

r
o

®

@

=

S

(2) (b)
© Surface: u sutace u
10 !
, 22
8
s 8
6
18 6 2
* 16 4
2 14 2 15
0 12 0
1
2 -2 1
08
“4 -4
06
- 6
» 05
I ) A
o 02 d
10 10
) 5 0 5 10 et % 0 B 10
() (d)

Figure 4.5: When the ellipse’s major axis is increased the maximum
amplitude is greater and it splits up into two peaks.
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Figure 4.6: A lineplot at x = —1 and y = —4 to 4. As seen in Figure
4.5d, the wave moves from one to two maxima when the major axis of
the ellipse increases (b). The minor azis is always one. The mazimum
in front of the ellipse is separated around b = 3.2 with a =1
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Figure 4.7: Variations of ellipse dimensions

negligible to the waveform, and thus not create as large a void behind the ellipse (cf.
Section 2.4). Note that for k£ = 2 the model is no longer as precise since we do not have
enough terms in the numerical solution (the solution has 10 terms making it precise for
k =1, with an acuracy of 10~%), see Figure 4.23.

In Figure 4.8b we consider the amplitude in front of the same ellipse as before. The
figure now shows an increasing amplitude with an increasing minor axis of the ellipse. This
also seems correct since an increasing a will make the area projected onto the wavefront
larger, making it harder for the waves to move around the ellipse, make the water pile up
in front of the ellipse. Again an increasing wavelength will make the ellipse negligible to
the wave form, hence the amplitude drops. The plot for £ = 2 seems to have a maximum
when a is around 4, resulting in an amplitude of around 2.2. But again this may not be
correct because of the high wave number.

In Figure 4.8c the ellipse has been rotated 90 degrees and now has major axis located
parallel to the y-axis. Again the minor axis is varied from 0.5 to 5 and the amplitude is
measured at the back of the ellipse. For k£ = 0.25 the amplitude is seen to drop with a,
and for £ = 0.5 the amplitude is rising with a. It might seem surprising that the different
wave numbers yield opposite results. Intuitively one would expect the that the amplitude
would become larger when the ellipse becomes more circle-like (when a increases). This
is clear if you think of the extreme cases where the ellipse becomes a line parallel to the
y-axis or a circle. In this case the drag (and void) caused by the line would be greater
than that of the circle. However this dependence seems to change with k. Qualitatively
however, the amplitude increases with larger wavelength, which is expected.

Figure 4.8d is similar to the previous but now the amplitude is measured in front of
the ellipse. For the two k values below unity the amplitude is seen to decrease when a
is increased. But surprisingly when £ = 1 and £ = 2 the amplitude increases when « is
increased until it is about 3, whereafter the amplitude drops slightly. It seem that the
four plots all cross in the same point a ~ 3. This may be caused by the fact that the
maximum seems to split up into two in this point, as seen in Figure 4.5.

Excessively complicated geometries

So far we have only studied geometries possessing symmetry around the z-axis (i.e. circles
and ellipses). In order to generalize the model to more complicated geometries, we have

3Tt is easy to implement extra terms, and it is done in simulations later in the report, but we found it
too time consuming to repeat the rather heavy computations for this particular case.
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Figure 4.9: The problem solved with geometry in the shape of Jutland
and Funen of Denmark.

to return to Equation (2.3.9). If the geometry is not mirror symmetric about the z-axis,
we cannot neglect the sine term anymore and we have to evaluate the whole expression.
We therefore add the sine term to the eqation in the CoMsoL™ script*, and the wave field
equation now reads

+oo
n= Z [GnHT(Ll)(kr) cos(nb) + Z, HV (kr) sin(n@)} + exp®*®, (4.3.1)

n=0

where G,, and Z,, are unknowns to be calculated by CoMsoL™. To test the model with
more complex arbitrary geometry, maps of Jutland and Iceland are imported as png
pictures, converted to a 2 dimensional CoMsoL™ solid and the problem is solved. In order
to use a wavelength comparable with those of real tsunamis®, k is chosen to be 5, which
in the scale of our model is equal to a wavelength comparable to the length of Jutland
(400km)®. This is of course a rather crude approximation, since we chose the number
of terms in the summation for £ = 1, but as this is just a proof of concept and a low
computation time is of greater interest than accuracy we will allow this for now. If needed,
the number of terms can be increased until the desired accuracy is obtained.

Comparison and discussion

It is evident that the complicated geometries are not very different to the simple elliptical
ones if we consider only differences on length scales comparable to the wavelength. It
is therefore plausible that the behaviour in the vicinity of the considered complicated
geometries resembles the behaviour in the elliptic cases. The plots on Figures 4.3, 4.9 and
4.10 show that such a simplified interpretation is not sufficient. Even though most of the
coastal features of Iceland and Jutland are very small, the wave interference results in
peaks of wave amplitude at unpredictable locations. However the amplitude behaviour at
larger distances from the scattering objects do indeed behave roughly like in the simple

4See Appendix A.3
5Real tsunamis has a wavelength of several hundreds of kilometres.
L = 27" = 1, and Jutland, as seen on Figure 4.9, has a length of approximately unity.
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Figure 4.10: The problem solved with geometry in the shape of Iceland.

cylindrical or elliptic models (this is of course true on the boundaries because of the
conditions used, but also in the intermediary area). We therefore conclude that simple
models are sufficient to describe the scattering at large distances from the objects (i.e. at
other coasts farther away, for example), whereas such models are, not surprisingly, bad
at predicting the extent of damage on the particular coastal areas themselves.

Given that the wave patterns in the case of complicated geometries vary greatly from
those seen in the simple models (which are known analytically to be precise), and that the
real-world behaviour contains some more complicated variables than those we have imple-
mented here (notably varying water depth and waves flowing onto land instead of being
reflected immediately), we shall not state that the presented results are accurate without
discussion, but we note that the behaviour at intermediate distances seems reminiscent
of that observed previously, and is therefore quite realistic.

4.4 Ocean with appreciable variations in water depths

So far we have assumed that the water depth in our model has been constant. In this
section we will remove this restriction and allow appreciable variations in the water depth.
In the derivation of the analytical solution, which we use for the boundary conditions,
we assume that k is a constant. Since k = 2m(gh)~/2T~! we have to make sure that
the depth variations only occur within in the numerical subdomain (subdomain I). We
therefore define the depth h as

_ | h(z,y) forr<b
h= { ho forr>b ’ (4.4.1)

where hg is a constant. If the variations are comparable to the wavelength, an incoming
wave will be scattered and can not be described accurately by the model used in this
report. We shall thus consider only appreciable variations, i.e. variations should take
place on a scale greater than or comparable to the wavelength. With a variable water
depth, the spatially dependent equation is, as shown in [5, p. 110], given as

V- (hV) + %n —0, (4.4.2)
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Figure 4.11: The ocean floor of the northern part of the Atlantic ocean.
For an island as Iceland the ocean floor is almost constant until a certain
radius where it suddenly drops quickly to a lower, almost constant, level.

where g is the constant of gravity’. This expression can be reformulated as

V [z, y)Vn(z,y)] + hk*n(z,y) = 0 (4.4.3)
V- (b)Yl + S = o (4.4.4)

where we, as in Chapter 2, assume that 7' is constant. If h is a constant, Equation (4.4.3)
reduces to the Helmholtz equation (Equation (2.1.3)).

To simplify the implementation in CoMSOL™, we will only look at radial variations, i.e.
the water depth is independent of #. This may sound like a rather crude approximation,
but as seen on Figure 4.11, the ocean floor around Iceland is almost circular. Based on
these observations, what we need to describe the depth variation is a function which has
a fixed value close to the scattering object and then decreases slowly, compared to the
wavelength, to a another fixed value, lower than the initial value. An example of such a
function could be the continous, infinitely differentiable function

A —Ir]1?)

Pa,b\T) = ) (445)
") = XD+ M=)
where r is a coordinate vector and A is defined as
| exp (—x—lz) forz >0
Alz) = { 0 for z <0 (4.4.6)

This function will take the value 0 for » < a and the value 1 for » > b and is infinitely
differentiable in between. Hence we can fulfill the above mentioned requirements, that &
is constant in subdomain IT and that depth variation is “appreciable”, by adjusting the
parameters a and b. We define the water depth, which is always positive, at a point r, as

h(r) = hend — haifEpa,b(r), (4.4.7)

79.82m/s? in Denmark
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Figure 4.12: The variation in h, as a function of r fora=1.2,b=1.9,
haigg = 0.5 and heng = 1. Note that the function is constant 0.5 for small
r and constant 1 for larger r.

where heng — haifr is the depth when 7 < a and heng is the depth when r > b. If we have
the border between subdomain I and IT at » = 2 we could then choosea =1.2and b = 1.9
and set heng = 1 and hgig = 0.5, or

h(r) =1—0.5p1.2,1.9(r), (4.4.8)

resulting in an ocean floor as shown on Figure 4.12. So far we have only had 10 terms in
the sum in the analytical expression, restricting us to wavelengths less than 27 (k = 1).
If subdomain I has the radius 2, we will then only see approximately one sixth of a full
wave, and it will be difficult to observe the change in water depth, which at the same time
has to be very small compared to the wavelength. We could alternatively just increase the
radius of subdomain I, but that would not just require more terms in the summation®, but
also more elements in the mesh, thereby increasing computation time. We will therefore
have to increase the number of terms in the summation. If we look at Figure 4.2 we see
that atleast 23 terms are required if we want ka = 6 and still have § and ~ less than 104
ka = 6 corresponds to a wavelength of L = 1.05, and considering that adding 13 extra
terms, that is 26 extra unknowns associated with sine and cosine terms, significantly
increases the computationtime, we will have to settle with this wavelength. On Figure
4.13 the result of simulations with depths ranging from h = 0.2 at r = 2.5 to h = 5 at
r = 3.5 is shown. The wavelength is related to the ocean depth as L = T'c = T'v/gh, hence

8Points far from structure requires more terms than points close to the structure.
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at lower depths, the wavelength decreases according to the shallow water model. This is
observed on Figure 4.13, where the wavelength is relatively large far from the structure,
at large depths, compared to the wavelength close to the structure, at lower depths. The
wave amplitude increases substantially near the coast, which is also in agreement with
common knowledge.

Having thus taken into account arbitrary shapes, possibly lacking symmetry, and hav-
ing introduced variable water depth, we shall regard the model in its present state as
complete for the sake of this project.
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Chapter 5

Conclusion

The purpose of this project is to combine numerical and analytical methods to a one
step approach for solving a PDE problem. We develop the method by studying the wave
interactions that are observed when ordinary water waves scatter on obstructions within
the shallow-water domain.

These numerical calculations can be used to predict or simulate the propagation of
tsunami waves and the contact with geometries such as coastlines. As mentioned in the in-
troduction this became a relevant problem with the 2004 tsunami, where the high number
of casualties partly was caused by a lack of effective warning systems.

This mathematical problem is approached by initially formulating a simple symmetric
model using a harmonic wave incident on a cylinder, then deriving an analytical solution
in the form of a Fourier series. Particularly the amplitude as a function of location has been
of interest. It is shown that for wavelengths much larger than cylinder radius (ka < 1)
the scattering is insignificant. For smaller wavelengths, i.e. for ka around unity or greater,
the wave field will increasingly behave like a standing wave near the point of incidence of
the cylinder, whereas a wave valley will appear on the opposite side.

Following this, the same problem is solved numerically in a ComsoL™/MATLAB™ en-

vironment using the analytical solution as a boundary condition. The proposed solution
method involves expressing the solution on the boundary as a linear combination of the
basis functions of the analytical solution, then using CoMSOL™ to determine the optimal
values of the coefficients. The results obtained are verified by comparison of the numeri-
cally calculated Fourier coefficients to the analytically determined ones, see Table 4.1.
This method of analytical /numerical coupling is now extended to do calculations on more
complex geometries: the analytical solution is used in the far field and as a boundary
condition for the numerical problem (still with modification of coefficients from the series
expansion). In the vicinity of the complex scattering object, where the analytical solution
would become unobtainable, the numerical solution can still be evaluated, thus exploiting
the strengths of both solutions.
The problem is now extended to consider more complicated shapes, notably ellipses, and
the scattering behaviour is studied and compared to the cylindrical case. It is observed
that in some cases the amplitude at some locations increases beyond that of a standing
wave, and for high eccentricity the interference causes amplitude extrema to bifurcate (i.e.
split up). Otherwise the behaviour largely resembles that of the cylinder.
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Next, the problem is further extended to consider non-symmetric models of high complex-
ity, specifically using maps of Denmark and Iceland as scattering objects. In these cases
the amplitude exhibits very high peaks in some areas, mostly in bays, which is surprising
because the sizes of these features are much smaller than the wavelength. The simple
elliptic models can therefore not be used to predict amounts of damage on the shore,
but it is also observed that the wave amplitude behaves reasonably closely to that in the
elliptic models at intermediate distance from the shore, meaning that the coastal features
are insignificant far from the scattering objects (which is also inuitively plausible).

Finally, having above considered only cases of constant ocean depth, the model is modified
to take into account variable depth. The Icelandic problem is modified by introducing a
shallow circular shelf area around the boundary and a smooth transition to a deep abyssal
plain. The wavenumber changes greatly as waves approach the coast, and this alters the
amplitude and locations of peaks considerably.

The model is now capable of taking into account most of the important factors that de-
termine the behaviour of tsunami waves. The accuracy can still be improved by including
real ocean floor data. It might also be possible to alter the model, such that it can take
into account more steep slopes of the ocean floor.
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Appendix A

MATLAB™ & CoMSOL™ code

99 little bugs in the code

99 little bugs...

fiz one bug, compile it again
101 little bugs in the code...

Taken from the fortune program

A.1 comsolmodel.m

%Comsol model of cylinder in infinite ocean. The geometry consists of a 2d "dougnout".
The thickness is equal to the radius of the cylinder. The boundaryconditions are
given by numerical evaluation of an analytic expressen in the function etasolution
This is a decoupled model.

clear all
flclear fem

% COMSOL version
clear vrsn
vrsn.name = >COMSOL_,3.2°;

vrsn.ext = ’a’;

vrsn.major = 0;

vrsn.build = 300;

vrsn.rcs = ’$Name: ,$’;

vrsn.date = >$Date:,2005/12/20,19:02:30,8°;
fem.version = vrsn;

% Constants. A is a scalingfactor, k is the wavenumber, tol decides how many terms to
compute in the boundaryconditions and a is the radius of the cylinder.
fem.const = {’A4°,°1°,
’k?,?2%pi?,
’tol’,’1e-8?,
’a’,’li};

% Global expressions. Function for evaluation of the boundarycondition function (from
the analytic expression).

fem.globalexpr = {’etadiag’,’etasolutiondiag(sqrt(x.~2+y~2),atan2(y,x),k,a)’};

% Geometry. Make two circles and subtract the second from the first to make a "
doughnut ".

clear draw

gl=circ2(3);

g2=circ2(1);

g4=gl-g2;

draw.s.objs = {g4};

draw.s.name = {’C01°};

draw.s.tags = {’g4°};

40



33 fem.draw = draw;
34 fem.geom = geomcsg (fem);

36 % Initialize mesh
37 fem.mesh=meshinit (fem);
38 Yfem.mesh=meshinit (fem,

39 % >hmaxfact’,0.8,

40 % ’hgrad’,1.2,

41 7 hcurve’,0.25,

42 9 *hcutoff’,0.0003,

43 % hpnt ?,1,

44 7 >xscale’,1,

45 % yscale’,1, ...

46 ’hgradedg’,[3,1,4,1,6,1,7,11,

47 hcurveedg’,[3,1,4,1,6,1,7,1]1,
48 % ’hmaxedg’,[3,0.1,4,0.1,6,0.1,7,0.17,
49 % hcutoffedg’,[3,1,4,1,6,1,7,11);
50

51 % Refine mesh
52 Yfem.mesh=meshrefine(fem,

53 % mcase’,0, ...

54 7 rmethod?’, ’regular?);
55 Yfem.mesh=meshrefine(fem,

56 % mcase ’,0, ...

57 % rmethod’,’regular’);
58 Jfem.mesh=meshrefine(fem,

59 % mcase’,0, ...

60 7% rmethod’, ’regular?);
61 Yfigure

62 Ymeshplot (fem)
63 % (Default values are not included)

65 % Application mode 1

66 clear appl

67 appl.mode.class = ’Helmholtz’;
68 appl.assignsuffix = ’_hzeq’;
69 clear equ

70 equ.f = 0;

71 equ.a = ’k~27;

72 equ.c = -1;

73 appl.equ = equ;

75 clear bnd

76 bnd.ind = [1,1,2,2,1,2,2,1];

77 Y%figure

78 %The coefficients for the boundaryconditions are given as: h*u=r for Dirichlet and nx*(
c*nabla u)+q*u=g for Neumann. We have dirichlet at the outer boundary and neumann
on the inmner.

79 bnd.type = {’dir’,’neu’};

80 bnd.r ={’etadiag’,’0’};

81 bnd.g = {0,0};

82 bnd.h = {1,0};

83 appl.bnd = bnd;

84 fem.appl{1l} = appl;

85 fem.frame = {’ref’};

86 fem.border = 1;

87 fem.units = >SI’;

89 % Multiphysics
90 fem=multiphysics(fem);

92 % Extend mesh
93 fem.xmesh=meshextend(fem) ;

95 % Solve problem
96 fem.sol=femlin(fem,

97 ’solcomp’,{’u’},
98 outcomp’,{’u’});
99

100 % Here we make a hack in order to get the complex part of the boundaryconditions,
which is lost in comsol, by multiplying with i in the boundaryconditions function
(here called "thehack")

101 femcomplex=fem;

102 femcomplex.bnd.r ={’thehack(x,y,k,a)’,’0’};
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% Extend mesh and solve the hacked problem
femcomplex.xmesh=meshextend(femcomplex);
femcomplex.sol=femlin(femcomplex,

’solcomp’,{’u’},

’outcomp’,{’u’});
%Add the original (real) problem to the hacked complex.
solu = femcomplex.sol.u(:)*i + fem.sol.u(:);
fem.sol = asseminit(fem,’init’,solu);

%Plot solution.

figure,hold on

postplot (fem,
>tridata’,{’abs(u)’,’cont’,’internal ’},
‘trimap’,’jet (1024)°,
>title’,’Absolute,value of ,COOMSOL, calculation®)%,
%’axis’,[-3,3,-2,2.2,-1,1]1);

%postplot (fem,’contdata’,’abs(u) ’)

%postplot (fem,’tridata’,’u’,’contdata’,’u.*x’,’triz’,’u’,’contz’,’u’);

%postint (fem, ’u’)

theta=-pi:0.001:pij;
r=1.5%ones (1, length(theta));
postvals=postinterp(fem,’u’,[(r.*cos(theta));(r.*sin(theta))]);

r=1.5;

theta=-pi:0.001:pi;

sol=etasolutionabs(r,theta ,2*pi,1,1e-9);

subplot (2,1,1)
plot(theta,sol-abs(postvals),theta,zeros(1l,length(theta)),’--");
title(’Absoluteerror?)

xlabel (’\theta’)

ylabel (’Error?)

axis([-pi pi -0.01 0.025])

subplot (2,1,2)

plot (theta ,100*(abs(postvals)-sol)./sol,theta,zeros(1,length(theta)),’--2);
title(’Relative error?)

xlabel (’\theta?)

ylabel (’Error?)

%axis([-pi pi -5 0.0251)

A.2 etasolutioncomplex.m

function wave=etasolutioncomplex(r,theta,k,a,tol)
%#This function evaluates the analytical solution in polar coordinates given as ’r’ and
theta’ to a given tolerance, ’tol’, and returns the complex result. The
wavenumber and the radius of the structure is given by ’k’ and ’a’, respectively.
The function has been highly optimized, by tabulating the besselfunctions, and
bypassing standard Matlab checks.
if nargin<5b
tol=1le-T7;
end
A=1;
%Initialize.
A=A(1);
a=a(1);
k=k (1) ;
tol=tol(1);
ka=k*a;
count=1;
eta=0;
%wave=zeros (1,length(r)*length(theta));
jdiffO=(-ka.*besselmx (real(’J”),1,ka,0))./ka;
hdiffO=(-ka.*besselmx (real(’H’),1,ka,0))./ka;
pmax=0;
%Loop over r then theta.
for g=1:length(r)
if abs(r(g))>=1
kr=k.*r(g);
bjkrO=besselmx (real(’J’),0,kr,0);
bhkrO=besselmx (real (’H’) ,0,kr,0);
qmax=0;

42



W N

o Ut

for d=1:length(theta)
% Calculation of wave field in polar coordinates.
%Calculate first step (where E=1).
i=0;
E=1;
eta=A.*E.*i.~j.*(bjkr0-bhkr0.*(jdiff0./hdiff0)).*cos(j.*theta(d));
lastterm (count)=eta;
E=2;
gamma=1;
delta=1;
%Calculate rest of the sum.
while gamma>tol & delta>tol
j=j+1;
if j>pmax
jdiff(j,:)=(-ka.*besselmx (real(’J’),j+1,ka,0)+j.*besselmx (real(’J’
),j,ka,0))./ka;
hdiff(j,:)=(-ka.*besselmx (real(’H’),j+1,ka,0)+j.*besselmx (real (’H’
)i ka,0))./ka;
pmax=pmax+1;
end
if j>qmax
bjkr(j,:)=besselmx (real(’J’),j,kr,0);
bhkr(j,:)=besselmx (real (’H’),j,kr,0);
qmax=qmax+1;
end
count=count+1;
lastterm(count)=A.*E.*i.~j.*(bjkr(j)-bhkr(j) .*(jdiff (j) ./hdiff(j))) .*
cos(j*theta(d));
eta=eta+lastterm(count);
gamma=abs (lastterm(count))./abs(eta);
delta=abs(lastterm(count -1))./abs(eta);

end
wave (g,d)=eta;
end
else
wave(g,1:length(theta))=3;
end
g

A.3 coupledmodel.m

function [fem0O,c]=coupledmodel(kortdata,abvector,hvector)

%Written by Ask H. Larsen, Martin F. Laursen and Kasper Reck 2006

)

%Solves Helmholtz’s equation outside a domain defined by the argument. If the argument

’kortdata’ is mnot given, a circle of radius 1 is used. ’abvector’ defines the a
and b in the rho function and ’hvector’ the start and end depth as [a bl and [
hstart hend] respectively. To reduce computationtime, terms in the eta and deta
function may be removed, at the cost of accuracy. The picturfile should be black &

white png format, but other formats may work too.

h

%Example: ’coupledmodel(’iceland.png’,[2.5 3.5]1,[0.2 5])°

%

%This example reads the file iceland.png and creates a geometry based on the
information contained in this file. Furthermore it sets the ocean depth to vary
between 0.2 and 5 in the interval 2.5 to 3.5. The geometry, mesh and solution is
plotted.

flclear fem

%Start timer

tic

% COMSOL version

clear vrsn

vrsn.name = ’COMSOL_,3.27;

vrsn.ext = ’a’;

vrsn.major = 0;

vrsn.build = 300;

vrsn.rcs = ’$Name: ,$’;

vrsn.date = ’$Date:,,2005/12/20,19:02:30.,%°;
fem.version = vrsn;
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% Geometry
disp(’Converting,visual,data...’)

clear draw

gl=circ2(10);

if nargin==3

kort=imread (kortdata) ;
kort=fliplr (rot90 (rot90 (kort(:,:,1))));
figure

image (kort) ;

colormap gray

[c,1lr]=flim2curve(kort ,{[],[0 255]}); %resolution is 255

4hec=mirror (c,[0 11,[0 11);
disp(’Preparing,geometry...”)
c=so0lid2(c);
nvertices=geomliget (c,’nv’)

c=scale(move(c,-0.5*%1length(kort) ,-0.5*length(kort)) ,1.5/length(kort) ,1.5/length(kort))

; %“translate and scale

gd=gl-c;

else

gd=gl-circ2(1);

end

geomplot (g4,’Pointmode’,’off’,’edgelabels’,’on?)

draw.s.objs = {g4};
draw.s.name = {’C01°};
draw.s.tags = {’g4°’};

fem.draw = draw;
fem.geom = geomcsg (fem);
% Constants

fem.const = {’a’,abvector(1),’b’,abvector (2),°g’,9.82,°

(1),’hend’ ,hvector (2)};

%Global expressions

,1,’hdiff’,hvector (2)-hvector

fem.globalexpr={’cinfinity’,’cinfinity(b"2-(x"2+y~2))./(cinfinity(b~2-(x"2+y~2))+

cinfinity((x~2+y~2)-a~2))’}; %

% Initialize mesh

fem.mesh=meshinit (fem) ;

%Refine mesh

fem.mesh=meshrefine(fem,
‘mcase’,0, ...
rmethod’,’regular’);

fem.mesh=meshrefine(fem,
‘mcase’,0, ...
rmethod’, regular?);

%fem.mesh=meshrefine(fem,

% mcase ’,0,

% rmethod’, ’regular?);
hold on

meshplot (fem.mesh)

fem.mesh
% (Default values are not included)

% Application mode 1

clear appl

appl.mode.class = ’Helmholtz’;
appl.assignsuffix = ’_hzeq’;
clear bnd

bnd.type = ’neu’;

if nargin==

bnd.ind = [ones(l,nvertices+4)];
else

bnd.ind = [1,1,1,1,1,1,1,1];

end

appl.bnd = bnd;

clear equ

equ.a = ’(2*pi)~2/(g*T"~2)7;

equ.c = ’-hxy’;
equ.f = 0;
equ.ind = [1];
appl.equ = equ;

fem.appl{1} = appl;

% Application mode 2
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124

125
126
127
128
129
130
131
132
133
134
135

clear appl

appl.mode.class = ’F1PDEWBoundary’
appl.dim = {’1m’,’1m_t’};
appl.assignsuffix = ’_wb’;

clear prop

clear weakconstr

weakconstr.value = Yoff?;
weakconstr.dim = {’1m2’,’1m3’};
prop.weakconstr = weakconstr;

appl.prop = prop;

clear bnd

bnd.weak = {’+(1lm_test*(u-eta)+Ilm*(u_test-eta_test))-eta_test*deta’,0};
bnd.usage = {1,0};

if nargin==

bnd.ind = [1,1,1,1,2*%0ones(1,nvertices)];
else

bnd.ind = [1,1,2,2,1,2,2,1];

end

appl.bnd = bnd;
fem.appl{2} = appl;

fem.frame = {’ref’};

fem.border = 1;

fem.units = *SI’;

disp(’Analyzing mathematical expressions...?’)

% Scalar expressions

fem.expr = {’r’,’sqrt(x~2+y~2)°,
theta’,’atan2(y,x)’,
>hxy’, ’hend - hdlff*c1nf1n1ty
’k’,’2*p1/(sqrt(g*hxy)*T)’

eta’, ’gOxetacos (0,k,theta,r)+gl*xetacos(1,k,theta,r)+g2*etacos (2,k,theta,r)+g3*
etacos (3,k,theta,r)+gé*etacos (4,k,theta,r)+gb*xetacos (5,k,theta,r)+gb*xetacos (6,k
,theta,r)+g7*etacos (7,k,theta,r)+g8*etacos (8,k,theta,r)+g9*etacos (9,k,theta,r)+
glO*xetacos (10,k,theta,r)+gli*xetacos (11,k,theta,r)+gl2*%etacos (12,k,theta,r)+gl3%*

etacos (13,k,theta,r)+gld4*etacos (14,k,theta,r)+glb*etacos (15,k,theta ,r)+gl6*
etacos (16 ,k,theta,r)+gl7+etacos (17 ,k,theta,r)+gl8*etacos (18,k,theta ,r)+gl9x*
etacos (19,k,theta,r)+g20*etacos (20,k,theta,r)+g2l*etacos (21,k,theta ,r)+g22*

etacos (22,k,theta ,r)+zl*xetasin(l,k,theta,r)+z2*etasin(2,k,theta ,r)+z3*etasin (3,
k,theta,r)+z4%etasin(4,k,theta,r)+z5%etasin(5,k,theta,r)+z6*etasin(6,k,theta,r)

+z7*xetasin (7 ,k,theta ,r)+z8*etasin(8,k,theta,r)+z9*etasin(9,k,theta,r)+z10%*
etasin(10,k,theta,r)+zll*xetasin(11,k,theta,r)+z12*etasin(12,k,theta ,r)+z13*
etasin(13,k,theta,r)+zl4*xetasin(14,k,theta,r)+z15*etasin(15,k,theta,r)+z16%*
etasin(16,k,theta ,r)+z17*xetasin (17 ,k,theta,r)+z18*etasin(18,k,theta ,r)+z19%*
etasin(19,k,theta,r)+z20*xetasin(20,k,theta,r)+z21*etasin(21,k,theta ,r)+z22%*
etasin (22,k,theta,r)+exp(i*xk*x)’,

’deta’,’gO*diff (etacos (0,k,theta,r) r)+g1*d1ff(etacos(1 k,theta,r),r)+g2xdiff (etacos

(2,k,theta,r) r)+g3*d1ff(etacos(3 k,theta,r) r)+g4*d1ff(etacos(4 k,theta,r),r)+gb*

diff(etacos(S,k,theta,r),r)+g6*diff(etacos(G,k,theta,r),r)+g7*diff(etacos(7,k,

theta,r),r)+g8*diff (etacos (8,k,theta,r),r)+g9*diff (etacos (9,k,theta,r),r)+glO*diff

(etacos (10,k,theta,r) ,r)+gli*xdiff (etacos (11,k,theta,r),r)+gl2*diff (etacos (12,k,

theta,r),r)+gl3*diff (etacos (13,k,theta,r),r)+gld*diff (etacos (14,k,theta,r),r)+glbx*
diff (etacos (15,k,theta,r),r)+gl6*diff (etacos (16,k,theta,r),r)+gl7*diff(etacos (17,k
,theta,r),r)+gl8*diff (etacos (18,k,theta,r) ,r)+gl9*diff (etacos (19,k,theta,r),r)+g20
*diff (etacos (20,k,theta,r),r)+g21*diff (etacos (21,k,theta,r) ,r)+g22*diff (etacos (22,

k,theta,r),r)+zlxdiff(etasin(1l,k,theta,r),r)+z2*xdiff (etasin(2,k,theta,r),r)+z3*
diff (etasin(3,k,theta,r),r)+z4*diff (etasin(4,k,theta,r),r)+z5*xdiff (etasin(5,k,

theta,r) ,r)+z6*xdiff (etasin(6,k,theta,r) ,r)+z7*diff (etasin(7,k,theta,r),r)+z8*diff(
etasin(8,k,theta,r) ,r)+z9*diff (etasin(9,k,theta,r),r)+z10*xdiff (etasin(10,k,theta,r

),r)+zl1xdiff (etasin(11,k,theta,r),r)+z12*xdiff(etasin(12,k,theta,r) ,r)+z13*%diff(
etasin(13,k,theta,r) ,r)+z14*xdiff (etasin (14 ,k,theta,r),r)+z15*xdiff (etasin (15,k,

theta,r) ,r)+z16*diff (etasin (16 ,k,theta,r) ,r)+z17*diff(etasin (17 ,k,theta,r) ,r)+z18%
diff(etasin(18,k,theta,r) ,r)+z19*xdiff (etasin(19,k,theta,r),r)+z20*%diff(etasin(20,k
,theta,r),r)+z21*diff (etasin(21,k,theta,r) ,r)+z22*xdiff(etasin(22,k,theta,r),r)+ixk

*cos(theta)*exp (i*k*x) ’};

% Functions
clear fcns
%cosine part
fcns{1}.type=’inline’;
fcns{1}.name=’etacos (n,k,theta,r)’;
fcns{1}.expr="besselh(n,1,k*r)*cos(n*theta)’;
fens{1}.dexpr={’07,°0,%0", ..

>(-k*besselh (n+1,1, k*r)+n/r*besselh(n 1,k*r))*cos(n*theta) ’};
fcns{1}.complex=’true’;
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%sine part
fcns{2}.type=’inline’;
fcns{2}.name=’etasin(n,k,theta,r)’;
fcns{2}.expr="besselh(n,1,k*r)*sin(n*xtheta)’;
fens{2}.dexpr={07,°02,%0°, ...

>(-k*besselh (n+1,1,k*r)+n/r*besselh(n,1,k*r))*sin(n*theta) ’};
fens{2}.complex=’true’;

fem.functions = fcns;

% ODE Settings

clear ode

ode.dim={’g0’,’gi’,’g2’,’g3’,’g4’,’g5’,’g6’,’g7’,’g8’,’g9’,’g10’,’g11’,’g12’,’g13’,’
gl4’,’glb’,%gl16?,°g17°,°g18,°g19,2g20°,°g21°,°g22°,°217,%227,°23°,°24°,°25°,°26°
,°272,%28?,229°,°210°,°2z11° ,°212°,°213°,°z14°,°2z15°,°z16°,°2z17°,°2z18°,°219°,°2z20°,
2z21°,2222%};

ode.f={’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’0’,’O’,’O’,’O’,’O’,’O’,’O’,’0’,’0’,’0’,’0’
,?07,707,707,%0?,%0?,%0%,707,707,707,70°,70°,%0°,°0°,207,707,°0°,707,70%,°0%,°0?,?
0)’701’102’)0),’0,};

Ode.init={,0),2ol’101,10)’201’101,)01”0)’,0,’)0’,)0,,,0),’0)’,01,102’!01’101,201’101,
707’!0’,707’Jo,’70”)0,,,07’)0’,303’70!,707’707’!0’,707’70!,’0)”03’307’)0),J03’70
!’)0’,’0”!0)’]0)’)0)};

Ode.dinit={lo)’,0,’)0’,)0,,,0),’0)’,0,,102’101’101,202’101,102’)0’,)0,’,0),’0)’,0,’)0’
’101’101,,0!,’0’,,0,,’0’,’0,,,0’,’0’,lol,’o,’lol’lol,,ol,101,10,,’0’,’0,,,0’,’0’,,
0!,101,10,,!07,707,,07};

fem.ode=ode;

% Multiphysics

fem=multiphysics(fem);

% Extend mesh
fem.xmesh=meshextend(fem);

% Solve problem
disp(’Solving complex differential equations...Please wait?’)
fem.sol=femlin (fem,
>complexfun’,’on’, .
7S°1C°mp7,{,goi,’gl,,,g2!,,g37"g4,,,g57”g6!,,g7!,!g87’7g9!,!g10,,,g11
’,,glz’,’g13,,,g14’,’g151,’816],lgl7l,,g181’1819,,’g20’,,g21’,’g22,
,%21°,222°,°23?,%24°,°25°,%26°,°27°,°28,°29°,°2z10°,°z11°,°z12°,°
z13?,°z14°,°215°,°216°,°2z17°,°2z18”,°2z19°,°220°,°221°,°222?,°1m’,’u’
}, ...
7°utcomp7,{:g07,7g1:,:gza,:gss,7g41,:g5s,7g61,:g71,1g87,sggr,1glos,1g11
7’7g12’,7g137,:g147,7g151,1516s,:g171,:g18:,1519:"g207’7g21’,7g227
2217 ,222°,°223%,%24°,°25°,°26°,°27°,°28°,°29°,°210°,°z11°,°z12°,°
z13’,°z14°,°2z15°,°z16°,°2z17°,°2z18°,°219°,°220°,°221°,°222?,°1m’,’u’
b

% Save current fem structure for restart purposes
femO=fem;

% Plot solution
figure
postplot (fem,
>tridata’,{’abs(u)’,’cont’,’internal’},
trimap’,’jet (1024)°,
>title?’,’Surface:pyu’, ...
Jaxis’ ,[-5.7956416464891,5.7956416464891,-2.2,2.2,-1,11);
%Save solution
u0=fem.sol.u(:);

disp(’Extracting meaningless,coefficients...’)

%Initialize the system with zeroes except the 0ODE variables

fem.equ.init={’0};

fem.ode.init={’1°,°27,°3?,%4°,°5?,%6°,°77,°8°,%9°,°10°,°11°,°127,°13,°14°,°15°,°16°,°
17°,°18°,°19°,°20°,°21°,°22°,°23°,°24°,°257,°26°,°277,728°,°29°,°30°,°31°,°32°,°33
,,,341,135,,136’,,371’138’,,391’140’,141’,’42],143’,’44],145’};

%Extend mesh
fem.xmesh=meshextend(fem);

%Initialize the solution vector
fem.sol=asseminit(fem,’out?’,’u’);

% Locate the position of the ODE variables and display their value.
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disp(’Numerical, G_n,from,Comsol’)

for i = 1:length(fem.ode.init)
eta_n_index(i) = find(fem.sol == 1i);
disp([’coefficient’ num2str(i-1) ’:.°

num2str (u0 (eta_n_index(i)))

’,,abs:y,’ num2str (abs(ul(eta_n_index(i))))1]1)

end

% Insert the true solution back into the fem struct
fem.sol = asseminit(fem,’init’,u0);
%disp(’Computing ground zero...’)

hj=1;

%for i=b:nvertices -4

% j=j+1

% I(j)=postint (fem,’u’,

% ’dl’,[il,

% edim’,1);

%end

%[le,k]l=max(I)

%disp([’Casualties: ’> num2str (round(abs(e)*1000000))]1)
toc
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